Locally Lipschitzian Guiding Function Method for ODEs.

Marta Lewicka
International School for Advanced Studies, SISSA, via Beirut 2-4, 34014 Trieste, Italy.
E-mail: lewicka@sissa.it

1 Introduction

Let $f:[0, T] \times R^{n} \longrightarrow R^{n}$; we investigate the problem of existence of T periodic solutions to the first order differential equation with f in the right hand side. Namely, we seek for solutions to the problem:

$$
\left\{\begin{array}{c}
x^{\prime}(t)=f(t, x(t)) \tag{1}\\
x(0)=x(T),
\end{array}\right.
$$

by generalizing the well known guiding function method. Such an approach can be found in several works, however, under some heavier assumptions. For example, in $[\mathrm{M}] f$ is assumed to be locally lipschitzian and the guiding function to be C^{1}. In [GP] f needs to be of the Caratheodory type only, while the corresponding guiding function must be still C^{1}. In fact, in $[\mathrm{GP}]$ the more general, multivalued problem

$$
\left\{\begin{array}{c}
x^{\prime}(t) \in \varphi(t, x(t)) \\
x(0)=x(T) .
\end{array}\right.
$$

is under consideration.
In our paper we get rid of the assumption of the guiding function to be C^{1}. In fact, in Theorem 1, which is motivated by [GP], we need it to be locally lipschitzian only (Theorem 1). Our second main result (Theorem 2) characterizes a class of guiding functions, satisfying the conditions of Theorem 1. This result is an extension of the theorem on the index of coercive potentials $[K]$ (a remarkable reformulation of which was done in $[M]$).

2 Preliminaries

In this section we review some of the standard facts and definitions.
Let X, Y be topological spaces. We say that X is an $R_{\delta}-$ set, whenever it is homeomorphic with an intersection of a decreasing sequence of compact, metric ANRs. A multivalued mapping $\varphi: X \leadsto Y$ (we will always suppose that a multivalued mapping has nonempty values) is called upper semicontinuous (u.s.c.) if, for every open set $U \subset Y$, the set $\varphi^{-1}(U)=\{x \in X: \varphi(x) \subset U\}$ is open in X. If X is a space with measure, we say that φ is measurable if $\varphi_{+}^{-1}(U)=\{x \in X: \varphi(x) \cap U \neq \emptyset\}$ is measurable for any open set $U \subset Y$.

We say that φ is admissible if X and Y are compact metric ANRs and φ is u.s.c. with R_{δ} values. A map $\varphi: X \leadsto X$ is called decomposable if it has a decomposition:

$$
\begin{equation*}
D_{\varphi}: X=X_{0} \xrightarrow{\varphi_{1}} X_{1} \xrightarrow{\varphi_{2}} X_{2} \ldots \xrightarrow{\varphi_{n}} X_{n}=X \quad \varphi=\varphi_{n} \ldots \varphi_{2} \varphi_{1}, \tag{2}
\end{equation*}
$$

where each φ_{i} is admissible.
Let A be an open subset of X such that a decomposable map φ (with a decomposition (2)) has no fixed points on its boundary, that is $x \notin \varphi(x)$ for every $x \in \partial A$. In such a case it is possible to define a fixed point index $\operatorname{Ind}_{X}\left(D_{\varphi}, A\right) \in \mathrm{Z}$ having the following properties:
(i) (existence) If $\operatorname{Ind}_{X}\left(D_{\varphi}, A\right) \neq 0$ then φ has a fixed point in A.
(ii) (additivity) Let $A_{i},(1 \leq i \leq n)$ be open, pairwise disjoint subsets of A. Suppose, that φ has no fixed points in $A \backslash \bigcup_{i=1}^{n} A_{i}$. Then the indices $\operatorname{Ind}_{X}\left(D_{\varphi}, A_{i}\right), 1 \leq i \leq n$, are well defined and $\operatorname{Ind}_{X}\left(D_{\varphi}, A\right)=\sum_{i=1}^{n} \operatorname{Ind}_{X}\left(D_{\varphi}, A_{i}\right)$.
(iii) (homotopy invariance) Let $\psi: X \leadsto X$ be a decomposable mapping, with a decomposition:

$$
D_{\psi}: X=X_{0} \stackrel{\psi_{1}}{\gtrdot} X_{1} \stackrel{\psi_{2}}{\gtrdot} X_{2} \ldots \xrightarrow{\psi_{n}} X_{n}=X, \quad \psi=\psi_{n} \ldots \psi_{2} \psi_{1} .
$$

Suppose that the decompositions D_{φ} and D_{ψ} are homotopic, that is there exists a decomposable homotopy $\chi: X \times[0,1] \leadsto X$, having a decomposition:

$$
\begin{gathered}
D_{\chi}: X \times[0,1]=X_{0} \times[0,1] \stackrel{\bar{\chi}_{1}}{\leadsto} X_{1} \times[0,1] \ldots \stackrel{\bar{\chi}_{n-1}}{\sim} X_{n-1} \times[0,1] \stackrel{\chi_{n}}{\sim} X_{n}=X, \\
\chi=\chi_{n} \bar{\chi}_{n-1} \cdots \bar{\chi}_{1},
\end{gathered}
$$

where, for $1 \leq i \leq n$, there exist admissible $\chi_{i}: X_{i-1} \leadsto X_{i}$ such that the following conditions are fulfilled:

$$
\begin{array}{ll}
\cdot & \chi_{i}(\cdot, 0)=\varphi_{i}, \chi_{i}(\cdot, 1)=\psi_{i}, \\
\cdot & \bar{\chi}_{i}(\cdot, \lambda)=\chi_{i}(\cdot, \lambda) \times\{\lambda\}(\text { for } i \neq n)
\end{array}
$$

and:

$$
\forall x \in \partial A \forall \lambda \in[0,1] \quad x \notin \chi(x, \lambda)
$$

