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1 Introduction

Let f : [0, T ] × Rn −→ Rn; we investigate the problem of existence of T-
periodic solutions to the first order differential equation with f in the right
hand side. Namely, we seek for solutions to the problem:{

x′(t) = f(t, x(t))
x(0) = x(T ),

(1)

by generalizing the well known guiding function method. Such an approach
can be found in several works, however, under some heavier assumptions.
For example, in [M] f is assumed to be locally lipschitzian and the guiding
function to be C1. In [GP] f needs to be of the Caratheodory type only, while
the corresponding guiding function must be still C1. In fact, in [GP] the more
general, multivalued problem{

x′(t) ∈ ϕ(t, x(t))
x(0) = x(T ).

(1′)

is under consideration.
In our paper we get rid of the assumption of the guiding function to be

C1. In fact, in Theorem 1, which is motivated by [GP], we need it to be
locally lipschitzian only (Theorem 1). Our second main result (Theorem 2)
characterizes a class of guiding functions, satisfying the conditions of Theorem
1. This result is an extension of the theorem on the index of coercive potentials
[K] (a remarkable reformulation of which was done in [M]).
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2 Preliminaries

In this section we review some of the standard facts and definitions.
Let X, Y be topological spaces. We say that X is an Rδ− set, whenever

it is homeomorphic with an intersection of a decreasing sequence of compact,
metric ANRs. A multivalued mapping ϕ : X ; Y (we will always suppose that
a multivalued mapping has nonempty values) is called upper semicontinuous
(u.s.c.) if, for every open set U ⊂ Y, the set ϕ−1(U) = {x ∈ X : ϕ(x) ⊂ U}
is open in X. If X is a space with measure, we say that ϕ is measurable if
ϕ−1

+ (U) = {x ∈ X : ϕ(x) ∩ U 6= ∅} is measurable for any open set U ⊂ Y.
We say that ϕ is admissible if X and Y are compact metric ANRs and ϕ

is u.s.c. with Rδ values. A map ϕ : X ; X is called decomposable if it has a
decomposition:

Dϕ : X = X0
ϕ1
; X1

ϕ2
; X2 . . .

ϕn
; Xn = X ϕ = ϕn . . . ϕ2ϕ1, (2)

where each ϕi is admissible.
Let A be an open subset of X such that a decomposable map ϕ (with

a decomposition (2)) has no fixed points on its boundary, that is x 6∈ ϕ(x)
for every x ∈ ∂A. In such a case it is possible to define a fixed point index
IndX(Dϕ, A) ∈ Z having the following properties:

(i) (existence) If IndX(Dϕ, A) 6= 0 then ϕ has a fixed point in A.

(ii) (additivity) Let Ai, (1 ≤ i ≤ n) be open, pairwise disjoint subsets
of A. Suppose, that ϕ has no fixed points in A \ ⋃n

i=1 Ai. Then the indices
IndX(Dϕ, Ai), 1 ≤ i ≤ n, are well defined and IndX(Dϕ, A) =

∑n
i=1 IndX(Dϕ, Ai).

(iii) (homotopy invariance) Let ψ : X ; X be a decomposable mapping,
with a decomposition:

Dψ : X = X0
ψ1
; X1

ψ2
; X2 . . .

ψn
; Xn = X, ψ = ψn . . . ψ2ψ1.

Suppose that the decompositions Dϕ and Dψ are homotopic, that is there
exists a decomposable homotopy χ : X × [0, 1] ; X, having a decomposition:

Dχ : X × [0, 1] = X0 × [0, 1]
χ̄1
; X1 × [0, 1] . . .

