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1 Introduction

Let f : [0,7] x R* — R"™; we investigate the problem of existence of T-
periodic solutions to the first order differential equation with f in the right
hand side. Namely, we seek for solutions to the problem:

z(0) = z(T),
by generalizing the well known guiding function method. Such an approach
can be found in several works, however, under some heavier assumptions.
For example, in [M] f is assumed to be locally lipschitzian and the guiding
function to be C'. In [GP] f needs to be of the Caratheodory type only, while

the corresponding guiding function must be still C*. In fact, in [GP] the more
general, multivalued problem

T'(t) € (t, z(t)) ,
{7 -

is under consideration.

In our paper we get rid of the assumption of the guiding function to be
C'. In fact, in Theorem 1, which is motivated by [GP], we need it to be
locally lipschitzian only (Theorem 1). Our second main result (Theorem 2)
characterizes a class of guiding functions, satisfying the conditions of Theorem
1. This result is an extension of the theorem on the index of coercive potentials
[K] (a remarkable reformulation of which was done in [M]).
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2 Preliminaries

In this section we review some of the standard facts and definitions.

Let X, Y be topological spaces. We say that X is an Rs— set, whenever
it is homeomorphic with an intersection of a decreasing sequence of compact,
metric ANRs. A multivalued mapping ¢ : X ~ Y (we will always suppose that
a multivalued mapping has nonempty values) is called upper semicontinuous
(w.s.c.) if, for every open set U C Y, the set ¢ 1 (U) = {z € X : p(x) C U}
is open in X. If X is a space with measure, we say that ¢ is measurable if
e (U) ={z € X : ¢(x)NU # 0} is measurable for any open set U C Y.

We say that ¢ is admissible if X and Y are compact metric ANRs and ¢
is u.s.c. with Ry values. A map ¢ : X ~ X is called decomposable if it has a
decomposition:

D,: X=X 33X, 8X,.. 88X, =X @=p,...0001, (2)

where each ¢; is admissible.

Let A be an open subset of X such that a decomposable map ¢ (with
a decomposition (2)) has no fixed points on its boundary, that is = & ¢(z)
for every x € 0A. In such a case it is possible to define a fixed point index
Indx(D,, A) € Z having the following properties:

(i) (existence) If Indx (D, A) # 0 then ¢ has a fixed point in A.

(i) (additivity) Let A;, (1 < i < n) be open, pairwise disjoint subsets
of A. Suppose, that ¢ has no fixed points in A \ U}~; A;. Then the indices
Indx (D, A;), 1 < i < n,are well defined and Indx (D, A) = > ; Indx (D, 4;).

(iii) (homotopy invariance) Let ¢ : X ~ X be a decomposable mapping,
with a decomposition:

Dy: X=X X1 8%, BX, =X, h=1,.. by

Suppose that the decompositions D, and D, are homotopic, that is there
exists a decomposable homotopy x : X x [0, 1] ~ X, having a decomposition:

Dy: X x[0,1] =Xy x[0,1] % X; x[0,1]... %" X, x [0,1] X X, = X,
X = XnXn—1--- X1,

where, for 1 < ¢ < n, there exist admissible x; : X;_1 ~ X, such that the
following conditions are fulfilled:
Xi(5,A) = xi(+, A) x {A} (for i # n)

and:
Ve e 0AVA € [0,1] = & x(z,N).
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Then Indx (Dy, A) is well defined and: Indx(Dy, A) = Indx(D,, A).

(iv) (contraction) Suppose, that in the decomposition of D, we have X,,_; =
Y C X and the mapping ¢, is the inclusion: ¢, =i :Y < X. Then ¢y has
a decomposition

Plly

Y =X, ~ X8 X, X, =Y.

Ply

D

Moreover, if ¢}y has no fixed points in d(ANY), then Indy (D, ., ANY) is
well defined and Indy (D, ,ANY) = Indx(D,, A).

)

(v) (units) If o is constant, that is p(z) = B C X for every z € X, then

1 for ANB#(
[ndX(ngA):{ 0 for AﬂB:®7

where D, : X=X,% X, =X.

Notice, that the fixed point index is defined for a decomposition of a mul-
tivalued map, not for the map itself. However, when it is clear which decom-
position we mean, we will simply write Indx (p, A).

For the above definitions and other properties of Ind we refer to [BK] and
[AGLY].

