
TEMPORAL ASYMPTOTICS FOR THE P'TH POWERNEWTONIAN FLUID IN ONE SPACE DIMENSIONMARTA LEWICKA AND STEPHEN J. WATSONAbstrat. The balane laws of mass, momentum and energy are onsideredfor a p'th power Newtonian uid undergoing one dimensional longitudinal mo-tions. For initial-boundary value problems involving �xed endpoints held at apresribed temperature or insulated, we prove exponential onvergene of solu-tions to equilibria for generi initial data. The estimates for di�erent boundaryonditions are presented in a uni�ed manner by utilising the thermodynamionept of availability. 1. Introdution.This artile is onerned with initial-boundary value problems for a p'th powerNewtonian uid (see [D℄) undergoing longitudinal one-dimensional motions. Thegoverning equations, whih express the balane of mass, momentum and energy inLagrangian form, are as follows�t = �x;�t = �� ��p + ��x� �x ; (G)v�t = �� ��p + ��x� � �x +���x� �x ;where � (spei� volume), � (veloity), � (absolute temperature) are unknown fun-tions of (x; t) 2 [0; 1℄� [0;1), and �; �; v > 0 are given onstants. For boundaryonditions, we take zero veloity endpoints�(0; t) = 0 = �(1; t); (V)along with either the Dirihlet ondition�(0; t) = � = �(1; t); (D)where � > 0 is a presribed onstant, or the Neumann ondition�x(0; t) = 0 = �x(1; t); (N)while the initial onditions are given by�(x; 0) = �0(x); �(x; 0) = �0(x); �(x; 0) = �0(x): (I)Finally, the spei� volume � and the absolute temperature � are subjet to thephysial onstraints � > 0 and � > 0: (C)1991 Mathematis Subjet Classi�ation. 76N10, 35Q10.Key words and phrases. A priori bounds, Navier-Stokes, Newtonian uid, p'th power gas,temporal asymptotis. 1



2 MARTA LEWICKA AND STEPHEN J. WATSONThe two initial-boundary value problems given by (G), (V), (I), (C), along with theDirihlet ondition (D) or Neuman ondition (N), will be referred to as (IBV P )Dand (IBV P )N respetively.The p'th power Newtonian uid is a linearly visous, Fourier heat-ondutingompressible gas, whose pressure P and internal energy e are given byP = ��p ; e = v�;with the pressure exponent p � 1 and onstant spei� heat v > 0. The stress Sand the heat ux q then appear in Lagrangian form as followsS = � ��p + ��x� ; q = ���x� ;where the onstants �; � > 0 are the visosity and heat ondutivity of the uid.We may now express the momentum and energy equations in (G) in the onisebalane law form �t = Sx; (M)�e+ 12�2�t = (S� � q)x : (E)Initial-boundary value problems for the ompressible Navier-Stokes (p = 1) equa-tion in one spae dimension have been extensively studied following the seminal pa-per [KS℄, where the existene and uniqueness of global lassial solutions to the or-responding (IBV P )N was established. The ideas of this work have been extendedto a variety of other physially natural boundary onditions (e.g. stress free) andmore general pressure laws, along with weak existene theorems in Sobolev and BVspaes (see [CHT℄, [H℄, [J℄, [Ka℄, [KN℄, [L℄, [N1℄, [S℄ ). The temporal asymptotis ofsolutions have also been studied, and exponential rates of onvergene established(see [HL℄ and [N2℄); while the treatment of the Dirihlet temperature ondition (D)an be found in [N0℄.In this paper we prove the exponential onvergene of the spei� volume, ve-loity and temperature to their respetive equilibrium values (Theorem II). Themain step in the argument is the derivation of the pointwise uniform bounds onthe spei� volume (see Theorem I (i)). A entral diÆulty here, that is assoi-ated with the pinned endpoint boundary ondition, is the presene of an a prioriunknown impulse R t0 S(1; �)d� , arising at the boundary. We obtain the requisitebound, namely 0 < � < �(x; t) < �; 8(x; t) 2 [0; 1℄� [0;1);through an analysis of the momentum balane, in ombination with estimates fol-lowing from the entropy identity (3.2) and onvexity arguments.The next step in the proof of onvergene involves establishing a global L2 esti-mate on the temperature gradient:Z 10 Z 10 �2x(x; t)dxdt <1(see Theorem I (ii)). Here, the main diÆluty arises from the Dirihlet temperatureondition, due to the a priori unknown energy ux R t0 [q(0; �) � q(1; �)℄d� , throughthe boundary. This is irumvented by identifying a thermodynami potential, the