Then $\operatorname{Ind}_{X}\left(D_{\psi}, A\right)$ is well defined and: $\operatorname{Ind}_{X}\left(D_{\psi}, A\right)=\operatorname{Ind}_{X}\left(D_{\varphi}, A\right)$.
(iv) (contraction) Suppose, that in the decomposition of D_{φ} we have $X_{n-1}=$ $Y \subset X$ and the mapping φ_{n} is the inclusion: $\varphi_{n}=i: Y \hookrightarrow X$. Then $\varphi_{\mid Y}$ has a decomposition

$$
D_{\varphi_{\mid Y}}: Y=X_{0} \stackrel{\varphi_{1 \mid Y}}{\sim} X_{1} \stackrel{\varphi_{2}}{\sim} X_{2} \ldots \stackrel{\varphi_{n-1}}{\sim} X_{n-1}=Y .
$$

Moreover, if $\varphi_{\mid Y}$ has no fixed points in $\partial(A \cap Y)$, then $\operatorname{Ind}_{Y}\left(D_{\varphi_{\mid Y}}, A \cap Y\right)$ is well defined and $\operatorname{Ind}_{Y}\left(D_{\varphi \mid Y}, A \cap Y\right)=\operatorname{Ind}_{X}\left(D_{\varphi}, A\right)$.
(v) (units) If φ is constant, that is $\varphi(x)=B \subset X$ for every $x \in X$, then

$$
\operatorname{Ind}_{X}\left(D_{\varphi}, A\right)=\left\{\begin{array}{lll}
1 & \text { for } & A \cap B \neq \emptyset \\
0 & \text { for } & A \cap B=\emptyset
\end{array}\right.
$$

where $D_{\varphi}: X=X_{0} \stackrel{\varphi}{\rightarrow} X_{1}=X$.
Notice, that the fixed point index is defined for a decomposition of a multivalued map, not for the map itself. However, when it is clear which decomposition we mean, we will simply write $\operatorname{Ind}_{X}(\varphi, A)$.

For the above definitions and other properties of Ind we refer to $[\mathrm{BK}]$ and [AGL].

Let $\varphi:[0, T] \times R^{n} \leadsto R^{n}$ be a Caratheodory multifunction, that is measurable in the first variable for every $x \in R^{n}$ and u.s.c. in the second variable for almost every $t \in[0, T]$ we say that φ has integrably bounded growth (with the bounding function μ) if there exists a function $\mu \in L^{1}([0, T], R)$ such that $\|y\| \leq \mu(t)(1+\|x\|)$ for every $x \in R^{n}, t \in[0, T]$ and $y \in \varphi(t, x)$.

The Poincaré operator for the differential inclusion (1') is a multivalued mapping $S_{\varphi}: R^{n} \leadsto C\left([0, T], R^{n}\right)$, given by

$$
\begin{aligned}
S_{\varphi}\left(x_{0}\right)= & \left\{x:[0, T] \longrightarrow R^{n}, x\right. \text { is absolutely continuous, } \\
& \left.x^{\prime}(t) \in \varphi(t, x(t)) \text { for almost every } t \in[0, T], \quad x(0)=x_{0}\right\} .
\end{aligned}
$$

We say that $x:[0, T] \longrightarrow R^{n}$ is a solution of the inclusion $x^{\prime}(t) \in \varphi(t, x(t))$, whenever $x \in S_{\varphi}(x(0))$.

It is known that if φ is of the Caratheodory type, has compact and convex values and has integrably bounded growth, then S_{φ} is u.s.c. with R_{δ} values.

Let $\psi:[0, T] \times R^{n} \times[0,1] \leadsto R^{n}$ be a multivalued mapping with compact, convex values, such that for every $(x, \lambda) \in R^{n} \times[0,1]$ the mapping $\psi(\cdot, x, \lambda)$ is measurable and that for almost every $t \in[0, T]$ the map $\psi(t, \cdot, \cdot)$ is u.s.c.; assume that there exists $\mu \in L^{1}([0, T], R)$ such that for every $\lambda \in[0,1]$ the multifunction $\psi(\cdot, \cdot, \lambda)$ has integrably bounded growth with μ as its bounding function. Then the map $R^{n} \times[0,1] \ni(x, \lambda) \leadsto S_{\psi(\cdot,, \lambda)}(x)$ is u.s.c. with R_{δ} values.

For the statements above, see [AC], [G], [AGL].
From now on, by V will be assumed to be a locally lipschitzian function from R^{n} to R. Let us define

$$
\Omega_{V}=\left\{x \in R^{n}, V \text { is not differentiable in } x\right\} .
$$

The Rademacher Theorem states that Ω_{V} has measure 0 .
By the generalized gradient of V at point $x_{0} \in R^{n}$, denoted by $\partial V\left(x_{0}\right)$, we mean the convex hull of the set of all limits $\lim _{i \rightarrow \infty} V^{\prime}\left(x_{i}\right)$ where $\left\{x_{i}\right\}_{i=1}^{\infty}$ is any sequence of points in $R^{n} \backslash \Omega_{V}$, converging to x_{0}.

