Locally Lipschitzian Guiding Function Method for ODEs.

Marta Lewicka International School for Advanced Studies, SISSA, via Beirut 2-4, 34014 Trieste, Italy. E-mail: lewicka@sissa.it

1 Introduction

Let $f : [0,T] \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$; we investigate the problem of existence of Tperiodic solutions to the first order differential equation with f in the right hand side. Namely, we seek for solutions to the problem:

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(0) = x(T), \end{cases}$$
(1)

by generalizing the well known guiding function method. Such an approach can be found in several works, however, under some heavier assumptions. For example, in [M] f is assumed to be locally lipschitzian and the guiding function to be C^1 . In [GP] f needs to be of the Caratheodory type only, while the corresponding guiding function must be still C^1 . In fact, in [GP] the more general, multivalued problem

$$\begin{cases} x'(t) \in \varphi(t, x(t)) \\ x(0) = x(T). \end{cases}$$
(1')

is under consideration.

In our paper we get rid of the assumption of the guiding function to be C^1 . In fact, in Theorem 1, which is motivated by [GP], we need it to be locally lipschitzian only (Theorem 1). Our second main result (Theorem 2) characterizes a class of guiding functions, satisfying the conditions of Theorem 1. This result is an extension of the theorem on the index of coercive potentials [K] (a remarkable reformulation of which was done in [M]).

2 Preliminaries

In this section we review some of the standard facts and definitions.

Let X, Y be topological spaces. We say that X is an R_{δ} - set, whenever it is homeomorphic with an intersection of a decreasing sequence of compact, metric ANRs. A multivalued mapping $\varphi : X \rightsquigarrow Y$ (we will always suppose that a multivalued mapping has nonempty values) is called upper semicontinuous (u.s.c.) if, for every open set $U \subset Y$, the set $\varphi^{-1}(U) = \{x \in X : \varphi(x) \subset U\}$ is open in X. If X is a space with measure, we say that φ is measurable if $\varphi^{-1}_+(U) = \{x \in X : \varphi(x) \cap U \neq \emptyset\}$ is measurable for any open set $U \subset Y$.

We say that φ is admissible if X and Y are compact metric ANRs and φ is u.s.c. with R_{δ} values. A map $\varphi : X \rightsquigarrow X$ is called decomposable if it has a decomposition:

$$D_{\varphi}: X = X_0 \stackrel{\varphi_1}{\rightsquigarrow} X_1 \stackrel{\varphi_2}{\rightsquigarrow} X_2 \dots \stackrel{\varphi_n}{\rightsquigarrow} X_n = X \qquad \varphi = \varphi_n \dots \varphi_2 \varphi_1, \qquad (2)$$

where each φ_i is admissible.

Let A be an open subset of X such that a decomposable map φ (with a decomposition (2)) has no fixed points on its boundary, that is $x \notin \varphi(x)$ for every $x \in \partial A$. In such a case it is possible to define a fixed point index $\operatorname{Ind}_X(D_{\varphi}, A) \in \mathbb{Z}$ having the following properties:

(i) (existence) If $\operatorname{Ind}_X(D_{\varphi}, A) \neq 0$ then φ has a fixed point in A.

(ii) (additivity) Let A_i , $(1 \le i \le n)$ be open, pairwise disjoint subsets of A. Suppose, that φ has no fixed points in $A \setminus \bigcup_{i=1}^n A_i$. Then the indices $\operatorname{Ind}_X(D_{\varphi}, A_i), 1 \le i \le n$, are well defined and $\operatorname{Ind}_X(D_{\varphi}, A) = \sum_{i=1}^n \operatorname{Ind}_X(D_{\varphi}, A_i)$.

(iii) (homotopy invariance) Let $\psi : X \rightsquigarrow X$ be a decomposable mapping, with a decomposition:

$$D_{\psi}: X = X_0 \stackrel{\psi_1}{\rightsquigarrow} X_1 \stackrel{\psi_2}{\rightsquigarrow} X_2 \dots \stackrel{\psi_n}{\rightsquigarrow} X_n = X, \qquad \psi = \psi_n \dots \psi_2 \psi_1.$$

Suppose that the decompositions D_{φ} and D_{ψ} are homotopic, that is there exists a decomposable homotopy $\chi : X \times [0, 1] \rightsquigarrow X$, having a decomposition:

$$D_{\chi}: X \times [0,1] = X_0 \times [0,1] \stackrel{\bar{\chi}_1}{\rightsquigarrow} X_1 \times [0,1] \dots \stackrel{\bar{\chi}_{n-1}}{\rightsquigarrow} X_{n-1} \times [0,1] \stackrel{\chi_n}{\rightsquigarrow} X_n = X,$$
$$\chi = \chi_n \bar{\chi}_{n-1} \dots \bar{\chi}_1,$$

where, for $1 \leq i \leq n$, there exist admissible $\chi_i : X_{i-1} \rightsquigarrow X_i$ such that the following conditions are fulfilled:

·
$$\chi_i(\cdot, 0) = \varphi_i, \ \chi_i(\cdot, 1) = \psi_i,$$

· $\bar{\chi}_i(\cdot, \lambda) = \chi_i(\cdot, \lambda) \times \{\lambda\} \text{ (for } i \neq n)$
and:

 $\forall x \in \partial A \ \forall \lambda \in [0,1] \ x \notin \chi(x,\lambda).$

2 PRELIMINARIES

Then $\operatorname{Ind}_X(D_{\psi}, A)$ is well defined and: $\operatorname{Ind}_X(D_{\psi}, A) = \operatorname{Ind}_X(D_{\varphi}, A)$.