P'TH POWER GAS 3availablity 1, whih is adapted to either temperature boundary ondition (D) or(N), and then serves as a Lyapunov funtion for solutions.The layout of this paper is as follows. In Setion 2 we state the main theorems,while in Setion 3 we gather some preliminary global estimates relevant for theirproofs. The key pointwise estimate on the spei� volume is obtained in Setion 4,followed by the proof of the global L2 temperature gradient estimate in Setion 5.The �nal two Setions are devoted to establishing the exponential onvergene ofsolutions to equilibrium states. 2. Main results.The existene theory for the initial-boundary value problems may be onve-niently formulated in terms of the spaes of H�older ontinuous funtions C2+�[0; 1℄;and C�;�=2 ([0; 1℄� [0;1)) whih arise naturally in the theory of paraboli partialdi�erential equations, see [K℄. Throughout the paper we adopt the onvention thatany onstant that appears will depend at most on the C2+� norms of the initialdata, minx2[0;1℄ �0(x) and minx2[0;1℄ �0(x). Also, we denote suh generi \small"onstants by �, and \large" onstants by �.For onveniene and without loss of generality we may assume R 10 �0(x)dx = 1:Then from onservation of mass and ondition (V) we haveZ 10 �(x; t)dx = 1: (2.1)We �rst state an existene and uniqueness result whih follows from [W℄.Theorem . Consider the initial-boundary value problems given by (IBV P )D or(IBV P )N . Set � 2 (0; 1) and let the initial data �0; �0; �0 2 C2+�[0; 1℄ satisfythe physial onstraints �0; �0 > 0 and be ompatible with the relevant boundaryonditions. Then there exists a unique lassial solution (�; �; �) on [0; 1℄ � [0;1)with � 2 C1+�;1+�=2 ([0; 1℄� [0;1)), �; � 2 C2+�;1+�=2 ([0; 1℄� [0;1)) :Our �rst main result onerns uniform pointwise bounds on the spei� volumeand global L2 bounds on the temperature gradient.Theorem I. Let (�; �; �) be as in the previous Theorem. There exist onstants�; �� > 0, suh that (i) � � �(x; t) � �;(ii) Z 10 Z 10 �2xdxdt <1:Based on the above estimates we are able to establish the exponential onver-gene of solutions to equilibrium states. Here, a distintion arises between the(IBV P )D and (IBV P )N with respet to the limiting temperature. More preisely,seting �� = 8<: � for (IBV P )D,1v Z 10 �v�0 + 12�20� dx for (IBV P )N ,1Eriksen refers to this as ballisti free energy [E℄.



4 MARTA LEWICKA AND STEPHEN J. WATSONwe have the following onvergene result:Theorem II. Let (�; �; �) be as before. Then(i) Z 10 ��2x + �2x + �2x� (x; t)dx � �e��t;(ii) maxx2[0;1℄ �j�(x; t)� 1j+ j�(x; t)j+ j�(x; t) � ��j� � �e��t:The established onvergene rate is a reetion of the underlying paraboli stru-ture of the governing equations (G) indued by the presene of visosity and heatondution. 3. Energy and entropy estimates.In this Setion we identify relevant thermodynami quantities and establishglobal bounds thereon. First, we note that the entropy � of a p'th power New-tonian uid is a onave funtion�(�; �) = v ln � + h(�);where h(�) = � ln � for p = 11p�1 �1� �1�p� for p > 1 ; (3.1)whih evaluated along a solution to (M) and (E) satis�es the following standardentropy identity: �t = ��2x�� + � �2x��2 � �q��x : (3.2)For the Neumann problem, the entropy ux, �q=�, is zero at the boundary. But,for the Dirihlet problem this is generally not true due to the entropy exhange withthe heat bath. However, for either boundary ondition we an trak the globalentropy hange (uid and heat bath) through the quantityA := e+ 12�2 � ��� = v(� � �� ln �)� ��h(�) + 12�2: (3.3)By ombining (E) and (3.2) we obtain the availability identity,�e+ 12�2 � ����t = �S� ��1� ��� � q�x � �����2x�� + � �2x��2� ; (3.4)whih reveals R 10 Adx as a Lyapunov funtional for both (IBV P )D and (IBV P )N .This is due to the presene of the entropy prodution term ��2x=(��) + ��2x=(��2)indued by the dissapative mehanisms of visosity � > 0 and heat ondution� > 0; see formula (7.1).All subsequent results, unless otherwise indiated, apply to both boundary valueproblem (IBV P )D and (IBV P )N .