The following properties of gradient are known:
(i) Let $S \subset R^{n}$ be of measure 0 . Then $\partial V\left(x_{0}\right)$ can be obtained by replacing Ω_{V} with $\Omega_{V} \cup S$ in the above definition.
(ii) The multivalued mapping $\partial V: R^{n} \leadsto R^{n}$ is u.s.c. with compact, convex values.
(iii) (mean value theorem) Let $x, y \in R^{n}$. Then there exists a point u in a segment (x, y) and a point $w \in \partial V(x)$ such, that $V(x)-V(y)=\langle w, y-x\rangle$.

The reader is refered to [C] for more more material on this topic.
Given an euclidean space, by $B(\varepsilon)$ we will denote an open ball of the radius ε, centered in the origin.

3 Auxiliary Results

Let us recall the following lemma [GP]:
Lemma 0 Assume $\varphi:[0, T] \times R^{n} \leadsto R^{n}$ has integrably bounded growth. Fix $r_{0}>0$, there exists $r>0$ such that, for every solution of the problem

$$
\left\{\begin{array}{c}
x^{\prime}(t) \in \varphi(t, x(t)) \\
\|x(0)\|>r
\end{array}\right.
$$

we have $\|x(t)\|>r_{0}$ for every $t \in[0, T]$.
Moreover, r depends only on r_{0} and on the function μ in the definition of integrably bounded growth for the multivalued map φ.

Lemma 1 Let $\Omega \subset R^{n}$ have measure 0. Suppose we are given a Lebesgue measurable function $z:[0, T] \longrightarrow R^{n}$. Then, for every $\varepsilon>0$ there exists $x \in B(\varepsilon) \subset R^{n}$ such that $z(t)+x \notin \Omega$ for almost every $t \in[0, T]$.

Proof Consider the characteristic function of $\Omega, \chi_{\Omega}: R^{n} \longrightarrow R$ and a measurable function $F:[0, T] \times B(\varepsilon) \longrightarrow R^{n}$, given by $F(t, x)=z(t)+x$. Without loss of generality we may assume that Ω is Borel. Then the composition $\chi_{\Omega} F$ is measurable and from Fubini Theorem we get $\int_{B(\varepsilon)}\left(\int_{0}^{T} \chi_{\Omega} F d t\right) d x=$ $\int_{0}^{T}\left(\int_{B(\varepsilon)} \chi_{\Omega} F d x\right) d t=0$. Hence for almost every $x \in B(\varepsilon), \int_{0}^{T}\left(\chi_{\Omega} F\right)(x, t) d t=0$.

The following fact is straightforward:
Lemma 2 Let $z:[0, T] \longrightarrow R^{n}$ be absolutely continuous. Then the composition $V z$ is absolutely continuous and for every $t \in[0, T]$ such that z is differentiable at t and V is differentiable at $z(t), V z$ is differentiable at t and $(V z)^{\prime}(t)=\left\langle V^{\prime}(z(t)), z^{\prime}(t)\right\rangle$.

The following lemma is of a basic importance for our later considerations:
Lemma 3 Let z be as in the previous lemma. Suppose that for almost every $t \in[0, T]$ we have:

$$
\begin{equation*}
\forall v \in \partial V(z(t)) \quad\left\langle v, z^{\prime}(t)\right\rangle>0 \tag{3}
\end{equation*}
$$

Then $(V z)^{\prime}(t)>0$ for almost every $t \in[0, T]$. In particular, $z(T) \neq z(0)$.

Proof By Lemma 1 there exists a sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ convergent to $0 \in R^{n}$ such that:

$$
\forall t \in[0, T] \backslash A \forall k>0 \quad z_{k}(t)=z(t)+x_{k} \notin \Omega_{V},
$$

where $A \subset[0, T]$ is a set of measure 0 , containing the points in which z fails to be differentiable. We may also suppose that (3) is valid for every $t \in[0, T] \backslash A$.

It is easily seen that the absolutely continuous functions $V z_{k}$ are equibounded and that $\left|\left(V z_{k}\right)^{\prime}\right|$ are uniformly dominated by an integrable function $t \longmapsto C\left\|z^{\prime}(t)\right\|$ with C a positive constant (this follows from Lemma 2). Therefore (see e.g. [AC]) we can extract a subsequence $\left\{V z_{k_{i}}\right\}_{i=1}^{\infty}$ such that the derivatives $\left(V z_{k_{i}}\right)^{\prime}$ converge weakly in $L^{1}([0, T], R)$ to $(V z)^{\prime}$. By Mazur Lemma there exists a sequence of convex combinations $\left\{w_{i}\right\}_{i=1}^{\infty}, w_{i}=\sum_{j=i}^{\infty} \lambda_{j}^{i} \cdot\left(V z_{k_{j}}\right)^{\prime}$, convergent to $(V z)^{\prime}$ in $L^{1}([0, T], R)$. Thus, without loss of generality, we have $\lim _{i} w_{i}(t)=(V z)^{\prime}(t)$ for every $t \in[0, T] \backslash A$.

Fix $t \in[0, T] \backslash A$. By (3) there exists a real $\alpha_{t}>0$ such that $\left\langle v, z^{\prime}(t)\right\rangle>2 \alpha_{t}$ for every $v \in \partial V(z(t))$. By Lemma 2 and uppersemicontiniuity of ∂V, there exists a number $k_{0_{t}}$ such that, for every $k \geq k_{0_{t}}$, we have

$$
\begin{gathered}
\left(V z_{k}\right)^{\prime}(t)=\left\langle V^{\prime}\left(z(t)+x_{k}\right), z^{\prime}(t)\right\rangle \\
\in\left\{\left\langle v+u, z^{\prime}(t)\right\rangle: v \in \partial V(z(t)) \text { and }\|u\| \leq \alpha_{t} /\left\|z^{\prime}(t)\right\|\right\}
\end{gathered}
$$

and, consequently, $\left(V z_{k}\right)^{\prime}(t)>\alpha_{t}$ for every $k \geq k_{0_{t}}$.
Thus, $w_{i}(t)>\alpha_{t}$ for i large enough and we conclude that $(V z)^{\prime}(t) \geq \alpha_{t}>0$, which proves the first statement of the lemma.