(iv) (contraction) Suppose, that in the decomposition of D_{φ} we have $X_{n-1} = Y \subset X$ and the mapping φ_n is the inclusion: $\varphi_n = i : Y \hookrightarrow X$. Then $\varphi_{|Y}$ has a decomposition

$$D_{\varphi|_Y}: Y = X_0 \stackrel{\varphi_{1|_Y}}{\rightsquigarrow} X_1 \stackrel{\varphi_2}{\rightsquigarrow} X_2 \dots \stackrel{\varphi_{n-1}}{\rightsquigarrow} X_{n-1} = Y.$$

Moreover, if $\varphi_{|Y}$ has no fixed points in $\partial(A \cap Y)$, then $\operatorname{Ind}_Y(D_{\varphi_{|Y}}, A \cap Y)$ is well defined and $\operatorname{Ind}_Y(D_{\varphi_{|Y}}, A \cap Y) = \operatorname{Ind}_X(D_{\varphi}, A)$.

(v) (units) If φ is constant, that is $\varphi(x) = B \subset X$ for every $x \in X$, then

$$Ind_X(D_{\varphi}, A) = \begin{cases} 1 & \text{for } A \cap B \neq \emptyset \\ 0 & \text{for } A \cap B = \emptyset, \end{cases}$$

where D_{φ} : $X = X_0 \stackrel{\varphi}{\rightsquigarrow} X_1 = X$.

Notice, that the fixed point index is defined for a decomposition of a multivalued map, not for the map itself. However, when it is clear which decomposition we mean, we will simply write $\operatorname{Ind}_X(\varphi, A)$.

For the above definitions and other properties of Ind we refer to [BK] and [AGL].

Let $\varphi : [0,T] \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a Caratheodory multifunction, that is measurable in the first variable for every $x \in \mathbb{R}^n$ and u.s.c. in the second variable for almost every $t \in [0,T]$ we say that φ has integrably bounded growth (with the bounding function μ) if there exists a function $\mu \in L^1([0,T],\mathbb{R})$ such that $\|y\| \leq \mu(t)(1+\|x\|)$ for every $x \in \mathbb{R}^n$, $t \in [0,T]$ and $y \in \varphi(t,x)$.

The Poincaré operator for the differential inclusion (1') is a multivalued mapping $S_{\varphi} : \mathbb{R}^n \to C([0,T],\mathbb{R}^n)$, given by

$$S_{\varphi}(x_0) = \{ x : [0,T] \longrightarrow \mathbb{R}^n, x \text{ is absolutely continuous,} \\ x'(t) \in \varphi(t,x(t)) \text{ for almost every } t \in [0,T], x(0) = x_0 \}.$$

We say that $x : [0, T] \longrightarrow \mathbb{R}^n$ is a solution of the inclusion $x'(t) \in \varphi(t, x(t))$, whenever $x \in S_{\varphi}(x(0))$.

It is known that if φ is of the Caratheodory type, has compact and convex values and has integrably bounded growth, then S_{φ} is u.s.c. with R_{δ} values.

Let $\psi : [0,T] \times \mathbb{R}^n \times [0,1] \rightsquigarrow \mathbb{R}^n$ be a multivalued mapping with compact, convex values, such that for every $(x,\lambda) \in \mathbb{R}^n \times [0,1]$ the mapping $\psi(\cdot,x,\lambda)$ is measurable and that for almost every $t \in [0,T]$ the map $\psi(t,\cdot,\cdot)$ is u.s.c.; assume that there exists $\mu \in L^1([0,T],\mathbb{R})$ such that for every $\lambda \in [0,1]$ the multifunction $\psi(\cdot,\cdot,\lambda)$ has integrably bounded growth with μ as its bounding function. Then the map $\mathbb{R}^n \times [0,1] \ni (x,\lambda) \rightsquigarrow S_{\psi(\cdot,\cdot,\lambda)}(x)$ is u.s.c. with \mathbb{R}_{δ} values. For the statements above, see [AC], [G], [AGL].

From now on, by V will be assumed to be a locally lipschitzian function from \mathbb{R}^n to R. Let us define

 $\Omega_V = \{ x \in \mathbb{R}^n, V \text{ is not differentiable in } x \}.$

The Rademacher Theorem states that Ω_V has measure 0.

By the generalized gradient of V at point $x_0 \in \mathbb{R}^n$, denoted by $\partial V(x_0)$, we mean the convex hull of the set of all limits $\lim_{i \to \infty} V'(x_i)$ where $\{x_i\}_{i=1}^{\infty}$ is any sequence of points in $\mathbb{R}^n \setminus \Omega_V$, converging to x_0 .