χ̄n−1
; Xn−1 × [0, 1]

χn
; Xn = X,

χ = χnχ̄n−1 . . . χ̄1,

where, for 1 ≤ i ≤ n, there exist admissible χi : Xi−1 ; Xi such that the
following conditions are fulfilled:
· χi(·, 0) = ϕi, χi(·, 1) = ψi,
· χ̄i(·, λ) = χi(·, λ)× {λ} (for i 6= n)

and:
∀x ∈ ∂A ∀λ ∈ [0, 1] x 6∈ χ(x, λ).
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Then IndX(Dψ, A) is well defined and: IndX(Dψ, A) = IndX(Dϕ, A).

(iv) (contraction) Suppose, that in the decomposition ofDϕ we haveXn−1 =
Y ⊂ X and the mapping ϕn is the inclusion: ϕn = i : Y ↪→ X. Then ϕ|Y has
a decomposition

Dϕ|Y : Y = X0

ϕ1|Y
; X1

ϕ2
; X2 . . .

ϕn−1
; Xn−1 = Y.

Moreover, if ϕ|Y has no fixed points in ∂(A ∩ Y ), then IndY (Dϕ|Y , A ∩ Y ) is
well defined and IndY (Dϕ|Y , A ∩ Y ) = IndX(Dϕ, A).

(v) (units) If ϕ is constant, that is ϕ(x) = B ⊂ X for every x ∈ X, then

IndX(Dϕ, A) =

{
1 for A ∩B 6= ∅
0 for A ∩B = ∅,

where Dϕ : X = X0
ϕ
; X1 = X.

Notice, that the fixed point index is defined for a decomposition of a mul-
tivalued map, not for the map itself. However, when it is clear which decom-
position we mean, we will simply write IndX(ϕ,A).

For the above definitions and other properties of Ind we refer to [BK] and
[AGL].

Let ϕ : [0, T ] × Rn ; Rn be a Caratheodory multifunction, that is mea-
surable in the first variable for every x ∈ Rn and u.s.c. in the second variable
for almost every t ∈ [0, T ] we say that ϕ has integrably bounded growth (with
the bounding function µ) if there exists a function µ ∈ L1([0, T ], R) such that
‖ y ‖≤ µ(t)(1+ ‖ x ‖) for every x ∈ Rn, t ∈ [0, T ] and y ∈ ϕ(t, x).

The Poincaré operator for the differential inclusion (1’) is a multivalued
mapping Sϕ : Rn ; C([0, T ], Rn), given by

Sϕ(x0) = {x : [0, T ] −→ Rn, x is absolutely continuous,

x′(t) ∈ ϕ(t, x(t)) for almost every t ∈ [0, T ], x(0) = x0}.

We say that x : [0, T ] −→ Rn is a solution of the inclusion x′(t) ∈ ϕ(t, x(t)),
whenever x ∈ Sϕ(x(0)).

It is known that if ϕ is of the Caratheodory type, has compact and convex
values and has integrably bounded growth, then Sϕ is u.s.c. with Rδ values.

Let ψ : [0, T ]×Rn × [0, 1] ; Rn be a multivalued mapping with compact,
convex values, such that for every (x, λ) ∈ Rn × [0, 1] the mapping ψ(·, x, λ)
is measurable and that for almost every t ∈ [0, T ] the map ψ(t, ·, ·) is u.s.c.;
assume that there exists µ ∈ L1([0, T ], R) such that for every λ ∈ [0, 1] the
multifunction ψ(·, ·, λ) has integrably bounded growth with µ as its bounding
function. Then the map Rn × [0, 1] 3 (x, λ) ; Sψ(·,·,λ)(x) is u.s.c. with Rδ

values.
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For the statements above, see [AC], [G], [AGL].

From now on, by V will be assumed to be a locally lipschitzian function
from Rn to R. Let us define

ΩV = {x ∈ Rn, V is not differentiable in x}.