In particular, $V z(T)-V z(0)=\int_{0}^{T}(V z)^{\prime}(\tau) d \tau>0$, so $z(T) \neq z(0)$.

Definition $1 V$ is said to be a direct potential (with a constant $r_{0}>0$) if

$$
\forall x \in R^{n} \backslash B\left(r_{0}\right) \forall v, w \in \partial V(x)\langle v, w\rangle \neq 0
$$

Note that the above definition will not change if we replace \neq by $>$.
Our definition agrees with the classical one for C^{1} functions presented, for example, in $[\mathrm{M}]$.

The following lemma defines the index of a direct potential:
Lemma 4 Let V be a direct potential (with a constant r_{0}). Set $\varphi: R^{n} \leadsto$ R^{n} as follows: $\varphi=I d_{R^{n}}-\partial V$. We define $\operatorname{Ind}(V)=\operatorname{Ind}_{\overline{B\left(2 r_{0}\right)}}\left(r_{2 r_{0}} \varphi, B\left(r_{0}\right)\right)$, where $r_{2 r_{0}}$ is the radial retraction of R^{n} onto $\overline{B\left(2 r_{0}\right)}$. (Here φ and $r_{2 r_{0}}$ are admissible, so the decomposition for defining the index is taken naturally as the composition $r_{2 r_{0}} \varphi$.) Then $\operatorname{Ind} \overline{\overline{B(2 R)}}\left(r_{2 R} \varphi, B(R)\right)=\operatorname{Ind}(V)$ for every $R \geq r_{0}$.

Proof The proof is straightforward and follows from homotopy invariance, additivity and contraction properties of the fixed point index.

Let V be as in the previous lemma. Now consider a multivalued mapping $W_{V}: R^{n} \leadsto R^{n}$, given $W_{V}(x)=\operatorname{conv}\left(r_{1} \partial V(x)\right)$, where $r_{1}: R^{n} \longrightarrow R^{n}$ is the radial retraction onto $\overline{B(1)} \subset R^{n}$ and conv stands for the convex hull. It is not hard to see that W_{V} is u.s.c., bounded by 1 and has compact, convex values.

The following lemma is analogous to a result obtained in [GP]:
Lemma 5 Set a number $T>0$. There exists $R_{0}>0$ such that for every $r>R_{0}$ there is $t_{r} \in(0, T]$ such that every solution of the problem:

$$
\left\{\begin{array}{c}
x^{\prime}(t) \in W_{V}(x(t)) \tag{4}\\
\|x(0)\|=r
\end{array}\right.
$$

has the following properties:
(i) $\forall t \in\left(0, t_{r}\right] \forall v \in \partial V(x(0)) \quad\langle x(t)-x(0), v\rangle>0$,
(ii) $\forall t \in(0, T] \quad x(t)-x(0) \neq 0$.

Proof Lemma 0 gives the existence of a number $R_{0}>r_{0}$ such that for every solution of the problem:

$$
\left\{\begin{array}{c}
x^{\prime}(t) \in W_{V}(x(t)) \\
\|x(0)\|>R_{0}
\end{array}\right.
$$

we have $\|x(t)\|>r_{0}$ for every $t \in[0, T]$.
Since ∂V is u.s.c. with compact values and V is a direct potential, we obviously have:

$$
\begin{gather*}
\forall R>r_{0} \exists \varepsilon_{R}>0 \forall x, y \in \overline{B(R)} \backslash B\left(r_{0}\right) \subset R^{n}:\|x-y\|<\varepsilon_{R} \\
\forall w \in \partial V(x) \forall v \in \partial V(y) \quad\langle w, v\rangle>0 . \tag{5}
\end{gather*}
$$

Fix $r>R_{0}$ and let $t_{r} \leq \varepsilon_{r+T}, \quad t_{r} \in(0, T]$. Let x be a solution of (4). We have $\|x(t)\| \leq r+\int_{0}^{t}\left\|x^{\prime}(\tau)\right\| d \tau \leq r+T$ for every $t \in[0, T]$ and $\|x(t)-x(0)\| \leq \int_{0}^{t}\left\|x^{\prime}(\tau)\right\| d \tau \leq t_{r} \leq \varepsilon_{r+T}$ for every $t \in\left(0, t_{r}\right]$. Hence, by (5):

$$
\forall t \in\left(0, t_{r}\right] \forall w \in \partial V(x(t)) \forall v \in \partial V(x(0)) \quad\langle w, v\rangle>0
$$

Combining the above with the following evident remark:

$$
\begin{equation*}
\forall y \in R^{n} \forall w \in W_{V}(y) \exists \alpha \geq 1 \quad \alpha w \in \partial V(y) \tag{6}
\end{equation*}
$$

we obtain

$$
\forall t \in\left(0, t_{r}\right] \forall w \in W_{V}(x(t)) \forall v \in \partial V(x(0)) \quad\langle w, v\rangle>0
$$

and, finally,

$$
\forall t \in\left(0, t_{r}\right] \forall v \in \partial V(x(0))\langle x(t)-x(0), v\rangle=\int_{0}^{t}\left\langle x^{\prime}(\tau), v\right\rangle d \tau>0 .
$$

Moreover, by (6), we have $\left\langle v, x^{\prime}(t)\right\rangle>0$ for almost every $t \in[0, T]$ and every $v \in \partial V(x(t))$, which, by Lemma 3 completes the proof of (ii).

