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Abstract. Consider the Cauchy problem for a hyperbolic n × n system of conservation laws in

one space dimension:

ut + f(u)x = 0, u(0, x) = ū(x). (CP )

Relying on the existence of a continuous semigroup of solutions, we prove that the entropy ad-

missible solution of (CP) is unique within the class of functions u = u(t, x) which have bounded

variation along a suitable family of space-like curves.
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1 - Introduction.

Consider a hyperbolic system of conservation laws in one space dimension:

ut + f(u)x = 0. (1.1)

The following standard conditions [11, 12] will be assumed throughout. The flux function f :

Ω 7→ IRn is smooth, in a neighbourhood Ω ⊂ IRn of the origin. Let A(u) = Df(u) be the

Jacobian matrix of f at u and assume that A(u) is strictly hyperbolic, i.e. with real distinct

eigenvalues: λ1(u) < · · · < λn(u). We can thus choose bases of right and left eigenvectors ri(u),

li(u), i = 1, . . . , n, normalized so that

|ri| ≡ 1 , 〈li, rj〉 =

{
1 if i = j,
0 if i 6= j

(1.2)

for every indices i, j ∈ {1, . . . , n} and all u ∈ Ω. For each i = 1, . . . , n, we assume that the i-th field

is either linearly degenerate, so that

∇λi · ri(u)
.
= lim

h→0

λi

(
u + hri(u)

)
− λi(u)

h
= 0 for every u ∈ Ω,

or genuinely nonlinear, so that

∇λi · ri(u) > 0 for every u ∈ Ω.

In this setting, it was proved in [2, 3, 6] that the system (1.1) admits a uniformly Lipschitz

continuous semigroup of solutions S : D× [0,∞[ 7→ D. Here D ⊂ L1(IR; IRn) is a closed, positively

invariant domain, such that all functions with suitably small total variation lie in D, and all

functions in u ∈ D have uniformly bounded variation. For a given initial condition

u(0, ·) = ū ∈ D, (1.3)

a way to establish the uniqueness of solutions to the Cauchy problem (1.1)-(1.3) is thus to prove

that every entropy weak solution u = u(t, x) actually coincides with the semigroup trajectory:

u(t, ·) = Stū (1.4)

for all t ≥ 0. Regularity conditions which imply the identity (1.4) were introduced in [4, 5]. These

conditions provide some control on the oscillation of u in a forward neighborhood of each given

point (t, x).

In the present paper we consider an alternative regularity condition, quite simple to state, and

prove that it suffices to guarantee uniqueness.
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(A3) (Locally Bounded Variation) For some δ > 0, along every space-like curve t = γ(x), with
∣∣dt/dx

∣∣ ≤ δ almost everywhere, the total variation of u is locally bounded.

In other words, we require that, whenever t = γ(x) is a space-like curve satisfying

∣∣γ(x) − γ(x′)
∣∣ ≤ δ|x − x′| for all x, x′,

then the total variation of the composed map x 7→ u
(
γ(x), x

)
is bounded on bounded intervals.

For completeness, we restate below our basic assumptions on weak solutions and the Lax

entropy conditions.

(A1) (Conservation Equations) The function u = u(t, x) is a weak solution of the Cauchy

problem (1.1), (1.3), taking values within the domain D of a Standard Riemann Semigroup

S. More precisely, u : [0, T ] 7→ D is continuous w.r.t. the L1 distance. The initial condition

(1.3) holds, together with ∫ ∫ (
uϕt + f(u)ϕx

)
dxdt = 0 (1.5)

for every C1 function ϕ with compact support contained inside the open strip ]0, T [×IR.

(A2) (Entropy Condition) Let u have an approximate jump discontinuity at some point (τ, ξ) ∈

]0, T [×IR. More precisely, let there exists states u−, u+ ∈ Ω and a speed λ ∈ IR such that,

calling

U(t, x)
.
=

{
u− if x < ξ + λ(t − τ),
u+ if x > ξ + λ(t − τ),

(1.6)

there holds

lim
ρ→0+

1

ρ2

∫ τ+ρ

τ−ρ

∫ ξ+ρ

ξ−ρ

∣∣∣u(t, x) − U(t, x)
∣∣∣ dxdt = 0. (1.7)

Then, for some i = 1, . . . , n, one has the entropy inequality:

λi(u
−) ≥ λ ≥ λi(u

+). (1.8)

With the above assumptions, one has:

Theorem. Assume that the system (1.1) generates a Standard Riemann Semigroup S : D ×

[0,∞[ 7→ D. Then, for every ū ∈ D, T > 0, the Cauchy problem (1.1), (1.3) has a unique weak

solution u : [0, T ] 7→ D satisfying the assumptions (A1)–(A3). Indeed, these conditions imply

(1.4) for all t ∈ [0, T ].