The following properties of gradient are known:

(i) Let $S \subset \mathbb{R}^n$ be of measure 0. Then $\partial V(x_0)$ can be obtained by replacing Ω_V with $\Omega_V \cup S$ in the above definition.

(*ii*) The multivalued mapping $\partial V : \mathbb{R}^n \rightsquigarrow \mathbb{R}^n$ is u.s.c. with compact, convex values.

(*iii*) (mean value theorem) Let $x, y \in \mathbb{R}^n$. Then there exists a point u in a segment (x, y) and a point $w \in \partial V(x)$ such, that $V(x) - V(y) = \langle w, y - x \rangle$.

The reader is referred to [C] for more more material on this topic.

Given an euclidean space, by $B(\varepsilon)$ we will denote an open ball of the radius ε , centered in the origin.

3 Auxiliary Results

Let us recall the following lemma [GP]:

Lemma 0 Assume $\varphi : [0,T] \times \mathbb{R}^n \rightsquigarrow \mathbb{R}^n$ has integrably bounded growth. Fix $r_0 > 0$, there exists r > 0 such that, for every solution of the problem

$$\begin{cases} x'(t) \in \varphi(t, x(t)) \\ \parallel x(0) \parallel > r, \end{cases}$$

we have $||x(t)|| > r_0$ for every $t \in [0, T]$.

Moreover, r depends only on r_0 and on the function μ in the definition of integrably bounded growth for the multivalued map φ .

Lemma 1 Let $\Omega \subset \mathbb{R}^n$ have measure 0. Suppose we are given a Lebesgue measurable function $z : [0,T] \longrightarrow \mathbb{R}^n$. Then, for every $\varepsilon > 0$ there exists $x \in B(\varepsilon) \subset \mathbb{R}^n$ such that $z(t) + x \notin \Omega$ for almost every $t \in [0,T]$.

Proof Consider the characteristic function of Ω , $\chi_{\Omega} : \mathbb{R}^n \longrightarrow \mathbb{R}$ and a measurable function $F : [0,T] \times B(\varepsilon) \longrightarrow \mathbb{R}^n$, given by F(t,x) = z(t) + x. Without loss of generality we may assume that Ω is Borel. Then the composition $\chi_{\Omega}F$ is measurable and from Fubini Theorem we get $\int_{B(\varepsilon)} (\int_{0}^{T} \chi_{\Omega}Fdt)dx = \int_{0}^{T} (\int_{B(\varepsilon)} \chi_{\Omega}Fdx)dt = 0$. Hence for almost every $x \in B(\varepsilon)$, $\int_{0}^{T} (\chi_{\Omega}F)(x,t)dt = 0$. \Box

The following fact is straightforward:

Lemma 2 Let $z : [0,T] \longrightarrow \mathbb{R}^n$ be absolutely continuous. Then the composition Vz is absolutely continuous and for every $t \in [0,T]$ such that z is differentiable at t and V is differentiable at z(t), Vz is differentiable at t and $(Vz)'(t) = \langle V'(z(t)), z'(t) \rangle$.

The following lemma is of a basic importance for our later considerations:

Lemma 3 Let z be as in the previous lemma. Suppose that for almost every $t \in [0, T]$ we have:

$$\forall v \in \partial V(z(t)) \quad \langle v, z'(t) \rangle > 0. \tag{3}$$

Then (Vz)'(t) > 0 for almost every $t \in [0, T]$. In particular, $z(T) \neq z(0)$.

Proof By Lemma 1 there exists a sequence $\{x_k\}_{k=1}^{\infty}$ convergent to $0 \in \mathbb{R}^n$ such that:

$$\forall t \in [0,T] \setminus A \; \forall k > 0 \; z_k(t) = z(t) + x_k \notin \Omega_V,$$

where $A \subset [0, T]$ is a set of measure 0, containing the points in which z fails to be differentiable. We may also suppose that (3) is valid for every $t \in [0, T] \setminus A$.

It is easily seen that the absolutely continuous functions Vz_k are equibounded and that $|(Vz_k)'|$ are uniformly dominated by an integrable function $t \mapsto C \parallel z'(t) \parallel$ with C a positive constant (this follows from Lemma 2). Therefore (see e.g. [AC]) we can extract a subsequence $\{Vz_{k_i}\}_{i=1}^{\infty}$ such that the derivatives $(Vz_{k_i})'$ converge weakly in $L^1([0,T], R)$ to (Vz)'. By Mazur Lemma there exists a sequence of convex combinations $\{w_i\}_{i=1}^{\infty}$, $w_i = \sum_{j=i}^{\infty} \lambda_j^i \cdot (Vz_{k_j})'$, convergent to (Vz)' in $L^1([0,T], R)$. Thus, without loss of generality, we have $\lim w_i(t) = (Vz)'(t)$ for every $t \in [0,T] \setminus A$.

Fix $t \in [0, T] \setminus A$. By (3) there exists a real $\alpha_t > 0$ such that $\langle v, z'(t) \rangle > 2\alpha_t$ for every $v \in \partial V(z(t))$. By Lemma 2 and uppersemicontiniuity of ∂V , there exists a number k_{0_t} such that, for every $k \ge k_{0_t}$, we have

$$(Vz_k)'(t) = \langle V'(z(t) + x_k), z'(t) \rangle$$

 $\in \{ \langle v + u, z'(t) \rangle : v \in \partial V(z(t)) \text{ and } || u || \le \alpha_t / || z'(t) || \}$

and, consequently, $(Vz_k)'(t) > \alpha_t$ for every $k \ge k_{0_t}$.