P'TH POWER GAS 5Lemma 3.1. (i) Z 10 �2(x; t)dx � � ,(ii) � � Z 10 �(x; t)dx � �;(iii) Z t0 Z 10 ���2x�� + � �2x��2� dxd� � �.Proof. Integrating (3.1) in spae and then using Jensen's inequality and inorpo-rating (2.1) we getZ 10 �dx � v ln�Z 10 �dx�+ h�Z 10 �dx� = v ln�Z 10 �dx� : (3.5)Integrating (3.4) over [0; 1℄� [0; t℄, and noting boundary onditions (V) and either(D) or (N), we arrive at:Z 10 �v� + 12�2 � ���� dx+ ��Z t0 Z 10 ���2x�� + � �2x��2� dxd� � �:Hene, in view of (3.5):Z 10 �v� + 12�2�dx+ �� Z t0 Z 10 ���2x�� + � �2x��2� dxd�� �+ v �� ln�Z 10 �dx� : (3.6)In partiular, R 10 �dx � �+ �� ln�R 10 �dx�, whih yields (ii). Using (ii) in (3.6) weestablish (i) and (iii).4. Pointwise bounds on the speifi volume �.This Setion is devoted to proving Theorem I (i). The entral diÆulty herestems from the presene of an a priori unknown impulse I = R S(1; s)ds arising atthe boundary, due to the pinned endpoint ondition (V).The main step is the derivation of the uniform upper bound on �, and is mo-tivated by ideas �rst appearing in [KS℄. Time dependent lower bounds on � thenfollow diretly, while the uniform bound from below requires a more detailed studyof the impulse I: The presene of visosity and heat ondution, as well as thethermodynami struture of the problem, play a ruial role in the argument.For onveniene we introdue the notation�m(t) = maxx2[0;1℄ �(x; t); �m(t) = maxx2[0;1℄ �(x; t); �m(t) = maxx2[0;1℄ �(x; t):The following preliminary lemma will be of later use.Lemma 4.1. (i) �m(t) � ��1 + �m(t) Z 10 �2x��2 dx�,(ii) �(x; t) � �� � Z 10 �2x�2 dx.



6 MARTA LEWICKA AND STEPHEN J. WATSONProof. To prove (i), alulate:�(x; t) � ��1=2(y; t) + 12 Z 10 j �x j�1=2 dx�2 � 2"�(y; t) + 14 �Z 10 j�xj�1=2 dx�2#� 2 ��(y; t) + 14 �Z 10 ��dx��Z 10 �2x��2 dx�� : (4.1)Integrating (4.1) with respet to y over [0; 1℄, by Lemma 3.1 (ii) we get (i).In a similar manner we reeive�1=2(x; t) � �1=2(y; t)� 12 Z 10 j �x j�1=2 dx� �1=2(y; t)� 12 �Z 10 �dx�1=2 �Z 10 �2x�2 dx�1=2whih upon squaring and realling Lemma 3.1 (ii), yields�(x; t) � 12�(y; t)� � Z 10 �2x�2 dx:Now integrating in y over [0; 1℄ and using Lemma 3.1 (ii) we obtain (ii).We also need a tehnial lemma, proved in [N2℄.Lemma 4.2. Let �(t) and !(t) be ontinuous funtions, � nonnegative and !satisfying: �e�(t��) � exp�Z t� !(s)ds� � �e�(t��)for every pair of nonnegative � � t: Thenlim supt!+1 Z t0 exp�� Z t� !(s)ds��(�)d� � � lim supt!+1 Z t+1t �(s)ds:We are now in a position to present:Proof of Theorem I (i). For the onveniene of the reader, we divide the proofinto three steps.STEP 1. Integrating the momentum balane (M) over [x; 1℄� [�; t℄ we getZ x1 [�(r; t)� �(r; �)℄ dr = Z t� S(x; s)ds� Z t� S(1; s)ds= � Z t� S(1; s)ds� Z t� ��p (x; s)ds + � ln �(x; s)js=ts=� :Setting M(x; �; t) := R x1 [�(r; t)� �(r; �)℄dr, and the impulseI(�; t) := Z t� S(1; s)ds;we rewrite the above equation in the formZ t� ��p (x; s)ds = � ln �(x; t) � � ln �(x; �) � I(�; t)�M(x; �; t): (4.2)