4 Main Results

When V is in C^{1}, the following definition reduces to the corresponding one in [GP].

Definition 2 Let $f:[0, T] \times R^{n} \longrightarrow R^{n}, \quad V$ be a direct potential with a constant r_{0}. V is called a guiding function for f, whenever

$$
\forall x \in R^{n} \backslash B\left(r_{0}\right) \forall w \in \partial V(x) \forall t \in[0, T] \quad\langle f(t, x), w\rangle \geq 0
$$

Here comes our first main result.
Theorem 1 Let $f:[0, T] \times R^{n} \longrightarrow R^{n}$ be a Caratheodory function with integrably bounded growth. Suppose that f has a guiding function V (with a constant r_{0}) such that $\operatorname{Ind}(V) \neq 0$. Then the problem (1) has at least one solution.

Proof Consider the following family of differential inclusions, with $\kappa \in$ $[0,1]$:

$$
z^{\prime}(t) \in \kappa W_{V}(z(t))+(1-\kappa) f(t, z(t))
$$

By Lemma 0 , there exists $R>r_{0}$ such that for any $z:[0, T] \longrightarrow R^{n}$ that is a solution of the above problem for some $\kappa \in[0,1]$ and satisfies $\|z(0)\| \geq R$, we have $\|z(t)\|>r_{0}$ for every $t \in[0, T]$.

Let t_{R} be as in Lemma 5. Take the decomposable homotopy $H: \overline{B(2 R)} \times$ $[0,1] \sim \overline{B(2 R)}$, given by

$$
H(x, \lambda)=r_{2 R}\left((1-\lambda) \cdot(x-\partial V(x))+\lambda \cdot\left(2 x-e_{t_{R}} S_{W_{V}}(x)\right)\right)
$$

where $r_{2 R}$ is, as usual, the radial retraction of R^{n} onto $\overline{B(2 R)}$ and $e_{t_{R}}$: $C\left([0, T], R^{n}\right) \longrightarrow R^{n}$ is by definition $e_{t_{R}}(z)=z\left(t_{R}\right)$ (the explicit formula for the decomposition of H is not complicated but long, so we omit it).

We will show that H has no fixed points in $\partial B(R)$. Conversely, suppose that there exists $x \in H(x, \lambda)$, with $x \in \partial B(R)$ and $\lambda \in[0,1]$. Then

$$
\begin{aligned}
& \exists v \in \partial V(x) \exists z \in S_{W_{V}}(x) \quad 0=\left\|(1-\lambda)(x-v)+\lambda\left(2 x-z\left(t_{R}\right)\right)-x\right\|^{2}= \\
& \quad(1-\lambda)^{2}\|v\|^{2}+\lambda^{2}\left\|z\left(t_{R}\right)-z(0)\right\|^{2}+2(1-\lambda) \lambda\left\langle v, z\left(t_{R}\right)-z(0)\right\rangle
\end{aligned}
$$

which contradicts Lemma 5.
By the above formula, Lemma 4 and the homotopy invariance of the fixed point index we have

$$
\begin{equation*}
\operatorname{Ind}(V)=\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(2 I d_{\overline{B(2 R)}}-e_{t_{R}} S_{W_{V}}\right), B(R)\right) \tag{7}
\end{equation*}
$$

(the decompositions of the multivalued maps in the formula are induced by the decomposition of the homotopy H).

Consider $G:[0, T] \times R^{n} \times[0,1] \leadsto R^{n}$, given by

$$
G(t, x, \lambda)=k(\lambda) W_{V}(x)+(1-k(\lambda)) f(t, x)
$$

where $k:[0,1] \longrightarrow R$ is by definition

$$
k(\lambda)=\left\{\begin{array}{ccc}
1 & \text { for } & \lambda \in[0,1 / 2) \\
2-2 \lambda & \text { for } & \lambda \in[1 / 2,1] .
\end{array}\right.
$$

It is easy to check that G has the properties of the map ψ, introduced in paragraph 1 , thus the following homotopy is decomposable $K: \overline{B(2 R)} \times[0,1] \sim$ $\overline{B(2 R)}$,

$$
K(x, \lambda)=r_{2 R}\left(2 x-e_{h(\lambda)} S_{G(\cdot,, \lambda)}(x)\right),
$$

where $h:[0,1] \longrightarrow R$ is given by

$$
h(\lambda)=\left\{\begin{array}{cll}
2\left(T-t_{R}\right) \lambda+t_{R} & \text { for } & \lambda \in[0,1 / 2) \\
T & \text { for } & \lambda \in[1 / 2,1] .
\end{array}\right.
$$

Now suppose that the problem (1) has no solutions. We will first show that K has no fixed points in $\partial B(R)$. Conversely, suppose that $x \in K(x, \lambda)$ for a point $x \in \partial B(R)$ and $\lambda \in[0,1]$.

If $\lambda \in[0,1 / 2)$, then $z(h(\lambda))=z(0)$ for a function $z \in S_{W_{V}}(x)$, that contradicts Lemma 5 (ii).

If $\lambda \in[1 / 2,1)$, then $z(T)=z(0)$ for a function $z \in S_{G(\cdot,, \lambda)}(x)$. We have $\left\langle z^{\prime}(t), v\right\rangle=k(\lambda)\left\langle w_{t, v}, v\right\rangle+(1-k(\lambda))\langle f(t, z(t)), v\rangle$ for almost every $t \in[0, T]$, every $v \in \partial V(z(t))$ and a point $w_{t, v} \in W_{V}(z(t))$. Now $\langle f(t, z(t)), v\rangle>0$ because V is a guiding function for (1) and $\left\langle w_{t, v}, v\right\rangle>0$ from (6) and the fact that V is a direct potential. Consequently $\left\langle z^{\prime}(t), v\right\rangle>0$ for almost every $t \in[0, T]$ and every $v \in \partial V(z(t))$, which contradicts Lemma 3.