Thus, $w_i(t) > \alpha_t$ for *i* large enough and we conclude that $(Vz)'(t) \ge \alpha_t > 0$, which proves the first statement of the lemma.

In particular,
$$Vz(T) - Vz(0) = \int_0^1 (Vz)'(\tau)d\tau > 0$$
, so $z(T) \neq z(0)$.

Definition 1 V is said to be a direct potential (with a constant $r_0 > 0$) if

$$\forall x \in \mathbb{R}^n \setminus B(r_0) \ \forall v, w \in \partial V(x) \ \langle v, w \rangle \neq 0$$

Note that the above definition will not change if we replace \neq by >.

Our definition agrees with the classical one for C^1 functions presented, for example, in [M].

The following lemma defines the index of a direct potential:

Lemma 4 Let V be a direct potential (with a constant r_0). Set $\varphi : \mathbb{R}^n \rightsquigarrow \mathbb{R}^n$ as follows: $\varphi = Id_{\mathbb{R}^n} - \partial V$. We define $Ind(V) = Ind_{\overline{B(2r_0)}}(r_{2r_0}\varphi, B(r_0))$, where r_{2r_0} is the radial retraction of \mathbb{R}^n onto $\overline{B(2r_0)}$. (Here φ and r_{2r_0} are admissible, so the decomposition for defining the index is taken naturally as the composition $r_{2r_0}\varphi$.) Then $Ind_{\overline{B(2R)}}(r_{2R}\varphi, B(R)) = Ind(V)$ for every $R \geq r_0$.

Proof The proof is straightforward and follows from homotopy invariance, additivity and contraction properties of the fixed point index. \Box

Let V be as in the previous lemma. Now consider a multivalued mapping $W_V : \mathbb{R}^n \to \mathbb{R}^n$, given $W_V(x) = \operatorname{conv}(r_1 \partial V(x))$, where $r_1 : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is the radial retraction onto $\overline{B(1)} \subset \mathbb{R}^n$ and *conv* stands for the convex hull. It is not hard to see that W_V is u.s.c., bounded by 1 and has compact, convex values.

The following lemma is analogous to a result obtained in [GP]:

Lemma 5 Set a number T > 0. There exists $R_0 > 0$ such that for every $r > R_0$ there is $t_r \in (0, T]$ such that every solution of the problem:

$$\begin{cases} x'(t) \in W_V(x(t)) \\ \parallel x(0) \parallel = r \end{cases}$$
(4)

has the following properties:

(i) $\forall t \in (0, t_r] \ \forall v \in \partial V(x(0)) \quad \langle x(t) - x(0), v \rangle > 0,$ (ii) $\forall t \in (0, T] \quad x(t) - x(0) \neq 0.$ **Proof** Lemma 0 gives the existence of a number $R_0 > r_0$ such that for every solution of the problem:

$$\begin{cases} x'(t) \in W_V(x(t)) \\ \parallel x(0) \parallel > R_0 \end{cases}$$

we have $||x(t)|| > r_0$ for every $t \in [0, T]$.

Since ∂V is u.s.c. with compact values and V is a direct potential, we obviously have:

$$\forall R > r_0 \; \exists \varepsilon_R > 0 \; \forall x, y \in \overline{B(R)} \setminus B(r_0) \subset R^n : \parallel x - y \parallel < \varepsilon_R \\ \forall w \in \partial V(x) \; \forall v \in \partial V(y) \quad \langle w, v \rangle > 0.$$
 (5)

Fix $r > R_0$ and let $t_r \leq \varepsilon_{r+T}$, $t_r \in (0,T]$. Let x be a solution of (4). We have $|| x(t) || \leq r + \int_0^t || x'(\tau) || d\tau \leq r + T$ for every $t \in [0,T]$ and $|| x(t) - x(0) || \leq \int_0^t || x'(\tau) || d\tau \leq t_r \leq \varepsilon_{r+T}$ for every $t \in (0, t_r]$. Hence, by (5): $\forall t \in (0, t_r] \; \forall w \in \partial V(x(t)) \; \forall v \in \partial V(x(0)) \quad \langle w, v \rangle > 0.$

Combining the above with the following evident remark:

$$\forall y \in \mathbb{R}^n \; \forall w \in W_V(y) \; \exists \alpha \ge 1 \quad \alpha w \in \partial V(y), \tag{6}$$

we obtain

$$\forall t \in (0, t_r] \; \forall w \in W_V(x(t)) \; \forall v \in \partial V(x(0)) \quad \langle w, v \rangle > 0$$

and, finally,

$$\forall t \in (0, t_r] \; \forall v \in \partial V(x(0)) \; \langle x(t) - x(0), v \rangle = \int_0^t \langle x'(\tau), v \rangle d\tau > 0.$$

Moreover, by (6), we have $\langle v, x'(t) \rangle > 0$ for almost every $t \in [0, T]$ and every $v \in \partial V(x(t))$, which, by Lemma 3 completes the proof of (ii).