A proof of the theorem will be given in Section 3, while in Section 2 we collect a number of

preliminary estimates.
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2 - Preliminary results.

Since D ⊂ L1 ∩ BV , for sake of definiteness we shall always work with right-continuous

representatives, so that our functions w ∈ D will satisfy w(x) = w(x+) for all x ∈ IR.. Moreover,

given a continuous map u : [0, T ] 7→ D, we will identify it with the corresponding function of two

variables u ∈ L1
(
[0, T ] × IR; IRn

)
, defined in the natural way.

Lemma 1. Let u : [0, T ] 7→ D satisfy (A1). Then u is Lipschitz continuous w.r.t. the L1 distance.

Lemma 2. Let u : [0, T ] 7→ D satisfy (A1). Then u ∈ BV
(
]0, T [×IR; IRn

)
. Moreover there

exists a set N of Lebesgue measure 0, containing the endpoints of the interval [0, T ], such that for

every τ ∈ [0, T ] \ N and every ξ ∈ IR the following holds. Either u is approximately continuous at

(τ, ξ), i.e. (1.7) holds with U(t, x) = u(τ, ξ−) = u(τ, ξ+), or u has a non-horizontal approximate

jump discontinuity at (τ, ξ), so that (1.6) and (1.7) hold. In this latter case one has the additional

relations

u− = u(τ, ξ−), u+ = u(τ, ξ+),

λ · [u+ − u−] = f(u+) − f(u−).

If u satisfies (A2), then (1.8) holds for some i = 1, . . . , n.

A proof of Lemma 1 can be found in [4]. The first statement of Lemma 2 is a corollary of

Lemma 1. For the proof of the other statements see [4, 5, 8].

The next two lemmas derive some local properties of u, implied by our the assumption (A3).

Lemma 3. Let u : [0, T ] 7→ D satisfy (A3). Fix τ ∈ [0, T ] and ε > 0. Then the set

Bτ,ε =

{
ξ ∈ IR; lim sup

t→τ+, x→ξ

∣∣u(t, x) − u(τ, ξ)
∣∣ > ε

}
(2.1)

has no limit points.

Proof. If the conclusion fails, then there exists a monotone sequence {ξi} of points in Bτ,ε, con-

verging to some limit point ξ0. To fix the ideas, let the sequence be decreasing, the other case

being entirely similar. For each i ≥ 1, by the right continuity ot the function x 7→ u(τ, x) one can

find a point wi ∈]ξi, ξi−1[ such that |u(τ,wi) − u(τ, ξi)| ≤ ε/2. Next, let ti > τ and xi ∈ ]wi+1, wi[

satisfy the inequalities

|u(ti, xi) − u(τ, ξi)| ≥ ε,

|ti − τ | ≤ δ · max {|xi − wi|, |xi − wi+1|} . (2.2)
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Define a space-like curve t = γ(x), with x ∈ [ξ0, ξ1], by setting

γ(x) =






τ if x = ξ0 or x ≥ w1,

ti − (x − xi)
ti−τ

wi−xi
if x ∈ [xi, wi],

τ + (x − wi+1)
ti−τ

xi−wi+1
if x ∈ [wi+1, xi].

(2.3)

By (2.2), γ is Lipschitz continuous with Lipschitz constant δ. Since |u(ti, xi) − u(τ,wi)| ≥ ε/2 for

all i ≥ 1, the total variation of the composed map x 7→ u
(
γ(x), x

)
on the interval [ξ0, ξ1] is infinite.

This contradicts the assumption (A3), thus proving Lemma 3.

Throughout the following, we consider a fixed number λ∗ ≥ 1/δ, strictly larger than the

absolute values of all propagation speeds λi of the system (1.1).

Lemma 4. Let u : [0, T ] 7→ D satisfy (A3). Then for each (τ, ξ) ∈ ]0, T [×IR

lim
t → τ+, x → ξ±
|x − ξ| > λ∗(t − τ)

u(t, x) = u(τ, ξ±).