P'TH POWER GAS 7Multiplying (4.2) by p=� and taking exponentials allows one to hek readily thatddt ��p � exp�� p�M� p�I�� = p� � exp�� p�M� p�I� :Hene,�p(x; t) � exp�� p�M(x; �; t)� p�I(�; t)�= �p(x; �) + Z t� p� �(x; s) � exp�� p�M(x; �; s)� p�I(�; s)� ds: (4.3)We hek at one that M is a bounded quantity. Indeed, using Jensen's inequalityand Lemma 3.1 (i) we havejM(x; �; t)j2 � 2 Z 10 ��2(x; t) + �2(x; �)� dx � �: (4.4)Introduing (4.4) in (4.3) we arrive at� ��p(x; �) + Z t� �(x; s)e� p�I(�;s)ds� � �p(x; t) � e� p�I(�;t)� � ��p(x; �) + Z t� �(x; s)e� p�I(�;s)ds� : (4.5)STEP 2. In this step we prove the uniform upper bound on �. First, from (2.1) itfollows that Z 10 �p(x; t)dx � �p�1m (t) Z 10 �(x; t)dx = �p�1m (t): (4.6)On the other hand, by Jensen's inequalityZ 10 �p(x; �)dx � �Z 10 �(x; �)dx�p = 1: (4.7)>From the right inequality in (4.5) with � = 0; Lemma 4.1 (i) shows that:�pm(t) � e� p�I(0;t) � �"1 + Z t0 e� p�I(0;s)ds+ Z t0 �m(s) � e� p�I(0;s)�Z 10 �2x��2 dx� (s)ds#: (4.8)Sine by (4.7) �pm � 1, it is lear that �m(t) � �pm(t); and thus from (4.8), by meansof the Gronwall inequality, we obtain�pm(t) � e� p�I(0;t) � ��1 + Z t0 e� p�I(0;s)ds� � exp�� Z t0 Z 10 �2x��2 dxds� :By Lemma 3.1 (iii) it follows that�pm(t) � �e p�I(0;t)�1 + Z t0 e� p�I(0;s)ds� : (4.9)On the other hand, setting � = 0 in the left inequality (4.5), then integrating overthe spatial interval [0; 1℄, and utilizing the estimates (4.6), (4.7) and Lemma 3.1



8 MARTA LEWICKA AND STEPHEN J. WATSON(ii), we reeive the following bound:�p�1m (t) � �e p�I(0;t)�1 + Z t0 e� p�I(0;s)ds� : (4.10)Now, (4.9) and (4.10) give �pm(t) � ��p�1m (t);from whih we onlude the existene of � suh that�(x; t) � � (4.11)STEP 3. Our next onern will be the lower bound on �. Integrating (4.5) in xover [0; 1℄ and realling (4.7), (4.11) and Lemma 3.1 (ii) we see that� � e p�I(�;t)�1 + Z t� e� p�I(�;s)ds� � �: (4.12)Setting � = 0 in the left inequality in (4.5) while utilizing Lemma 4.1 (ii) and (4.12),we have�p(x; t) � �e p�I(0;t) � ��p0(x) + Z t0 e� p�I(0;s)�(x; s)ds�� �e p�I(0;t) � "1 + Z t0 e� p�I(0;s)ds� � Z t0 e� p�I(0;s)�Z 10 �2x�2 dx� (s)ds#� �� � Z t0 e p�I(s;t)�Z 10 �2x�2 dx� (s)ds: (4.13)
Now, by Gronwall's inequality applied to (4.12) we obtain�e�(t��) � e� p�I(�;t) � �e�(t��):Thus, from Lemma 4.2 with !(t) = �S(1; t) and �(t) = Z 10 �2x�2 (x; t)dx, we onludelim supt!+1 Z t0 e p�I(s;t)�Z 10 �2x�2 dx� (s)ds � � lim supt!+1 Z t+1t Z 10 �2x�2 dxds: (4.14)On the other hand Lemma 3.1 (iii) and (4.11) imply that the funtion R 10 �2x=�2dxis integrable in [0;1), so the right hand side of (4.14) equals zero. Now sine theright hand side of the �rst inequality in (4.13) is a ontinuous and positive funtionof t, in view of (4.14) it implies: �(x; t) � �:



P'TH POWER GAS 95. Global L2 bound on the temperature gradient �x.In this Setion we omplete the proof of Theorem I. As in the derivation of theenergy and entropy bounds of Setion 3, the availability identity (3.4) plays a keyrole. Estimates assoiated with this identity and the momentum equation (Lemma5.2) enable us to deal with the presene of the a priori unknown boundary heat uxR t0 [q(0; �)� q(1; �)℄ d� .In order to avoid exessive repetition, we do not generally refer diretly to thepreviously established Theorem I (i) but use it freely throughout the presentedestimates.Lemma 5.1. (i) Z t0 �2m(�)d� � �,(ii) Z t0 Z 10 �S2�2 + �2�2x� dxd� � ��1 + Z t0 Z 10 �2�2dxd��.Proof. Realling the boundary ondition (V) and Lemma 3.1 (ii) we get�2m(t) � �Z 10 j�x(x; t)jdx�2 � �Z 10 �dx��Z 10 �2x� dx� � � Z 10 �2x� (x; t)dx:Now, integrating in t and using Lemma 3.1 (iii) we establish (i).In order to prove (ii) we use (M) and Young's inequality to reeive14 ��4�t = Sx�3 = �S�3�x � 3S�2�x = �S�3�x + 3 ��p �2�x � 3�� �2�2x� �S�3�x � 32 �� �2�2x +��2�2:Integrating the above inequality over [0; 1℄� [0; t℄, in view of (V) we see thatZ 10 �4dx+ Z t0 Z 10 �2�2xdxd� � ��1 + Z t0 Z 10 �2�2dxd�� :But S� = ���=�p + ���x=�; and so (ii) follows diretly.Lemma 5.2. For every � > 0 there exists a onstant � suh thatZ 10 �2x(x; t)dx + Z t0 Z 10 �2xdxd� � �+ � Z t0 Z 10 �2xdxd�:Proof. The balane of momentum (M) an be rewritten in the form:���x� � ��t = � ��p�x :Multiplying by ��x=� � � and integrating over [0; 1℄, we see thatddt Z 10 ���x� � ��2 dx = 2 Z 10 ��x�p � p ��x�p+1����x� � �� dx; (5.1)whih after a simple omputation givesddt Z 10 ���x� � ��2 dx+ � Z 10 ����x� � ��2 dx� � Z 10 ���x� � ����x�p � p���p �� dx: (5.2)



10 MARTA LEWICKA AND STEPHEN J. WATSONNoting ���x� � ��2 � 12 ���x� �2 � �2; (5.3)and realling Lemma 5.1 (i) and Lemma 3.1 (ii), it follows from integrating (5.2)over [0; t℄ thatZ 10 �2xdx+ Z t0 Z 10 ��2xdxd� � ��1 + Z t0 Z 10 j�x�j+ j��x�j+ j�x�xjdxd�� : (5.4)We now proeed to estimate the right hand side of (5.4). Throughout, we let Æ > 0denote a onstant whih may be hosen as small as one wishes. From Lemma 5.1(i), Lemma 3.1 (ii) and Young's inequality, we get:Z t0 Z 10 (j�x�j+ j��x�j+ j�x�xj) dxd�� Æ Z t0 Z 10 ��2x + ��2x� dxd� +� Z t0 Z 10 ��2 + ��2 + �2x� � dxd�� Æ Z t0 Z 10 ��2x + ��2x� dxd� +��1 + Z t0 Z 10 �2x� dxd��� �+ 2Æ Z t0 Z 10 ��2x + ��2x� dxd�: (5.5)
The last inequality in (5.5) follows by observing that for any  > 0 the inequality1=� � 1=(�2) + =4 holds uniformly in �, and then noting Lemma 3.1 (iii).Now, substituting (5.5) into (5.4), we dedueZ 10 �2xdx+ Z t0 Z 10 ��2xdxd� � �+ Æ Z t0 Z 10 �2xdxd�:In view of Lemma 4.1 (ii), this yields:Z 10 �2xdx+ � Z t0 Z 10 �2xdxd�� �+ Æ Z t0 Z 10 �2xdxd� +� Z t0 �Z 10 �2x�2 dx��Z 10 �2xdx� d�: (5.6)Hene, by Gronwall's inequality:Z 10 �2x(x; t)dx � ��+ Æ Z t0 Z 10 �2xdxd�� � exp�� Z t0 Z 10 �2x�2 dxd�� : (5.7)Note, that in both formulas (5.6) and (5.7), the onstant � is independent of thehoie of Æ. Finally, utilizing Lemma 3.1 (iii) and introduing (5.7) into the righthand side of (5.6) onludes our proof.We may now proeed with:Proof of Theorem I (ii). Realling the de�nition of entropy (3.1) we set! = v� + 12�2 � ��� + ;