4 Main Results

When V is in C^1 , the following definition reduces to the corresponding one in [GP].

Definition 2 Let $f : [0,T] \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$, V be a direct potential with a constant r_0 . V is called a guiding function for f, whenever

$$\forall x \in \mathbb{R}^n \setminus B(r_0) \ \forall w \in \partial V(x) \ \forall t \in [0, T] \quad \langle f(t, x), w \rangle \ge 0$$

4 MAIN RESULTS

Here comes our first main result.

Theorem 1 Let $f : [0,T] \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a Caratheodory function with integrably bounded growth. Suppose that f has a guiding function V (with a constant r_0) such that $Ind(V) \neq 0$. Then the problem (1) has at least one solution.

Proof Consider the following family of differential inclusions, with $\kappa \in [0, 1]$:

$$z'(t) \in \kappa W_V(z(t)) + (1 - \kappa)f(t, z(t)).$$

By Lemma 0, there exists $R > r_0$ such that for any $z : [0,T] \longrightarrow R^n$ that is a solution of the above problem for some $\kappa \in [0,1]$ and satisfies $|| z(0) || \ge R$, we have $|| z(t) || > r_0$ for every $t \in [0,T]$.

Let t_R be as in Lemma 5. Take the decomposable homotopy $H: \overline{B(2R)} \times [0,1] \rightsquigarrow \overline{B(2R)}$, given by

$$H(x,\lambda) = r_{2R}((1-\lambda) \cdot (x - \partial V(x)) + \lambda \cdot (2x - e_{t_R}S_{W_V}(x))),$$

where r_{2R} is, as usual, the radial retraction of R^n onto $\overline{B(2R)}$ and e_{t_R} : $C([0,T], R^n) \longrightarrow R^n$ is by definition $e_{t_R}(z) = z(t_R)$ (the explicit formula for the decomposition of H is not complicated but long, so we omit it).

We will show that H has no fixed points in $\partial B(R)$. Conversely, suppose that there exists $x \in H(x, \lambda)$, with $x \in \partial B(R)$ and $\lambda \in [0, 1]$. Then

$$\exists v \in \partial V(x) \; \exists z \in S_{W_V}(x) \; 0 = \| (1 - \lambda)(x - v) + \lambda(2x - z(t_R)) - x \|^2 = (1 - \lambda)^2 \| v \|^2 + \lambda^2 \| z(t_R) - z(0) \|^2 + 2(1 - \lambda)\lambda \langle v, z(t_R) - z(0) \rangle,$$

which contradicts Lemma 5.

By the above formula, Lemma 4 and the homotopy invariance of the fixed point index we have

$$\operatorname{Ind}(V) = \operatorname{Ind}_{\overline{B(2R)}}(r_{2R}(2Id_{\overline{B(2R)}} - e_{t_R}S_{W_V}), B(R)).$$
(7)

(the decompositions of the multivalued maps in the formula are induced by the decomposition of the homotopy H).

Consider $G: [0,T] \times \mathbb{R}^n \times [0,1] \rightsquigarrow \mathbb{R}^n$, given by

$$G(t, x, \lambda) = k(\lambda)W_V(x) + (1 - k(\lambda))f(t, x),$$

where $k : [0, 1] \longrightarrow R$ is by definition

$$k(\lambda) = \begin{cases} 1 & \text{for } \lambda \in [0, 1/2) \\ 2 - 2\lambda & \text{for } \lambda \in [1/2, 1]. \end{cases}$$

It is easy to check that G has the properties of the map ψ , introduced in paragraph 1, thus the following homotopy is decomposable $K : \overline{B(2R)} \times [0,1] \rightsquigarrow \overline{B(2R)}$,

$$K(x,\lambda) = r_{2R}(2x - e_{h(\lambda)}S_{G(\cdot,\cdot,\lambda)}(x)),$$

where $h: [0,1] \longrightarrow R$ is given by

$$h(\lambda) = \begin{cases} 2(T - t_R)\lambda + t_R & \text{for } \lambda \in [0, 1/2) \\ T & \text{for } \lambda \in [1/2, 1]. \end{cases}$$

Now suppose that the problem (1) has no solutions. We will first show that K has no fixed points in $\partial B(R)$. Conversely, suppose that $x \in K(x, \lambda)$ for a point $x \in \partial B(R)$ and $\lambda \in [0, 1]$.

If $\lambda \in [0, 1/2)$, then $z(h(\lambda)) = z(0)$ for a function $z \in S_{W_V}(x)$, that contradicts Lemma 5 (*ii*).

If $\lambda \in [1/2, 1)$, then z(T) = z(0) for a function $z \in S_{G(\cdot, \cdot, \lambda)}(x)$. We have $\langle z'(t), v \rangle = k(\lambda) \langle w_{t,v}, v \rangle + (1 - k(\lambda)) \langle f(t, z(t)), v \rangle$ for almost every $t \in [0, T]$, every $v \in \partial V(z(t))$ and a point $w_{t,v} \in W_V(z(t))$. Now $\langle f(t, z(t)), v \rangle > 0$ because V is a guiding function for (1) and $\langle w_{t,v}, v \rangle > 0$ from (6) and the fact that V is a direct potential. Consequently $\langle z'(t), v \rangle > 0$ for almost every $t \in [0, T]$ and every $v \in \partial V(z(t))$, which contradicts Lemma 3.