The case $\lambda=1$ is already excluded by our assumption that (1) has no solutions.

Now from the above and homotopy invariance of the fixed point index we have
$\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(2 I d_{\overline{B(2 R)}}-e_{t_{R}} S_{W_{V}}\right), B(R)\right)=\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(2 I d_{\overline{B(2 R)}}-e_{T} S_{f}\right), B(R)\right)$.
Recalling (7)

$$
\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(2 I d_{\overline{B(2 R)}}-e_{T} S_{f}\right), B(R)\right)=\operatorname{Ind}(V) \neq 0
$$

By existence property of the fixed point index we obtain a fixed point of the mapping $r_{2 R}\left(2 I d_{\overline{B(2 R)}}-e_{T} S_{f}\right)$, namely $x \in B(R)$ such that $x \in 2 x-e_{T} S_{f}(x)$ which is equivalent to $x \in e_{T} S_{f}(x)$. This means that (1) has a solution (with the initial value x), that is against our contradictory assumption and thus proves the theorem.

Our next result gives a condition for a direct potential to have nonzero index, as it is required in Theorem 1.

Theorem 2 Let V be a direct potential (with a constant $r_{0}>0$). Suppose that V is coercive, that is $\lim _{\|x\| \rightarrow \infty} V(x)=+\infty$. Then $\operatorname{Ind}(V)=1$.

Proof For every $\gamma \in R$ denote by A_{γ} the open and bounded subset of R^{n}, given by $V^{-1}((-\infty, \gamma))$. Take the numbers $\alpha, \beta>\alpha$ and $R>r>r_{0}$ such that:

$$
\overline{B\left(r_{0}\right)} \subset A_{\alpha} \subset \overline{A_{\alpha}} \subset B(r) \subset \overline{B(r)} \subset A_{\beta} \subset \overline{A_{\beta}} \subset B(R)
$$

Let

$$
T=2 \frac{\beta-\alpha}{\min \left\{\langle v, w\rangle: \quad v \in \partial V(x), w \in W_{V}(x), x \in \overline{A_{\beta}} \backslash A_{\alpha}\right\}}
$$

The above formula makes sence in view of (6) (V is a direct potential) and $\bar{A}_{\beta} \backslash A_{\alpha} \subset R^{n} \backslash B\left(r_{0}\right)$.

We will consider the following differential inclusion:

$$
\begin{equation*}
z^{\prime}(t) \in-W_{V}(z(t)) \tag{8}
\end{equation*}
$$

and its solutions on the interval $[0, T]$. We have divided the later proof into five steps.

Step 1 We will prove that for every $\gamma \geq \alpha$ the set $\overline{A_{\gamma}}$ is positively invariant, that is

$$
\forall x \in \overline{A_{\gamma}} \forall z \in S_{-W_{V}}(x) \forall t \in[0, T] \quad z(t) \in \overline{A_{\gamma}} .
$$

The composition $V z$ is absolutely continuous, while (6) implies that for almost every $t \in[0, T]$ such that $z(t) \in R^{n} \backslash B\left(r_{0}\right)$ we have $\left\langle v, z^{\prime}(t)\right\rangle<0$ for every $v \in \partial V(z(t))$. Using the same method as in the proof of Lemma 3, we obtain $(V z)^{\prime}(t)<0$ for almost every $t \in[0, T]$ such that $z(t) \in R^{n} \backslash \overline{B\left(r_{0}\right)}$. If there exist $t_{0}, t_{1} \in[0, T]$, that $z\left(t_{0}\right) \in \partial \overline{A_{\gamma}}$ and $z(t) \notin \overline{A_{\gamma}}$ for every $t \in\left(t_{0}, t_{1}\right]$, then $V z\left(t_{0}\right)=\gamma$ and $V z(t)>\gamma$ for $t \in\left(t_{0}, t_{1}\right]$, hence $V z\left(t_{1}\right)=V z\left(t_{0}\right)+$ $\int_{t_{0}}^{t_{1}}(V z)^{\prime}(\tau) d \tau<\gamma$, a contradiction.

Step 2 Consider the mapping $S_{1}: \overline{B(2 R)} \times(0,1] \leadsto C\left([0, T], R^{n}\right)$

$$
S_{1}(x, \lambda)=\left\{w:[0, T] \longrightarrow R^{n}: w(t)=\frac{z(\lambda t)-x}{\lambda} \text { with } z \in S_{-W_{V}}(x)\right\}
$$

S_{1} is u.s.c. and has R_{δ} values, because $S_{1}(x, \lambda)=\frac{1}{\lambda}\left(S_{-\lambda W_{V}}(x)-x\right)$. Moreover $\left\|w^{\prime}(t)\right\| \leq 1$ for every $w \in S_{1}(\overline{B(2 R)} \times(0,1])$ and for almost every $t \in$ $[0, T]$. Hence, by Ascoli-Arzelá Theorem, the set $S_{1}(\overline{B(2 R)} \times(0,1])$ is relatively compact in $C\left([0, T], R^{n}\right)$.