P'TH POWER GAS 11where  > 0 is hosen suh that ! � v�=2 (for � � 0 and � � � � �). Note thatby (3.3) we have !x = v �1� ��� � �x + ��x � ��h0(�)�x:Utilizing the availability identity (3.4), Lemma 5.1 (ii) and the boundary onditions(V) and (D) or (N), we obtain from integration by parts and Young's inequality:12 Z 10 !2(x; t)dx � � + Z t0 Z 10 !!tdxd�� �+ Z t0 Z 10 !�S� ��1� ��� � q�x dxd�= �� Z t0 Z 10 !x�S� + �� �1� ��� � �x� dxd�� �� � Z t0 Z 10 �1� ��� �2 �2xdxd� +� Z t0 Z 10 �S2�2 + �2�2x + �2x� dxd�� �� � Z t0 Z 10 �1� ��� �2 �2xdxd� +� Z t0 Z 10 ��2�2 + �2x� dxd�:
(5.8)

But Lemma 3.1 (iii) givesZ t0 Z 10 �1� ��� �2 �2xdxd� � Z t0 Z 10 �12 � ��2�2 � �2xdxd�� 12 Z t0 Z 10 �2xdxd� � �; (5.9)whih, together with (5.8) and realling that ! � v�=2 impliesZ 10 �2(x; t)dx + Z t0 Z 10 �2xdxd� � �+ � Z t0 Z 10 ��2�2 + �2x� dxd�� �+ � Z t0 �2m(�) Z 10 �2(x; �)dxd� +� Z t0 Z 10 �2xdxd�: (5.10)Now from Lemma 5.1 (i) and Gronwall's inequality applied to (5.10) we see thatZ 10 �2(x; t)dx � ��1 + Z t0 Z 10 �2xdxd�� : (5.11)Substituting (5.11) into (5.10) and again noting Lemma 5.1 (i), yieldsZ 10 �2dx+ Z t0 Z 10 �2xdxd� � ��1 + Z t0 Z 10 �2xdxd�� : (5.12)This estimate when ombined with Lemma 5.2 leads to the required result.Corollary 5.3. Z 10 �2x(x; t)dx + Z t0 Z 10 ��2x + �2�2x� dxd� � �:Proof. First, by Lemma 5.2 and Theorem I (ii) we haveZ 10 �2x(x; t)dx + Z t0 Z 10 �2xdxd� � �: (5.13)



12 MARTA LEWICKA AND STEPHEN J. WATSONRealling Lemma 3.1 (ii) it follows that�2(x; t) � �Z 10 �(y; t)dy + Z 10 j�xjdx�2 � �+ Z 10 �2x(x; t)dx: (5.14)Hene, using (5.13) we arrive atZ t0 Z 10 �2�2xdxd� � � Z t0 Z 10 �2xdxd� + Z t0 �Z 10 �2xdx��Z 10 �2xdx� d�� � Z t0 Z 10 ��2x + �2x� dxd�;whih in view of (5.13) and Theorem I (ii) ompletes our proof.6. Global bounds on �; �; �.This Setion is devoted to showing pointwise onvergene of �; � and � (Theorem6.6), whih will justify the linearization step in the proof of Theorem II. We �rstobtain global bounds on spatial derivatives of �; � whih follow from the underlyingparaboli struture of (M) and (E). Then, from the established estimates and anelementary Sobolev embedding theorem, we dedue the desired onvergene.Lemma 6.1. Z t0 Z 10 �2xdxd� � �:Proof. Multiplying the momentum equation (M) by �, integrating over [0; 1℄� [0; t℄and using integration by parts, we see that12 Z 10 �2(x; t)dx � ��1 + Z t0 Z 10 (j�x�j+ j���xj) dxd�� + Z t0 Z 10 � ���x� �x dxd�� ��1 + Z t0 Z 10 ��2x + �2 + �2�2x� dxd�� � � Z t0 Z 10 �2xdxd�:In view of Theorem I (ii), Lemma 5.1 (i) and Corollary 5.3 (iii) we obtain thedesired result.Lemma 6.2. Z 10 �2x(x; t)dx + Z t0 Z 10 �2xxdxd� � �:Proof. Realling (M), integrating by parts and using Young's inequality givesddt �Z 10 �2xdx� = 2 Z 10 �x�xtdx = �2 Z 10 �t�xxdx� � Z 10 (j�x�xxj+ j��x�xxj+ j�x�x�xxj) dx� � Z 10 �2xxdx� � Z 10 ��2x + �2�2x + �2x�2x� dx� � Z 10 �2xxdx: (6.1)We note the following simple interpolation inequality:maxx2[0;1℄ �2x(x; t) � � Z 10 �2x(x; t)dx + � Z 10 �2xx(x; t)dx: (6.2)