The case $\lambda = 1$ is already excluded by our assumption that (1) has no solutions.

Now from the above and homotopy invariance of the fixed point index we have

$$\mathrm{Ind}_{\overline{B(2R)}}(r_{2R}(2Id_{\overline{B(2R)}} - e_{t_R}S_{W_V}), B(R)) = \mathrm{Ind}_{\overline{B(2R)}}(r_{2R}(2Id_{\overline{B(2R)}} - e_TS_f), B(R))$$

Recalling (7)

$$\operatorname{Ind}_{\overline{B(2R)}}(r_{2R}(2Id_{\overline{B(2R)}} - e_TS_f), B(R)) = \operatorname{Ind}(V) \neq 0.$$

By existence property of the fixed point index we obtain a fixed point of the mapping $r_{2R}(2Id_{\overline{B(2R)}} - e_TS_f)$, namely $x \in B(R)$ such that $x \in 2x - e_TS_f(x)$ which is equivalent to $x \in e_TS_f(x)$. This means that (1) has a solution (with the initial value x), that is against our contradictory assumption and thus proves the theorem. \Box

Our next result gives a condition for a direct potential to have nonzero index, as it is required in Theorem 1.

Theorem 2 Let V be a direct potential (with a constant $r_0 > 0$). Suppose that V is coercive, that is $\lim_{\|x\|\to\infty} V(x) = +\infty$. Then Ind(V) = 1.

Proof For every $\gamma \in R$ denote by A_{γ} the open and bounded subset of \mathbb{R}^n , given by $V^{-1}((-\infty, \gamma))$. Take the numbers α , $\beta > \alpha$ and $R > r > r_0$ such that:

$$\overline{B(r_0)} \subset A_{\alpha} \subset \overline{A_{\alpha}} \subset B(r) \subset \overline{B(r)} \subset A_{\beta} \subset \overline{A_{\beta}} \subset B(R).$$

Let

$$T = 2 \frac{\beta - \alpha}{\min\{\langle v, w \rangle : v \in \partial V(x), w \in W_V(x), x \in \overline{A_\beta} \setminus A_\alpha\}}$$

The above formula makes sence in view of (6) (V is a direct potential) and $\overline{A}_{\beta} \setminus A_{\alpha} \subset \mathbb{R}^n \setminus B(r_0)$.

We will consider the following differential inclusion:

$$z'(t) \in -W_V(z(t)) \tag{8}$$

and its solutions on the interval [0, T].

We have divided the later proof into five steps.

Step 1 We will prove that for every $\gamma \geq \alpha$ the set $\overline{A_{\gamma}}$ is positively invariant, that is

$$\forall x \in \overline{A_{\gamma}} \; \forall z \in S_{-W_V}(x) \; \forall t \in [0, T] \; z(t) \in \overline{A_{\gamma}}$$

The composition Vz is absolutely continuous, while (6) implies that for almost every $t \in [0,T]$ such that $z(t) \in \mathbb{R}^n \setminus B(r_0)$ we have $\langle v, z'(t) \rangle < 0$ for every $v \in \partial V(z(t))$. Using the same method as in the proof of Lemma 3, we obtain (Vz)'(t) < 0 for almost every $t \in [0,T]$ such that $z(t) \in \mathbb{R}^n \setminus \overline{B(r_0)}$. If there exist $t_0, t_1 \in [0,T]$, that $z(t_0) \in \partial \overline{A_\gamma}$ and $z(t) \notin \overline{A_\gamma}$ for every $t \in (t_0, t_1]$, then $Vz(t_0) = \gamma$ and $Vz(t) > \gamma$ for $t \in (t_0, t_1]$, hence $Vz(t_1) = Vz(t_0) + \int_{t_0}^{t_1} (Vz)'(\tau) d\tau < \gamma$, a contradiction.

Step 2 Consider the mapping $S_1: \overline{B(2R)} \times (0,1] \rightsquigarrow C([0,T], \mathbb{R}^n)$

$$S_1(x,\lambda) = \{ w : [0,T] \longrightarrow \mathbb{R}^n : w(t) = \frac{z(\lambda t) - x}{\lambda} \text{ with } z \in S_{-W_V}(x) \}.$$

 S_1 is u.s.c. and has R_{δ} values, because $S_1(x, \lambda) = \frac{1}{\lambda}(S_{-\lambda W_V}(x) - x)$. Moreover $\| w'(t) \| \leq 1$ for every $w \in S_1(\overline{B(2R)} \times (0, 1])$ and for almost every $t \in [0, T]$. Hence, by Ascoli-Arzelá Theorem, the set $S_1(\overline{B(2R)} \times (0, 1])$ is relatively compact in $C([0, T], R^n)$.