The Rademacher Theorem states that ΩV has measure 0.
By the generalized gradient of V at point x0 ∈ Rn, denoted by ∂V (x0), we

mean the convex hull of the set of all limits lim
i→∞

V ′(xi) where {xi}∞i=1 is any

sequence of points in Rn \ ΩV , converging to x0.
The following properties of gradient are known:
(i) Let S ⊂ Rn be of measure 0. Then ∂V (x0) can be obtained by replacing

ΩV with ΩV ∪ S in the above definition.
(ii) The multivalued mapping ∂V : Rn ; Rn is u.s.c. with compact,

convex values.
(iii) (mean value theorem) Let x, y ∈ Rn. Then there exists a point u in a

segment (x, y) and a point w ∈ ∂V (x) such, that V (x)− V (y) = 〈w, y − x〉.
The reader is refered to [C] for more more material on this topic.

Given an euclidean space, by B(ε) we will denote an open ball of the radius
ε, centered in the origin.

3 Auxiliary Results

Let us recall the following lemma [GP]:

Lemma 0 Assume ϕ : [0, T ] × Rn ; Rn has integrably bounded growth. Fix
r0 > 0, there exists r > 0 such that, for every solution of the problem{

x′(t) ∈ ϕ(t, x(t))
‖ x(0) ‖> r,

we have ‖ x(t) ‖> r0 for every t ∈ [0, T ].
Moreover, r depends only on r0 and on the function µ in the definition of

integrably bounded growth for the multivalued map ϕ.

Lemma 1 Let Ω ⊂ Rn have measure 0. Suppose we are given a Lebesgue
measurable function z : [0, T ] −→ Rn. Then, for every ε > 0 there exists
x ∈ B(ε) ⊂ Rn such that z(t) + x 6∈ Ω for almost every t ∈ [0, T ].
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Proof Consider the characteristic function of Ω, χΩ : Rn −→ R and a
measurable function F : [0, T ] × B(ε) −→ Rn, given by F (t, x) = z(t) + x.
Without loss of generality we may assume that Ω is Borel. Then the compo-

sition χΩF is measurable and from Fubini Theorem we get
∫

B(ε)

(
T∫
0
χΩFdt)dx =

T∫
0
(

∫
B(ε)

χΩFdx)dt = 0. Hence for almost every x ∈ B(ε),
T∫
0
(χΩF )(x, t)dt = 0. 2

The following fact is straightforward:

Lemma 2 Let z : [0, T ] −→ Rn be absolutely continuous. Then the com-
position V z is absolutely continuous and for every t ∈ [0, T ] such that z is
differentiable at t and V is differentiable at z(t), V z is differentiable at t and
(V z)′(t) = 〈V ′(z(t)), z′(t)〉.

The following lemma is of a basic importance for our later considerations:

Lemma 3 Let z be as in the previous lemma. Suppose that for almost every
t ∈ [0, T ] we have:

∀v ∈ ∂V (z(t)) 〈v, z′(t)〉 > 0. (3)

Then (V z)′(t) > 0 for almost every t ∈ [0, T ]. In particular, z(T ) 6= z(0).

Proof By Lemma 1 there exists a sequence {xk}∞k=1 convergent to 0 ∈ Rn

such that:
∀t ∈ [0, T ] \ A ∀k > 0 zk(t) = z(t) + xk 6∈ ΩV ,

where A ⊂ [0, T ] is a set of measure 0, containing the points in which z fails to
be differentiable. We may also suppose that (3) is valid for every t ∈ [0, T ]\A.

It is easily seen that the absolutely continuous functions V zk are equi-
bounded and that | (V zk)

′ | are uniformly dominated by an integrable func-
tion t 7−→ C ‖ z′(t) ‖ with C a positive constant (this follows from Lemma 2).
Therefore (see e.g. [AC]) we can extract a subsequence {V zki