P'TH POWER GAS 13Hene, in view of Corollary 5.3, the formula (6.2) ombined with Lemma 6.1 yieldsZ t0 Z 10 �2x�2xdxd� � Z t0 maxx2[0;1℄ �2x(x; �)�Z 10 �2xdx� d�� �+ � Z t0 Z 10 �2xxdxd�: (6.3)Upon integrating (6.1) over [0; t℄ and realling Theorem I (ii), Corollary 5.3 and(6.3), the result follows.Corollary 6.3. Z t0 Z 10 ��2�2x + �2x�2x + �4x� dxd� � �:Proof. Realling (5.14), Lemma 6.2 and the formula (6.3), we haveZ t0 Z 10 ��2�2x + �2x�2x�dxd� � � Z t0 Z 10 �2xdxd�+Z t0 �Z 10 �2xdx��Z 10 �2xdx� d� +��+ � Z t0 Z 10 �2xxdxd��� � Z t0 Z 10 ��2x + �2x + �2xx� dxd�: (6.4)On the other hand, Lemma 6.1 and (6.2) giveZ t0 Z 10 �4xdxd� � Z t0 maxx2[0;1℄ �2x(x; t)�Z 10 �2xdx� d�� ��1 + Z t0 Z 10 �2xxdxd�� : (6.5)In view of Theorem I (ii), Lemma 6.1 and Lemma 6.2, the formulas (6.4) and (6.5)imply the result.Lemma 6.4. Z 10 �2x(x; t)dx + Z t0 Z 10 �2xxdxd� � �:Proof. From (E), integration by parts and Young's inequality, it follows for eitherboundary onditions (D) or (N) thatddt �Z 10 �2xdx� = 2 Z 10 �x�xtdx = �2 Z 10 �t�xxdx� � Z 10 �j��x�xxj+ j�2x�xxj+ j�x�x�xxj� dx� � Z 10 �2xxdx� � Z 10 ��2�2x + �4x + �2x�2x� dx� � Z 10 �2xxdx: (6.6)As in (6.2) we havemaxx2[0;1℄ �2x(x; t) � � Z 10 �2x(x; t)dx + � Z 10 �2xx(x; t)dx: (6.7)



14 MARTA LEWICKA AND STEPHEN J. WATSONThus, by Corollary 5.3 and Theorem I (ii):Z t0 Z 10 �2x�2xdxd� � Z t0 maxx2[0;1℄ �2x(x; �)�Z 10 �2xdx� d�� �+ � Z t0 Z 10 �2xxdxd�: (6.8)Now, integrating (6.6) over [0; t℄ and applying Corollary 6.3 together with (6.8)onlude the proof.The following diret onsequene of Lemma 6.4 and (6.8) will be of later use.Corollary 6.5. Z t0 Z 10 �2x�2xdxd� � �:We are now in a position to prove pointwise onvergene of solutions.Theorem 6.6. Let �� be as in Theorem II. Then:(i) limt!+1 Z 10 ��2x + �2x + �2x� (x; t)dx = 0;(ii) limt!+1 maxx2[0;1℄ �j�(x; t)j+ j�(x; t) � ��j+ j�(x; t) � 1j� = 0:Proof. First, by (5.1) we observe that����� ddt Z 10 ���x� � ��2 dx����� � � Z 10 ��2x + �2x + �2 + �2�2x� dx:By Lemmas and Corollaries of Setions 5 and 6, it follows from the above inequalitythat the derivative of the funtion R 10 (��x=� � �)2dx is integrable in time. Simi-larly, in view of (6.1) and (6.6), we onlude the time integrability of derivatives ofR 10 �2x(x; t)dx and R 10 �2x(x; t)dx. In addition, by Lemma 6.1, Theorem I (ii), Lemma5.1 and Corollary 5.3, we see that the funtions R 10 �2x(x; t)dx; R 10 �2x(x; t)dx andR 10 (��x=� � �)2dx are time integrable over [0;1). Hene, we reeive:limt!+1 Z 10  �2x + �2x +���x� � ��2! dx = 0: (6.9)In partiular, sine (V) givesj�(x; t)j � �Z 10 �2xdx�1=2 ; (6.10)it follows from (6.9) that limt!+1 maxx2[0;1℄ j�(x; t)j = 0: (6.11)Thus, in view of (5.3) and (6.9) we onlude (i).Now, for the Dirihlet boundary onditions (D) we havej�(x; t) ��j � Z 10 j�xjdx � �Z 10 �2xdx�1=2 ;