Let $S_2: \overline{B(2R)} \times [0,1] \rightsquigarrow C([0,T], \mathbb{R}^n),$

$$S_2(x,\lambda) =$$

 $\begin{cases} S_1(x,\lambda) & \text{for } \lambda \neq 0\\ \{w = \lim_{k \to \infty} w_k : w_k \in S_1(x_k,\lambda_k) \text{ with } x_n \to x, \ \lambda_k > 0, \ \lambda_k \to 0 \} & \text{for } \lambda = 0. \end{cases}$ It is readily verified that S_2 is u.s.c. and has compact values. Finally, let $S: \overline{B(2R)} \times [0,1] \longrightarrow C([0,T], \mathbb{R}^n)$

$$S(x,\lambda) = \begin{cases} S_2(x,\lambda) & \text{for } \lambda \neq 0\\ \text{conv } S_2(x,0) & \text{for } \lambda = 0. \end{cases}$$

It is not hard to see that S is u.s.c. with R_{δ} values.

Step 3 Consider the decomposable homotopy $K : \overline{B(2R)} \times [0,1] \rightsquigarrow \overline{B(2R)}$,

$$K(x,\lambda) = r_{2R}(\lambda(e_T S(x,0) + x) + (1-\lambda)(x - \partial V(x))),$$

where r_{2R} and e_T are as in the proof of Theorem 1. We will show that K has no fixed points in ∂A_{β} . First, let us remark that:

$$\forall x \in \partial A_{\beta} \exists \alpha_x > 0 \exists \varepsilon_x > 0 \forall y \in B(x, \varepsilon_x) \forall w \in W_V(y) \forall v \in \partial V(x) \langle w, v \rangle > \alpha_x$$

Now let $w \in S_2(x, 0)$ and $v \in \partial V(x)$ for a point $x \in \partial A_\beta$. By the definition of S_2 , $w(T) = \lim_{k \to \infty} \frac{z_k(\lambda_k T) - x_k}{\lambda_k}$, where $\lim_{k \to \infty} x_k = x$, $\lim_{k \to \infty} \lambda_k = 0$ and $\lambda_k > 0$, $z_k \in S_{-W_V}(x_k)$. For k large enough $\lambda_k < \varepsilon_x/(2T)$ and $||x_k - x|| < \varepsilon_x/2$, thus, for any $t \in [0, \lambda_k T]$

$$\parallel z_k(t) - x \parallel \leq \parallel x_k - x \parallel + \parallel z_k(t) - x_k \parallel \leq \varepsilon_x$$

and hence

$$\langle \frac{z_k(\lambda_k T) - x_k}{\lambda_k}, -v \rangle = \frac{1}{\lambda_k} \int_0^{\lambda_k T} \langle z'_k(\tau), -v \rangle d\tau > \frac{1}{\lambda_k} \int_0^{\lambda_k T} \alpha_x d\tau = \alpha_x T.$$

This implies $\langle w(T), -v \rangle \ge \alpha_x T > 0.$

Now suppose that $x \in K(x, \lambda)$ for an $x \in \partial A_{\beta}$ and $\lambda \in [0, 1]$, hence $0 \in \lambda e_T S(x, 0) - (1 - \lambda) \partial V(x)$. By the definition of $S(\cdot, 0)$ there exist $\{w_1, \ldots, w_k\} \subset S_2(x, 0), \{\lambda_1, \ldots, \lambda_k\} \subset R_+, \sum_{i=1}^k \lambda_i = 1$ and $v \in \partial V(x)$ such that

$$0 = \| \lambda \sum_{i=1}^{k} \lambda_{i} w_{i}(T) - (1 - \lambda)v \|^{2}$$
$$= \lambda^{2} \| \sum_{i=1}^{k} \lambda_{i} w_{i}(T) \|^{2} + (1 - \lambda)^{2} \| v \|^{2} + 2\lambda(1 - \lambda) \langle \sum_{i=1}^{k} \lambda_{i} w_{i}(T), -v \rangle > 0,$$

a contradiction.

Homotopy invariance and additivity of the fixed point index now yield

$$\operatorname{Ind}(V) = \operatorname{Ind}_{\overline{B(2R)}}(r_{2R}(Id_{\overline{B(2R)}} - \partial V), B(R)) =$$
$$\operatorname{Ind}_{\overline{B(2R)}}(r_{2R}(Id_{\overline{B(2R)}} - \partial V), A_{\beta}) = \operatorname{Ind}_{\overline{B(2R)}}(r_{2R}(e_TS(\cdot, 0) + Id_{\overline{B(2R)}}), A_{\beta}).$$

Step 4 Let $H: \overline{B(2R)} \times [0,1] \rightsquigarrow \overline{B(2R)}$

$$H(x,\lambda) = r_{2R}(e_T S(x,\lambda) + x),$$

H is a decomposable homotopy without fixed points in ∂A_{β} . To show this last statement, it is enough to prove that $x \notin H(x,\lambda)$ for any $x \in \partial A_{\beta}$ and $\lambda \in (0,1]$. Suppose the contrary; then $x = z(\lambda T)$ for a point $x \in \partial A_{\beta}$ and $z \in S_{-W_V}(x)$. The sets $\overline{A_{\beta}}$ and $\overline{A_{\alpha}} \subset A_{\beta}$ are positively invariant by Step 1, hence $z(t) \in \overline{A_{\beta}} \setminus \overline{A_{\alpha}} \subset \overline{A_{\beta}} \setminus \overline{B(r_0)}$ for every $t \in [0, \lambda T]$. As in Step 1, we obtain (Vz)'(t) < 0 for almost every $t \in [0, \lambda T]$ and, finally $0 = Vz(\lambda T) - V(x) = \sum_{j=1}^{\lambda T} (Vz)'(\tau) d\tau < 0$, a contradiction.