}∞i=1 such that the
derivatives (V zki

)′ converge weakly in L1([0, T ], R) to (V z)′. By Mazur Lemma

there exists a sequence of convex combinations {wi}∞i=1, wi =
∞∑
j=i

λij · (V zkj
)′,

convergent to (V z)′ in L1([0, T ], R). Thus, without loss of generality, we have
lim
i

wi(t) = (V z)′(t) for every t ∈ [0, T ] \ A.
Fix t ∈ [0, T ]\A. By (3) there exists a real αt > 0 such that 〈v, z′(t)〉 > 2αt

for every v ∈ ∂V (z(t)). By Lemma 2 and uppersemicontiniuity of ∂V, there
exists a number k0t such that, for every k ≥ k0t , we have

(V zk)
′(t) = 〈V ′(z(t) + xk), z

′(t)〉
∈ {〈v + u, z′(t)〉 : v ∈ ∂V (z(t)) and ‖ u ‖≤ αt/ ‖ z′(t) ‖}



3 AUXILIARY RESULTS 6

and, consequently, (V zk)
′(t) > αt for every k ≥ k0t .

Thus, wi(t) > αt for i large enough and we conclude that (V z)′(t) ≥ αt > 0,
which proves the first statement of the lemma.

In particular, V z(T )− V z(0) =
T∫
0
(V z)′(τ)dτ > 0, so z(T ) 6= z(0). 2

Definition 1 V is said to be a direct potential (with a constant r0 > 0) if

∀x ∈ Rn \B(r0) ∀v, w ∈ ∂V (x) 〈v, w〉 6= 0

Note that the above definition will not change if we replace 6= by > .
Our definition agrees with the classical one for C1 functions presented, for

example, in [M].

The following lemma defines the index of a direct potential:

Lemma 4 Let V be a direct potential (with a constant r0). Set ϕ : Rn ;

Rn as follows: ϕ = IdRn − ∂V. We define Ind(V ) = IndB(2r0)(r2r0ϕ,B(r0)),

where r2r0 is the radial retraction of Rn onto B(2r0). (Here ϕ and r2r0 are
admissible, so the decomposition for defining the index is taken naturally as
the composition r2r0ϕ.) Then IndB(2R)(r2Rϕ,B(R)) = Ind(V ) for every R ≥ r0.

Proof The proof is straightforward and follows from homotopy invariance,
additivity and contraction properties of the fixed point index. 2

Let V be as in the previous lemma. Now consider a multivalued mapping
WV : Rn ; Rn, given WV (x) = conv(r1∂V (x)), where r1 : Rn −→ Rn is the
radial retraction onto B(1) ⊂ Rn and conv stands for the convex hull. It is not
hard to see that WV is u.s.c., bounded by 1 and has compact, convex values.

The following lemma is analogous to a result obtained in [GP]:

Lemma 5 Set a number T > 0. There exists R0 > 0 such that for every
r > R0 there is tr ∈ (0, T ] such that every solution of the problem:{

x′(t) ∈ WV (x(t))
‖ x(0) ‖= r

(4)

has the following properties:
(i) ∀t ∈ (0, tr] ∀v ∈ ∂V (x(0)) 〈x(t)− x(0), v〉 > 0,
(ii) ∀t ∈ (0, T ] x(t)− x(0) 6= 0.
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Proof Lemma 0 gives the existence of a number R0 > r0 such that for
every solution of the problem:{

x′(t) ∈ WV (x(t))
‖ x(0) ‖> R0

we have ‖ x(t) ‖> r0 for every t ∈ [0, T ].
Since ∂V is u.s.c. with compact values and V is a direct potential, we

obviously have:

∀R > r0 ∃εR > 0 ∀x, y ∈ B(R) \B(r0) ⊂ Rn : ‖ x− y ‖< εR
∀w ∈ ∂V (x) ∀v ∈ ∂V (y) 〈w, v〉 > 0.

(5)

Fix r > R0 and let tr ≤ εr+T , tr ∈ (0, T ]. Let x be a solution of (4).