Let $S_{2}: \overline{B(2 R)} \times[0,1] \leadsto C\left([0, T], R^{n}\right)$,

$$
S_{2}(x, \lambda)=
$$

$$
\left\{\begin{array}{cl}
S_{1}(x, \lambda) & \text { for } \lambda \neq 0 \\
\left\{w=\lim _{k \rightarrow \infty} w_{k}: w_{k} \in S_{1}\left(x_{k}, \lambda_{k}\right) \text { with } x_{n} \rightarrow x, \lambda_{k}>0, \lambda_{k} \rightarrow 0\right\} & \text { for } \lambda=0
\end{array}\right.
$$

It is readily verified that S_{2} is u.s.c. and has compact values.

Finally, let $S: \overline{B(2 R)} \times[0,1] \longrightarrow C\left([0, T], R^{n}\right)$

$$
S(x, \lambda)=\left\{\begin{array}{cc}
S_{2}(x, \lambda) & \text { for } \quad \lambda \neq 0 \\
\operatorname{conv} S_{2}(x, 0) & \text { for } \quad \lambda=0 .
\end{array}\right.
$$

It is not hard to see that S is u.s.c. with R_{δ} values.
Step 3 Consider the decomposable homotopy $K: \overline{B(2 R)} \times[0,1] \leadsto \overline{B(2 R)}$,

$$
K(x, \lambda)=r_{2 R}\left(\lambda\left(e_{T} S(x, 0)+x\right)+(1-\lambda)(x-\partial V(x))\right),
$$

where $r_{2 R}$ and e_{T} are as in the proof of Theorem 1 . We will show that K has no fixed points in ∂A_{β}. First, let us remark that:
$\forall x \in \partial A_{\beta} \exists \alpha_{x}>0 \exists \varepsilon_{x}>0 \forall y \in B\left(x, \varepsilon_{x}\right) \forall w \in W_{V}(y) \forall v \in \partial V(x)\langle w, v\rangle>\alpha_{x}$.
Now let $w \in S_{2}(x, 0)$ and $v \in \partial V(x)$ for a point $x \in \partial A_{\beta}$. By the definition of $S_{2}, \quad w(T)=\lim _{k \rightarrow \infty} \frac{z_{k}\left(\lambda_{k} T\right)-x_{k}}{\lambda_{k}}$, where $\lim _{k \rightarrow \infty} x_{k}=x, \lim _{k \rightarrow \infty} \lambda_{k}=0$ and $\lambda_{k}>0$, $z_{k} \in S_{-W_{V}}\left(x_{k}\right)$. For k large enough $\lambda_{k}<\varepsilon_{x} /(2 T)$ and $\left\|x_{k}-x\right\|<\varepsilon_{x} / 2$, thus, for any $t \in\left[0, \lambda_{k} T\right]$

$$
\left\|z_{k}(t)-x\right\| \leq\left\|x_{k}-x\right\|+\left\|z_{k}(t)-x_{k}\right\| \leq \varepsilon_{x}
$$

and hence

$$
\left\langle\frac{z_{k}\left(\lambda_{k} T\right)-x_{k}}{\lambda_{k}},-v\right\rangle=\frac{1}{\lambda_{k}} \int_{0}^{\lambda_{k} T}\left\langle z_{k}^{\prime}(\tau),-v\right\rangle d \tau>\frac{1}{\lambda_{k}} \int_{0}^{\lambda_{k} T} \alpha_{x} d \tau=\alpha_{x} T .
$$

This implies $\langle w(T),-v\rangle \geq \alpha_{x} T>0$.
Now suppose that $x \in K(x, \lambda)$ for an $x \in \partial A_{\beta}$ and $\lambda \in[0,1]$, hence $0 \in$ $\lambda e_{T} S(x, 0)-(1-\lambda) \partial V(x)$. By the definition of $S(\cdot, 0)$ there exist $\left\{w_{1}, \ldots, w_{k}\right\} \subset$ $S_{2}(x, 0),\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \subset R_{+}, \sum_{i=1}^{k} \lambda_{i}=1$ and $v \in \partial V(x)$ such that

$$
\begin{gathered}
0=\left\|\lambda \sum_{i=1}^{k} \lambda_{i} w_{i}(T)-(1-\lambda) v\right\|^{2} \\
=\lambda^{2}\left\|\sum_{i=1}^{k} \lambda_{i} w_{i}(T)\right\|^{2}+(1-\lambda)^{2}\|v\|^{2}+2 \lambda(1-\lambda)\left\langle\sum_{i=1}^{k} \lambda_{i} w_{i}(T),-v\right\rangle>0
\end{gathered}
$$

a contradiction.
Homotopy invariance and additivity of the fixed point index now yield

$$
\begin{gathered}
\operatorname{Ind}(V)=\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(I d_{\overline{B(2 R)}}-\partial V\right), B(R)\right)= \\
\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(I d_{\overline{B(2 R)}}-\partial V\right), A_{\beta}\right)=\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(e_{T} S(\cdot, 0)+I d_{\overline{B(2 R)}}\right), A_{\beta}\right) .
\end{gathered}
$$

Step 4 Let $H: \overline{B(2 R)} \times[0,1] \leadsto \overline{B(2 R)}$

$$
H(x, \lambda)=r_{2 R}\left(e_{T} S(x, \lambda)+x\right)
$$

H is a decomposable homotopy without fixed points in ∂A_{β}. To show this last statement, it is enough to prove that $x \notin H(x, \lambda)$ for any $x \in \partial A_{\beta}$ and $\lambda \in(0,1]$. Suppose the contrary; then $x=z(\lambda T)$ for a point $x \in \partial A_{\beta}$ and $z \in S_{-W_{V}}(x)$. The sets $\overline{A_{\beta}}$ and $\overline{A_{\alpha}} \subset A_{\beta}$ are positively invariant by Step 1, hence $z(t) \in \overline{A_{\beta}} \backslash \overline{A_{\alpha}} \subset \overline{A_{\beta}} \backslash \overline{B\left(r_{0}\right)}$ for every $t \in[0, \lambda T]$. As in Step 1 , we obtain $(V z)^{\prime}(t)<0$ for almost every $t \in[0, \lambda T]$ and, finally $0=V z(\lambda T)-V(x)=$ $\int_{0}^{\lambda T}(V z)^{\prime}(\tau) d \tau<0$, a contradiction.