Proof. Suppose the conclusion of the lemma fails. To fix the ideas, assume that, for some (τ, ξ0) ∈

]0, T [×IR, there exist decreasing sequences tj → τ+ and xj → ξ0+, such that

|xj − ξ0| ≥ λ∗|tj − τ |,
∣∣u(tj , xj) − u(τ, ξ0)

∣∣ ≥ ε

for some ε > 0 and every index j. The case xj → ξ0− can be treated in the same way.

Define the sequence of points

wi
.
= xj +

1

δ
(tj − τ)

and observe that wj → ξ0+ as j → ∞. By possibly taking a subsequence, say {(ti, xi)}, we can

assume that the corresponding wi satisfy

xi ∈ ]wi+1, wi[ , |ti − τ | ≤ δ · max
{
|xi − wi|, |xi − wi+1|

}
for all i.

Now let γ be the space-like curve defined by (2.3). Since wi → ξ+, for every i large enough, we

have
∣∣u(τ,wi) − u(τ, ξ+)

∣∣ ≤ ε/2, hence
∣∣u(ti, xi) − u(τ,wi)

∣∣ ≥ ε/2. Therefore, the total variation

of the map x 7→ u
(
γ(x), x

)
on the interval [ξ0, w1] is infinite, in contradiction with (A3).

Next, we recall some useful estimates, valid for the trajectories of a Standard Riemann Semi-

group S.
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Lemma 5. Let w : [0, T ] 7→ D be Lipschitz continuous. Then for every interval [a, b] ∈ IR there

holds:
∥∥w(T ) − S

T
w(0)

∥∥
L1([a+λ∗T,b−λ∗T ]; IRn)

= O(1) ·

∫ T

0

{
lim inf
h→0+

∥∥w(τ + h) − Shw(τ)
∥∥
L1([a+λ∗(τ+h),b−λ∗(τ+h)]; IRn)

h

}
dτ.

(2.4)

Here and in the sequel, with the Landau symbol O(1) we denote a quantity whose absolute

value satisfies a uniform bound, depending only on the system (1.1).

Before stating the local integral estimates valid for semigroup trajectories, we need to define

two local approximate solutions of (1.1). Let w ∈ D and fix a point ξ ∈ IR. Call ω = ω(t, x) the

unique self-similar entropy solution of the Riemann problem

ωt + f(ω)x = 0, ω(0, x) =

{
w(ξ−) if x < 0,
w(ξ+) if x > 0.

For t ≥ 0, let

U ♯(t, x)
.
=

{
ω(t, x − ξ) if |x − ξ| ≤ λ∗t,
w(x) if |x − ξ| > λ∗t.

Next, call Ã
.
= Df

(
w(ξ)

)
the Jacobian matrix of f computed at w(ξ). For t ≥ 0, define

U ♭(t, x) to be the solution of the linear hyperbolic Cauchy problem with constant coefficients

U ♭
t + ÃU ♭

x = 0, U ♭(0) = w.

Lemma 6. For every function w ∈ D, every ξ ∈ IR and h, ρ > 0, with the above definitions one

has

1

h

∫ ξ+ρ−hλ̂

ξ−ρ+hλ̂

∣∣∣
(
Shw

)
(x) − U ♯(h, x)

∣∣∣ dx = O(1) · Tot.Var.
{
w; ]ξ − ρ, ξ[ ∪ ]ξ, ξ + ρ[

}
, (2.5)

1

h

∫ ξ+ρ−hλ̂

ξ−ρ+hλ̂

∣∣∣
(
Shw

)
(x) − U ♭(h, x)

∣∣∣ dx = O(1) ·
(
Tot.Var.

{
w; ]ξ − ρ, ξ + ρ[

})2

. (2.6)

For the proofs of the two above lemmas, see [1]. We conclude this section by recalling two

technical results, that will be needed toward a proof of our Theorem. The proofs can be found in

[4].

Lemma 7. Let w ∈ L1( ]a, b[; IRn) be such that for some Radon measure µ, one has

∣∣∣∣
∫ ζ2

ζ1

w(x) dx

∣∣∣∣ ≤ µ
(
[ζ1, ζ2]

)
, whenever a < ζ1 < ζ2 < b.
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Then ∫ b

a

∣∣w(x)
∣∣ dx ≤ µ

(
]a, b[

)
.