We have ‖ x(t) ‖≤ r +
t∫

0
‖ x′(τ) ‖ dτ ≤ r + T for every t ∈ [0, T ] and

‖ x(t)− x(0) ‖≤
t∫

0
‖ x′(τ) ‖ dτ ≤ tr ≤ εr+T for every t ∈ (0, tr]. Hence, by (5):

∀t ∈ (0, tr] ∀w ∈ ∂V (x(t)) ∀v ∈ ∂V (x(0)) 〈w, v〉 > 0.

Combining the above with the following evident remark:

∀y ∈ Rn ∀w ∈ WV (y) ∃α ≥ 1 αw ∈ ∂V (y), (6)

we obtain

∀t ∈ (0, tr] ∀w ∈ WV (x(t)) ∀v ∈ ∂V (x(0)) 〈w, v〉 > 0

and, finally,

∀t ∈ (0, tr] ∀v ∈ ∂V (x(0)) 〈x(t)− x(0), v〉 =

t∫
0

〈x′(τ), v〉dτ > 0.

Moreover, by (6), we have 〈v, x′(t)〉 > 0 for almost every t ∈ [0, T ] and
every v ∈ ∂V (x(t)), which, by Lemma 3 completes the proof of (ii). 2

4 Main Results

When V is in C1, the following definition reduces to the corresponding one in
[GP].

Definition 2 Let f : [0, T ] × Rn −→ Rn, V be a direct potential with a
constant r0. V is called a guiding function for f, whenever

∀x ∈ Rn \B(r0) ∀w ∈ ∂V (x) ∀t ∈ [0, T ] 〈f(t, x), w〉 ≥ 0.
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Here comes our first main result.

Theorem 1 Let f : [0, T ] × Rn −→ Rn be a Caratheodory function with
integrably bounded growth. Suppose that f has a guiding function V (with a
constant r0) such that Ind(V ) 6= 0. Then the problem (1) has at least one
solution.

Proof Consider the following family of differential inclusions, with κ ∈
[0, 1] :

z′(t) ∈ κWV (z(t)) + (1− κ)f(t, z(t)).

By Lemma 0, there exists R > r0 such that for any z : [0, T ] −→ Rn that is
a solution of the above problem for some κ ∈ [0, 1] and satisfies ‖ z(0) ‖≥ R,
we have ‖ z(t) ‖> r0 for every t ∈ [0, T ].

Let tR be as in Lemma 5. Take the decomposable homotopy H : B(2R)×
[0, 1] ; B(2R), given by

H(x, λ) = r2R((1− λ) · (x− ∂V (x)) + λ · (2x− etRSWV
(x))),

where r2R is, as usual, the radial retraction of Rn onto B(2R) and etR :
C([0, T ], Rn) −→ Rn is by definition etR(z) = z(tR) (the explicit formula for
the decomposition of H is not complicated but long, so we omit it).

We will show that H has no fixed points in ∂B(R). Conversely, suppose
that there exists x ∈ H(x, λ), with x ∈ ∂B(R) and λ ∈ [0, 1]. Then

∃v ∈ ∂V (x) ∃z ∈ SWV
(x) 0 =‖ (1− λ)(x− v) + λ(2x− z(tR))− x ‖2=

(1− λ)2 ‖ v ‖2 +λ2 ‖ z(tR)− z(0) ‖2 +2(1− λ)λ〈v, z(tR)− z(0)〉,

which contradicts Lemma 5.
By the above formula, Lemma 4 and the homotopy invariance of the fixed

point index we have

Ind(V ) = IndB(2R)(r2R(2IdB(2R) − etRSWV
), B(R)). (7)

(the decompositions of the multivalued maps in the formula are induced by
the decomposition of the homotopy H).