The homotopy invariance of the fixed point index forces:

$$
\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R}\left(e_{T} S(\cdot, 0)+I d_{\overline{B(2 R)}}\right), A_{\beta}\right)=\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R} e_{T} S_{-W_{V}}, A_{\beta}\right)
$$

Step 5 Take the decomposable homotopy $L: \overline{B(2 R)} \times[0,1] \leadsto \overline{B(2 R)}$

$$
L(x, \lambda)=r_{2 R}\left(\lambda \cdot e_{T} S_{-W_{V}}(x)\right)
$$

If we had $x \in \partial A_{\beta}, z \in S_{-W_{V}}(x)$ and $\lambda \in[0,1)$ such that $x=\lambda z(T)$, it would follow $0=\|x-\lambda z(T)\|>\|x\|-\|z(T)\|$ and $z(T) \in R^{n} \backslash B(r) \subset R^{n} \backslash \overline{A_{\alpha}}$. Thus $V z(T)>\alpha$ and $z(t) \notin \overline{A_{\alpha}}$ for every $t \in[0, T]$. Hence:

$$
\begin{equation*}
\beta-\alpha>V(x)-V z(T)=\int_{0}^{T}-(V z)^{\prime}(\tau) d \tau \tag{9}
\end{equation*}
$$

Using the same technique as in the proof of Lemma 3 it can be easily seen that, for almost every $t \in[0, T], z^{\prime}(t) \in-W_{V}(z(t))$ and there exists $\left\{x_{k}^{t}\right\}_{k=1}^{\infty}$, convergent to $0 \in R^{n}$ such that $-(V z)^{\prime}(t)$ is a limit of a sequence $\left\{w_{k}^{t}\right\}_{k=1}^{\infty}$, where each w_{k}^{t} is a convex combination of some numbers in the set $\left\{\left\langle-V^{\prime}\left(z(t)+x_{i}^{t}\right), z^{\prime}(t)\right\rangle, i=k, k+1, \ldots\right\}$.

Set a number k, for i large enough we have $\left\langle-V^{\prime}\left(z(t)+x_{i}\right), z^{\prime}(t)\right\rangle \in$ $\left\{\left\langle-v, z^{\prime}(t)\right\rangle: v \in \partial V(z(t))+B(1 / k)\right\}$. Consequently, $-(V z)^{\prime}(t) \in\left\{\left\langle-v, z^{\prime}(t)\right\rangle:\right.$ $v \in \overline{\partial V(z(t))+B(1 / k)}\}$ and

$$
-(V z)^{\prime}(t) \in\left\{\langle v, w\rangle: v \in \partial V(z(t)), w \in W_{V}(z(t))\right\}
$$

for almost every $t \in[0, T]$.
Recalling (9), we obtain:

$$
\beta-\alpha>T \min \left\{\langle v, w\rangle: v \in \partial V(x), w \in W_{V}(x), x \in \overline{A_{\beta}} \backslash A_{\alpha}\right\}=2(\beta-\alpha),
$$

a contradiction. In this way we have shown that L has no fixed points in ∂A_{β}.
By the homotopy invariance and units properties of the fixed point index,

$$
\operatorname{Ind}_{\overline{B(2 R)}}\left(r_{2 R} e_{T} S_{-W_{V}}, A_{\beta}\right)=\operatorname{Ind}_{\overline{B(2 R)}}\left(0, A_{\beta}\right)=1
$$

and, finally, by Steps 3-5 we obtain $\operatorname{Ind}(V)=1$.

References

[AGL] J. Andres, L. Górniewicz, M. Lewicka: Partially dissipative periodic processes. Topology in Nonlinear Analysis, Banach Center Publications, Vol. 35 (1996) 109-118.
[AC] J. P. Aubin, A. Cellina: Differential Inclusions. Springer, New YorkBerlin, 1982.
[BK] R. Bader, W. Kryszewski: Fixed point index for compositions of setvalued maps with proximally ∞-connected values on arbitrary $A N R$'s. Set Valued Analysis 2, 3 (1994), 459-480.
[C] F. H. Clarke: Optimization and Nonsmooth Analysis. A Willey - Interscience Publication, 1983.
[G] L. Górniewicz: Topological Approach to Differential Inclusions. in: Proc. Conference on Topological Methods in Differential Equations and Inclusions, Université de Montreal, 1994, NATO ASI series C, Kluwer Acad. publ., Dordrecht NL, pp. 129-190.
[GP] L. Górniewicz, S. Plaskacz: Periodic solutions of differential inclusions in R^{n}. Boll. U. M. I. 7-A (1993), 409-420.
[K] M.A. Krasnosel'skii: The operator of translation along the trajectories of differential equations. Nauka, Moscow, 1966 (Russian); english translation: American Math. Soc., Translations of math. Monographs, vol. 19, Providence, 1968.
[M] J. Mawhin: Continuation theorems and periodic solutions of ordinary differential equations. in: Proc. Conference on Topological Methods in Differential Equations and Inclusions, Université de Montreal, 1994, NATO ASI series C, Kluwer Acad. publ., Dordrecht NL, pp. 291-375.