Lemma 8. [4] Let u : [0, T ] 7→ D be Lipschitz continuous. At a given point (τ, ξ), let the conditions

(1.6)-(1.7) hold, for some u−, u+ ∈ IRn, λ ∈ IR. Then, for each λ̃ > 0 one has

lim
ρ→0+

sup
|h|≤ρ

∫ λ̃

0

∣∣u(τ + h, ξ + λh + ρy) − u+
∣∣ dy = 0,

lim
ρ→0+

sup
|h|≤ρ

∫ 0

−λ̃

∣∣u(τ + h, ξ + λh + ρy) − u−
∣∣ dy = 0.

3 - Proof of the Theorem.

Let u satisfy (A1)–(A3). To deduce (1.4), in view of Lemma 5 it suffices to show that for

every interval [a, b] ⊂ IR and a.e. τ ∈ [0, T ] one has

lim inf
h→0+

∥∥u(τ + h) − Shu(τ)
∥∥
L1([a,b]; IRn)

h
= 0 (3.1)

In fact, we will show that (3.1) is valid for every [a, b] ∈ IR whenever τ ∈ [0, T ] \ N . The proof

is divided in 3 steps. The aim of the first two steps is to derive the appropriate estimates on the

error
∥∥u(τ + h) − Shu(τ)

∥∥
L1(I; IRn)

,

when h > 0 and the interval I ⊂ [a, b] are small enough. This will be done using the inequalities in

Lemma 6, namely (2.5) near points where u(τ, ·) has large variation, and (2.6) on intervals where

the total variation of u(τ, ·) is suitably small.

In the third step we construct a suitable covering of [a, b] and complete the proof of (3.1)

combining the estimates obtained in steps 1 and 2.

STEP 1. Fix ε ≥ 0 and assume τ /∈ N . Then, at every point ξ ∈ IR the limit (1.7) holds for some

u−, u+, λ. Observe that u+ = u− at a point where u is approximately continuous, while u+ 6= u−

if u has an approximate jump discontinuity at (τ, ξ). By (1.7), from Lemma 8 it follows

lim
h→0+

1

h

∫ ξ+λ∗h

ξ−λ∗h

∣∣u(τ + h, x) − U(τ + h, x)
∣∣ dx

≤ lim
h→0+

1

h

∫ ξ+λ∗h

ξ−λ∗h

∣∣u(τ + h, x) − u+
∣∣ dx + lim

h→0+

1

h

∫ ξ+λ∗h

ξ−λ∗h

∣∣u(τ + h, x) − u−
∣∣ dx = 0.
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Hence
1

h

∫ ξ+λ∗h

ξ−λ∗h

∣∣∣u(τ + h, x) − U(τ + h, x)
∣∣∣ dx ≤ ε

for all h > 0 sufficiently small.

By Lemma 2, U(t, x) = U ♯(t− τ, x) in a forward neighbourhood of the point (τ, ξ). Hence by

(2.5) we get

1

h

∫ ξ+λ∗h

ξ−λ∗h

∣∣∣u(τ + h, x) − (Shu(τ))(x)
∣∣∣dx ≤ ε +

1

h

∫ ξ+λ∗h

ξ−λ∗h

∣∣∣(Shu(τ))(x) − U(τ + h, x)
∣∣∣ dx

= ε + O(1) · Tot.Var.
{
u(τ); ]ξ − 2λ∗h, ξ[ ∪ ]ξ, ξ + 2λ∗h]

}
) ≤ 2ε

(3.2)

for h > 0 small enough. Note that here the maximum size of h depends on ξ, τ and ε.

STEP 2. Fix ε > 0 and an interval ]c, d[ ⊂ IR centered at a point ξ and such that ]c, d[ ∩Bτ,ε = ∅.

Here Bτ,ε is the set (2.1) of points where the oscillation of u is > ε. Consider a family of trapezoids

{Γh}h>0 defined as

Γh =
{

(s, x); s ∈ [τ, τ + h], x ∈
]
c + (s − τ)λ∗, d − (s − τ)λ∗

[}
.