Consider G : [0, T ]×Rn × [0, 1] ; Rn, given by

G(t, x, λ) = k(λ)WV (x) + (1− k(λ))f(t, x),

where k : [0, 1] −→ R is by definition

k(λ) =

{
1 for λ ∈ [0, 1/2)

2− 2λ for λ ∈ [1/2, 1].
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It is easy to check that G has the properties of the map ψ, introduced in para-
graph 1, thus the following homotopy is decomposable K : B(2R) × [0, 1] ;

B(2R),
K(x, λ) = r2R(2x− eh(λ)SG(·,·,λ)(x)),

where h : [0, 1] −→ R is given by

h(λ) =

{
2(T − tR)λ+ tR for λ ∈ [0, 1/2)

T for λ ∈ [1/2, 1].

Now suppose that the problem (1) has no solutions. We will first show that
K has no fixed points in ∂B(R). Conversely, suppose that x ∈ K(x, λ) for a
point x ∈ ∂B(R) and λ ∈ [0, 1].

If λ ∈ [0, 1/2), then z(h(λ)) = z(0) for a function z ∈ SWV
(x), that con-

tradicts Lemma 5 (ii).
If λ ∈ [1/2, 1), then z(T ) = z(0) for a function z ∈ SG(·,·,λ)(x). We have

〈z′(t), v〉 = k(λ)〈wt,v, v〉 + (1 − k(λ))〈f(t, z(t)), v〉 for almost every t ∈ [0, T ],
every v ∈ ∂V (z(t)) and a point wt,v ∈ WV (z(t)). Now 〈f(t, z(t)), v〉 > 0
because V is a guiding function for (1) and 〈wt,v, v〉 > 0 from (6) and the
fact that V is a direct potential. Consequently 〈z′(t), v〉 > 0 for almost every
t ∈ [0, T ] and every v ∈ ∂V (z(t)), which contradicts Lemma 3.

The case λ = 1 is already excluded by our assumption that (1) has no
solutions.

Now from the above and homotopy invariance of the fixed point index we
have

IndB(2R)(r2R(2IdB(2R)−etRSWV
), B(R)) = IndB(2R)(r2R(2IdB(2R)−eTSf ), B(R)).

Recalling (7)

IndB(2R)(r2R(2IdB(2R) − eTSf ), B(R)) = Ind(V ) 6= 0.

By existence property of the fixed point index we obtain a fixed point of the
mapping r2R(2IdB(2R) − eTSf ), namely x ∈ B(R) such that x ∈ 2x− eTSf (x)

which is equivalent to x ∈ eTSf (x). This means that (1) has a solution (with
the initial value x), that is against our contradictory assumption and thus
proves the theorem. 2

Our next result gives a condition for a direct potential to have nonzero
index, as it is required in Theorem 1.

Theorem 2 Let V be a direct potential (with a constant r0 > 0). Suppose
that V is coercive, that is lim

‖x‖→∞
V (x) = +∞. Then Ind(V ) = 1.
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Proof For every γ ∈ R denote by Aγ the open and bounded subset of Rn,
given by V −1((−∞, γ)). Take the numbers α, β > α and R > r > r0 such
that:

B(r0) ⊂ Aα ⊂ Aα ⊂ B(r) ⊂ B(r) ⊂ Aβ ⊂ Aβ ⊂ B(R).

Let

T = 2
β − α

min{〈v, w〉 : v ∈ ∂V (x), w ∈ WV (x), x ∈ Aβ \ Aα}
The above formula makes sence in view of (6) (V is a direct potential) and
Aβ \ Aα ⊂ Rn \B(r0).

We will consider the following differential inclusion:

z′(t) ∈ −WV (z(t)) (8)

and its solutions on the interval [0, T ].
We have divided the later proof into five steps.

Step 1 We will prove that for every γ ≥ α the set Aγ is positively invariant,
that is

∀x ∈ Aγ ∀z ∈ S−WV
(x) ∀t ∈ [0, T ] z(t) ∈ Aγ.