The homotopy invariance of the fixed point index forces:

 $\operatorname{Ind}_{\overline{B(2R)}}(r_{2R}(e_TS(\cdot,0) + Id_{\overline{B(2R)}}), A_{\beta}) = \operatorname{Ind}_{\overline{B(2R)}}(r_{2R}e_TS_{-W_V}, A_{\beta}).$

Step 5 Take the decomposable homotopy $L: \overline{B(2R)} \times [0,1] \rightsquigarrow \overline{B(2R)}$

$$L(x,\lambda) = r_{2R}(\lambda \cdot e_T S_{-W_V}(x)).$$

If we had $x \in \partial A_{\beta}$, $z \in S_{-W_V}(x)$ and $\lambda \in [0, 1)$ such that $x = \lambda z(T)$, it would follow $0 = ||x - \lambda z(T)|| > ||x|| - ||z(T)||$ and $z(T) \in \mathbb{R}^n \setminus B(r) \subset \mathbb{R}^n \setminus \overline{A_{\alpha}}$. Thus $Vz(T) > \alpha$ and $z(t) \notin \overline{A_{\alpha}}$ for every $t \in [0, T]$. Hence:

$$\beta - \alpha > V(x) - Vz(T) = \int_{0}^{T} -(Vz)'(\tau)d\tau.$$
(9)

Using the same technique as in the proof of Lemma 3 it can be easily seen that, for almost every $t \in [0,T]$, $z'(t) \in -W_V(z(t))$ and there exists $\{x_k^t\}_{k=1}^{\infty}$, convergent to $0 \in \mathbb{R}^n$ such that -(Vz)'(t) is a limit of a sequence $\{w_k^t\}_{k=1}^{\infty}$, where each w_k^t is a convex combination of some numbers in the set $\{\langle -V'(z(t) + x_i^t), z'(t) \rangle, i = k, k+1, \ldots\}$.

Set a number k, for i large enough we have $\langle -V'(z(t) + x_i), z'(t) \rangle \in \{\langle -v, z'(t) \rangle : v \in \partial V(z(t)) + B(1/k) \}$. Consequently, $-(Vz)'(t) \in \{\langle -v, z'(t) \rangle : v \in \partial V(z(t)) + B(1/k) \}$ and

$$-(Vz)'(t) \in \{ \langle v, w \rangle : v \in \partial V(z(t)), w \in W_V(z(t)) \}$$

for almost every $t \in [0, T]$.

Recalling (9), we obtain:

$$\beta - \alpha > T \min\{\langle v, w \rangle : v \in \partial V(x), w \in W_V(x), x \in \overline{A_\beta} \setminus A_\alpha\} = 2(\beta - \alpha),$$

a contradiction. In this way we have shown that L has no fixed points in ∂A_{β} . By the homotopy invariance and units properties of the fixed point index,

$$\operatorname{Ind}_{\overline{B(2R)}}(r_{2R}e_T S_{-W_V}, A_\beta) = \operatorname{Ind}_{\overline{B(2R)}}(0, A_\beta) = 1$$

and, finally, by Steps 3–5 we obtain Ind(V) = 1.

References

- [AGL] J. Andres, L. Górniewicz, M. Lewicka: Partially dissipative periodic processes. Topology in Nonlinear Analysis, Banach Center Publications, Vol.35 (1996) 109–118.
- [AC] J. P. Aubin, A. Cellina: Differential Inclusions. Springer, New York-Berlin, 1982.
- [BK] R. Bader, W. Kryszewski: Fixed point index for compositions of set valued maps with proximally ∞—connected values on arbitrary ANR's. Set Valued Analysis 2, 3 (1994), 459–480.
- [C] F. H. Clarke: Optimization and Nonsmooth Analysis. A Willey Interscience Publication, 1983.
- [G] L. Górniewicz: Topological Approach to Differential Inclusions. in: Proc. Conference on Topological Methods in Differential Equations and Inclusions, Université de Montreal, 1994, NATO ASI series C, Kluwer Acad. publ., Dordrecht NL, pp. 129–190.
- [GP] L. Górniewicz, S. Plaskacz: Periodic solutions of differential inclusions in Rⁿ. Boll. U. M. I. 7-A (1993), 409–420.
- [K] M.A. Krasnosel'skii: The operator of translation along the trajectories of differential equations. Nauka, Moscow, 1966 (Russian); english translation: American Math. Soc., Translations of math. Monographs, vol. 19, Providence, 1968.
- [M] J. Mawhin: Continuation theorems and periodic solutions of ordinary differential equations. in: Proc. Conference on Topological Methods in Differential Equations and Inclusions, Université de Montreal, 1994, NATO ASI series C, Kluwer Acad. publ., Dordrecht NL, pp. 291–375.