P'TH POWER GAS 15while for the Neumann boundary onditions (N)���(x; t) � ���� � �����(x; t) � Z 10 �dx����+ 12v Z 10 �2(t; x)dx:Utilizing (6.10) and (i) we see that in both asesj�(x; t)� ��j2 � Z 10 ��2x + �2x� dx; (6.12)and thus (6.9) implies limt!+1 maxx2[0;1℄ j�(x; t) � ��j = 0: (6.13)Finally, (2.1) yieldsj�(x; t)� 1j � �����(x; t) � Z 10 �dx���� � �Z 10 �2xdx�1=2 ; (6.14)and so realling (i), (6.11) and (6.13) we dedue (ii).7. Exponential onvergene results.In this Setion we establish the exponential onvergene of solutions to theirequilibrium values. Here, the availability identity supplies a natural Lyapunovfuntion A, upon whih we build our proof. Noting the pointwise onvergene inTheorem 6.6, the result follows through a Taylor expansion assoiated with A.More preisely, de�ne the following nonnegative quantities:V(t) := Z 10 ��2x + �2x� (x; t)dx; D(t) := Z 10 ���x� � ��2 (x; t)dx;A(t) := Z 10 �e+ 12�2 � ��� + � (x; t)dx;where  = v ��(ln ��� 1).Lemma 7.1. For some � > 0 there holds:ddt (A+ �D + �V) + � (A+ �D + �V) � 0:Proof. First, integrating the availability identity (3.4) over [0; 1℄ and noting ondi-tions (D) or (N) we have ddtA(t) + �V(t) � 0: (7.1)Observing the boundedness of �, due to (6.13), it follows from Taylor expansion ofln, that �(� � ��)2 � v(� � �� ln �) +  � �(� � ��)2: (7.2)Analogously, using (2.1), the boundedness of �, and the onavity of h:� Z 10 (� � 1)2dx � � Z 10 h(�)dx � � Z 10 (� � 1)2dx: (7.3)Adding (7.2) and (7.3) yields:� Z 10 �(� � ��)2 + (� � 1)2 + �2�dx � A � � Z 10 �(� � ��)2 + (� � 1)2 + �2� dx:



16 MARTA LEWICKA AND STEPHEN J. WATSONHene, by (6.12), (6.14), followed by (5.3) and (6.10) we reeiveA(t) � � Z 10 ��2x + �2x + �2� dx� � �D(t) + Z 10 ��2x + �2�dx� � � (D(t) + V(t)) : (7.4)In addition, from (5.2), (6.10), (6.13) and Young's inequality, we see thatddtD(t) + �D(t) � �V(t): (7.5)From (6.1) and (6.6) we haveddtV(t) + � Z 10 ��2xx + �2xx� dx � � �V(t) + Z 10 ��4x + �2x + �2x�2x + �2x�2x� dx� : (7.6)Noting the boundedness of R 10 ��2x + �2x� dx (by Theorem 6.6), the inequalities (6.2)and (6.7) imply that the integral on the right hand side of (7.6) is estimated by� Z 10 ��2xx + �2xx� dx+��V(t) + Z 10 �2xdx� :Thus, realling (5.3) and (6.10):ddtV(t) � � (D(t) + V(t)) : (7.7)Finally, multiplying (7.5) by a small onstant � > 0 and then adding the resultto (7.1) we dedue ddt (A+ �D) + � (D + V) � 0:For suÆiently small � we may onlude the proof by (7.4), (7.7) and the aboveinequality.Proof of Theorem II. By Lemma 7.1 we see immediatelly that(A+ �D + �V) (t) � �e��t:Realling (5.3) and (6.10) we dedue (i). The statement (ii) then follows easily from(6.12), (6.14) and (6.10).Aknowledgment. The seond author gratefully aknowledges the �nanial sup-port of the MPI, and the enouragement and support of Stefan M�uller. The �rstauthor thanks the seond author for introduing her to the onepts of thermovis-oelastiity. Referenes[CHT℄ G.Q. Chen, D. Ho� and K. Trivisa { Global solutions of the ompressible Navier-Stokesequations with large disontinuous initial data, Comm. PDE 25 (2000), 2233-2257.[D℄ C.M. Dafermos { Hyperboli Conservation Laws in Continuum Physis, Springer-Verlag,2000.[E℄ J.L. Eriksen { Introdution to the thermodynamis of solids, Applied Mathematial Si-enes 131, Springer-Verlag, 1998.[H℄ D. Ho� { Disontinuous solutions of the Navier-Stokes equations for ompressible ow,Arh. Rational Meh. Anal. 114 (1991), 15-46.
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