The composition V z is absolutely continuous, while (6) implies that for
almost every t ∈ [0, T ] such that z(t) ∈ Rn \ B(r0) we have 〈v, z′(t)〉 < 0 for
every v ∈ ∂V (z(t)). Using the same method as in the proof of Lemma 3, we
obtain (V z)′(t) < 0 for almost every t ∈ [0, T ] such that z(t) ∈ Rn \ B(r0). If
there exist t0, t1 ∈ [0, T ], that z(t0) ∈ ∂Aγ and z(t) 6∈ Aγ for every t ∈ (t0, t1],
then V z(t0) = γ and V z(t) > γ for t ∈ (t0, t1], hence V z(t1) = V z(t0) +
t1∫
t0

(V z)′(τ)dτ < γ, a contradiction.

Step 2 Consider the mapping S1 : B(2R)× (0, 1] ; C([0, T ], Rn)

S1(x, λ) = {w : [0, T ] −→ Rn : w(t) =
z(λt)− x

λ
with z ∈ S−WV

(x)}.

S1 is u.s.c. and has Rδ values, because S1(x, λ) = 1
λ
(S−λWV

(x)− x). Moreover

‖ w′(t) ‖≤ 1 for every w ∈ S1(B(2R) × (0, 1]) and for almost every t ∈
[0, T ]. Hence, by Ascoli-Arzelá Theorem, the set S1(B(2R)×(0, 1]) is relatively
compact in C([0, T ], Rn).

Let S2 : B(2R)× [0, 1] ; C([0, T ], Rn),

S2(x, λ) ={
S1(x, λ) for λ 6= 0

{w = lim
k→∞

wk : wk ∈ S1(xk, λk) with xn → x, λk > 0, λk → 0} for λ = 0.

It is readily verified that S2 is u.s.c. and has compact values.
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Finally, let S : B(2R)× [0, 1] −→ C([0, T ], Rn)

S(x, λ) =

{
S2(x, λ) for λ 6= 0

conv S2(x, 0) for λ = 0.

It is not hard to see that S is u.s.c. with Rδ values.

Step 3 Consider the decomposable homotopy K : B(2R)×[0, 1] ; B(2R),

K(x, λ) = r2R(λ(eTS(x, 0) + x) + (1− λ)(x− ∂V (x))),

where r2R and eT are as in the proof of Theorem 1. We will show that K has
no fixed points in ∂Aβ. First, let us remark that:

∀x ∈ ∂Aβ ∃αx > 0 ∃εx > 0 ∀y ∈ B(x, εx) ∀w ∈ WV (y) ∀v ∈ ∂V (x) 〈w, v〉 > αx.

Now let w ∈ S2(x, 0) and v ∈ ∂V (x) for a point x ∈ ∂Aβ. By the definition

of S2, w(T ) = lim
k→∞

zk(λkT )−xk

λk
, where lim

k→∞
xk = x, lim

k→∞
λk = 0 and λk > 0,

zk ∈ S−WV
(xk). For k large enough λk < εx/(2T ) and ‖ xk − x ‖< εx/2, thus,

for any t ∈ [0, λkT ]

‖ zk(t)− x ‖≤‖ xk − x ‖ + ‖ zk(t)− xk ‖≤ εx

and hence

〈zk(λkT )− xk
λk

,−v〉 =
1

λk

λkT∫
0

〈z′k(τ),−v〉dτ > 1

λk

λkT∫
0

αxdτ = αxT.

This implies 〈w(T ),−v〉 ≥ αxT > 0.
Now suppose that x ∈ K(x, λ) for an x ∈ ∂Aβ and λ ∈ [0, 1], hence 0 ∈

λeTS(x, 0)−(1−λ)∂V (x). By the definition of S(·, 0) there exist {w1, . . . , wk} ⊂

S2(x, 0), {λ1, . . . , λk} ⊂ R+,
k∑
i=1

λi = 1 and v ∈ ∂V (x) such that

0 =‖ λ
k∑
i=1

λiwi(T )− (1− λ)v ‖2

= λ2 ‖
k∑
i=1

λiwi(T ) ‖2 +(1− λ)2 ‖ v ‖2 +2λ(1− λ)〈
k∑
i=1

λiwi(T ),−v〉 > 0,

a contradiction.
Homotopy invariance and additivity of the fixed point index now yield