We first show that for small h > 0 and every (s, x) ∈ Γh one has

|u(s, x) − u(τ, ξ)| ≤ 2ε + Tot.Var.
{
u(τ); ]c, d[

}
(3.3)

Indeed, by Lemma 4 the inequality (3.3) clearly holds for points (s, x) contained in small neigh-

bourhoods of the lower corner points (τ, c) and (τ, d). It thus remains to prove (3.3) in a region of

the form [τ, τ + h] × [c + h′, d − h′], with h′ > 0 given and for some h > 0 suitably small. Since

[c + h′, d − h′] ∩ Bτ,ε = ∅, for every y ∈ [c + h′, d − h′] we can find hy, ρy > 0 such that (3.3) holds

when (s, x) ∈ [τ, τ +hy]×]y−ρy, y +ρ[ . Covering the compact interval [c+h′, d−h′] with finitely

many open intervals ]yj − ρyj
, yj + ρyj

[ , j = 1, . . . ,N and choosing h
.
= min hyj

, we obtain (3.3)

for all (s, x) ∈ [τ, τ + h] × [c + h′, d − h′].

We now show that, for all h > 0 with h < (d − c)/2λ∗, the following estimate holds:

∫ d−λ∗h

c+λ∗h

∣∣∣u(τ + h, x) − U ♭(+h, x)
∣∣∣ dx

= O(1) · sup
(s,x)∈Γh

|u(s, x) − u(τ, ξ)| ·

∫ τ+h

τ

Tot.Var.
{

u(τ);
[
c + λ∗(t − τ), d − λ∗(t − τ)

]}
dt.

(3.4)

To derive (3.4), we proceed as in [4]. For each i = 1, . . . , n call λ̃i, l̃i, r̃i respectively the i-th

eigenvalue and the left and right eigenvectors of the matrix Ã = Df(u(τ, ξ)), normalized as in

(1.2).
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Let ζ ′ < ζ ′′ belong to the interval ]c +λ∗h, d−λ∗h[ . We now need to estimate the quantities

Ei
.
=

∫ ζ2

ζ1

[
l̃i(u(τ + h, x) − U ♭(h, x))

]
dx.

Obviously

l̃i U ♭(h, x) = l̃i U ♭(0, x − λ̃ih) = l̃i u(τ, x − λ̃ih).

Integrating (1.1) over the domain

{
(s, x); s ∈ [τ, τ + h], ζ ′ + (s − τ − h)λ̃i ≤ x ≤ ζ ′′ + (t − τ − h)λ̃i

}
,

we obtain

Ei =

∫ ζ′′

ζ′

l̃i u(τ + h, x) dx −

∫ ζ′′

ζ′

l̃i u(τ, x − λ̃ih) dx

=

∫ τ+h

τ

l̃i ·
(
f(u) − λ̃iu

)
(t, ζ ′ + (t − τ − h)λ̃i) dt

−

∫ τ+h

τ

l̃i ·
(
f(u) − λ̃iu

)
(t, ζ ′′ + (t − τ − h)λ̃i) dt.

(3.5)

Consider the states

u′ .
= u

(
t, ζ ′ + (t − τ − h)λ̃i

)
, u′′ .

= u
(
t, ζ ′′ + (t − τ − h)λ̃i

)
, ũ

.
= u(τ, ξ)

and define the averaged matrix

A∗ .
=

∫ 1

0

[
Df

(
su′′ + (1 − s)u′

)
− Df(ũ)

]
ds.

One can check that

l̃i

(
f(u′′)−f(u′)−λ̃i(u

′′−u′)
)

= l̃i

(
Df(ũ)·(u′′−u′)−λ̃i(u

′′−u′)
)
+ l̃i A∗(u′′−u′) = l̃i A∗(u′′−u′).

Therefore
∣∣∣∣l̃i

(
f(u′′)− f(u′)− λ̃i(u

′′ − u′)
)∣∣∣∣ = O(1) · |u′′ − u′| · ‖A∗‖ = O(1) · |u′′ − u′| ·

(
|u′′ − ũ|+ |u′ − ũ|

)
.