Ind(V ) = IndB(2R)(r2R(IdB(2R) − ∂V ), B(R)) =

IndB(2R)(r2R(IdB(2R) − ∂V ), Aβ) = IndB(2R)(r2R(eTS(·, 0) + IdB(2R)), Aβ).
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Step 4 Let H : B(2R)× [0, 1] ; B(2R)

H(x, λ) = r2R(eTS(x, λ) + x),

H is a decomposable homotopy without fixed points in ∂Aβ. To show this
last statement, it is enough to prove that x 6∈ H(x, λ) for any x ∈ ∂Aβ and
λ ∈ (0, 1]. Suppose the contrary; then x = z(λT ) for a point x ∈ ∂Aβ and
z ∈ S−WV

(x). The sets Aβ and Aα ⊂ Aβ are positively invariant by Step 1,
hence z(t) ∈ Aβ \Aα ⊂ Aβ \B(r0) for every t ∈ [0, λT ]. As in Step 1, we obtain
(V z)′(t) < 0 for almost every t ∈ [0, λT ] and, finally 0 = V z(λT ) − V (x) =
λT∫
0

(V z)′(τ)dτ < 0, a contradiction.

The homotopy invariance of the fixed point index forces:

IndB(2R)(r2R(eTS(·, 0) + IdB(2R)), Aβ) = IndB(2R)(r2ReTS−WV
, Aβ).

Step 5 Take the decomposable homotopy L : B(2R)× [0, 1] ; B(2R)

L(x, λ) = r2R(λ · eTS−WV
(x)).

If we had x ∈ ∂Aβ, z ∈ S−WV
(x) and λ ∈ [0, 1) such that x = λz(T ), it would

follow 0 =‖ x − λz(T ) ‖>‖ x ‖ − ‖ z(T ) ‖ and z(T ) ∈ Rn \ B(r) ⊂ Rn \ Aα.
Thus V z(T ) > α and z(t) 6∈ Aα for every t ∈ [0, T ]. Hence:

β − α > V (x)− V z(T ) =

T∫
0

−(V z)′(τ)dτ. (9)

Using the same technique as in the proof of Lemma 3 it can be easily
seen that, for almost every t ∈ [0, T ], z′(t) ∈ −WV (z(t)) and there exists
{xtk}∞k=1, convergent to 0 ∈ Rn such that −(V z)′(t) is a limit of a sequence
{wtk}∞k=1, where each wtk is a convex combination of some numbers in the set
{〈−V ′(z(t) + xti), z

′(t)〉, i = k, k + 1, . . .}.
Set a number k, for i large enough we have 〈−V ′(z(t) + xi), z

′(t)〉 ∈
{〈−v, z′(t)〉 : v ∈ ∂V (z(t))+B(1/k)}. Consequently, −(V z)′(t) ∈ {〈−v, z′(t)〉 :
v ∈ ∂V (z(t)) +B(1/k)} and

−(V z)′(t) ∈ {〈v, w〉 : v ∈ ∂V (z(t)), w ∈ WV (z(t))}

for almost every t ∈ [0, T ].
Recalling (9), we obtain:

β − α > T min{〈v, w〉 : v ∈ ∂V (x), w ∈ WV (x), x ∈ Aβ \ Aα} = 2(β − α),

a contradiction. In this way we have shown that L has no fixed points in ∂Aβ.
By the homotopy invariance and units properties of the fixed point index,

IndB(2R)(r2ReTS−WV
, Aβ) = IndB(2R)(0, Aβ) = 1

and, finally, by Steps 3–5 we obtain Ind(V ) = 1. 2
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Inclusions, Université de Montreal, 1994, NATO ASI series C, Kluwer
Acad. publ., Dordrecht NL, pp. 129–190.
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