Together with (3.5) this yields:

|Ei| = O(1) ·

∫ τ+h

τ

{∣∣u(t, ζ ′ + (t − τ − h)λ̃i) − u(t, ζ ′′ + (t − τ − h)λ̃i)
∣∣·

·
(∣∣u(t, ζ ′ + (t − τ − h)λ̃i) − u(τ, ξ)

∣∣ +
∣∣u(t, ζ ′′ + (t − τ − h)λ̃i) − u(τ, ξ)

∣∣
)}

dt

= O(1) · sup
(s,x)∈Γh

|u(s, x) − u(τ, ξ)|·

·

∫ τ+h

τ

Tot.Var.
{

u(t);
[
ζ ′ + (t − τ − h)λ̃i, ζ ′′ + (t − τ − h)λ̃i]

}
dt.
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Therefore

∣∣∣∣∣

∫ ζ′′

ζ′

[
u(τ + h, x) − U ♭(h, x)

]
dx

∣∣∣∣∣ ≤
n∑

i=1

|Ei|

= O(1) · sup
(s,x)∈Γh

|u(s, x) − u(τ, ξ)|·

·

∫ τ+h

τ

[
n∑

i=1

Tot.Var.
{

u(t);
]
ζ ′ + (t − τ − h)λ̃i, ζ ′′ + (t − τ − h)λ̃i

]}
]

dt.

In view of Lemma 7, this establishes (3.4).

Combining (3.3), (3.4) and (2.6) we obtain

∫ d−λ∗h

c+λ∗h

∣∣∣u(τ + h, x) − (Shu(τ))(x)
∣∣∣dx

= O(1) ·
(
2ε + Tot.Var.

{
u(τ); ]c, d[

})
·

∫ τ+h

τ

Tot.Var.
{
u(t);

[
c + (t − τ)λ∗, d − (t − τ)λ∗

]}
dt

+ O(1) · h ·
(
Tot.Var.

{
u(τ); ]c, d[

})2

,

(3.6)

valid for small h > 0.

STEP 3. Fix ε > 0, a time τ ∈ [0, T ] \ N and an interval [a, b] ⊂ IR. By Lemma 3, the set

Bτ,ε ∩ [a, b] contains finitely many points, say ξ1 < ξ2 < . . . < ξN . Observe that every point ξ

where u(τ, ·) has a jump > ε is certainly included in the above list.

We can now cover the set [a, b] \ {ξ1, . . . , ξN} with open intervals ]cα, dα[ , α = 1, . . . ,M ,

satisfying the following conditions:

(i) {ξ1, . . . , ξN} ∩
⋃M

α=1 ]cα, dα[ = ∅,

(ii) Tot.Var.
{
u(τ); ]cα, dα[

}
≤ 2ε for every α = 1, . . . ,M ,

(iii) every point of [a, b] is contained in at most two distinct intervals ]cα, dα[ .

By steps 1 and 2, for every h > 0 small enough one has

1

h

∫ ξi+λ∗h

ξi−λ∗h

∣∣∣u(τ + h, x) − (Shu(τ))(x)
∣∣∣dx ≤

ε

N
,

∫ dα−λ∗h

cα+λ∗h

∣∣∣u(τ + h, x) − (Shu(τ))(x)
∣∣∣dx

= O(1) · ε ·

∫ τ+h

τ

Tot.Var.
{

u(t);
]
cα + (t − τ)λ∗, dα − (t − τ)λ∗

[}
dt

+ O(1) · hε · Tot.Var.
{
u(τ); ]cα, dα[

}
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for every i = 1, . . . ,N and every α = 1, . . . ,M . Finally,

1

h

∫ b

a

∣∣∣u(τ + h, x) −
(
Shu(τ)

)
(x)

∣∣∣ dx

≤
N∑

i=1

1

h

∫ ξi+λ∗h

ξi−λ∗h

∣∣∣u(τ + h, x) −
(
Shu(τ)

)
(x)

∣∣∣ dx +

M∑

α=1

1

h

∫ dα−λ∗h

cα+λ∗h

∣∣∣u(τ + h, x) −
(
Shu(τ)

)
(x)

∣∣∣ dx

≤ ε + O(1) ·
ε

h

∫ τ+h

τ

Tot.Var.
{
u(t); IR

}
dt + O(1) · ε · Tot.Var.

{
u(τ); IR

}

= O(1) · ε.

Letting ε → 0 we obtain (3.1).

We have thus shown that if u satisfies (A1)–(A3), then it must coincide with the correspond-

ing semigroup trajectory t 7→ Stū. On the other hand, one can easily check that the assumptions

(A1)–(A3) are satisfied by all semigroup trajectories, because these are obtained as limits of

wave-front tracking approximations. The proof of the Theorem is thus completed.
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