Let ¢ : [0,7] x R" ~ R" be a Caratheodory multifunction, that is mea-
surable in the first variable for every x € R™ and u.s.c. in the second variable
for almost every t € [0,T] we say that ¢ has integrably bounded growth (with
the bounding function ) if there exists a function u € L'([0,T], R) such that
|y |I< w(t)(1+ || 2 ||) for every z € R™, t € [0,T] and y € p(t, x).

The Poincaré operator for the differential inclusion (1°) is a multivalued
mapping S, : R" ~ C([0,T], R"), given by

So(xo) = {x:]0,7] — R", z is absolutely continuous,
2'(t) € o(t,x(t)) for almost every t € [0,T], z(0) = xo}.

We say that = : [0,7] — R" is a solution of the inclusion z'(t) € ¢(t, z(t)),
whenever = € S,(x(0)).

It is known that if ¢ is of the Caratheodory type, has compact and convex
values and has integrably bounded growth, then S, is u.s.c. with Rs values.

Let ¢ : [0,T] x R™ x [0,1] ~ R™ be a multivalued mapping with compact,
convex values, such that for every (x,\) € R" x [0, 1] the mapping ¥(-, z, \)
is measurable and that for almost every t € [0, 7] the map ¥(t,-,) is w.s.c.;
assume that there exists u € L'([0,T], R) such that for every A € [0,1] the
multifunction ¢ (-, -, A) has integrably bounded growth with p as its bounding
function. Then the map R™ x [0,1] 2 (x,A) ~ Sy (z) is ws.c. with Rs
values.
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For the statements above, see [AC], [G], [AGL].

From now on, by V will be assumed to be a locally lipschitzian function
from R"™ to R. Let us define

Qy = {z € R",V is not differentiable in z}.

The Rademacher Theorem states that 2y has measure O.

By the generalized gradient of V' at point zq € R"™, denoted by 9V (), we
mean the convex hull of the set of all limits Zli)rélo V'(x;) where {x;}2, is any
sequence of points in R™ \ 0y, converging to z.

The following properties of gradient are known:

(1) Let S C R™ be of measure 0. Then 0V (zy) can be obtained by replacing
Qy with Qy U S in the above definition.

(77) The multivalued mapping 0V : R"™ ~ R™ is u.s.c. with compact,
convex values.

(1ii) (mean value theorem) Let x,y € R™. Then there exists a point u in a
segment (x,y) and a point w € 0V (x) such, that V(z) — V(y) = (w,y — x).

The reader is refered to [C] for more more material on this topic.

Given an euclidean space, by B(e) we will denote an open ball of the radius
e, centered in the origin.

3 Auxiliary Results

Let us recall the following lemma [GP]:

Lemma 0 Assume ¢ : [0,T] x R" ~» R" has integrably bounded growth. Fix
ro > 0, there exists v > 0 such that, for every solution of the problem

{ ()GS)OT (1))

| z(0) [[>r,

we have || x(t) ||> ro for every t € [0,T].
Moreover, r depends only on ro and on the function p in the definition of
integrably bounded growth for the multivalued map .

Lemma 1 Let 2 C R"™ have measure 0. Suppose we are given a Lebesque
measurable function z : [0,T| — R™. Then, for every ¢ > 0 there exists
x € B(e) C R™ such that z(t) +x & Q for almost every t € [0,T].
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Proof Consider the characteristic function of €2, yo : R* — R and a
measurable function F' : [0,T] x B(e) — R", given by F(t,x) = z(t) + «.
Without loss of generality we may assume that €2 is Borel. Then the compo-

T
sition xoF is measurable and from Fubini Theorem we get [ ([ xoFdt)dz =
B(e) O
T T
J( [ xoFdzx)dt = 0. Hence for almost every « € B(e), [(xoF)(x,t)dt =0. O
0 B(e) 0

The following fact is straightforward:

Lemma 2 Let z : [0,7] — R" be absolutely continuous. Then the com-
position Vz is absolutely continuous and for every t € [0,T] such that z is
differentiable at t and V is differentiable at z(t), Vz is differentiable at t and

(V2)'(t) = (V'(=(1)), 2 (1))

The following lemma is of a basic importance for our later considerations:

Lemma 3 Let z be as in the previous lemma. Suppose that for almost every
t € 10,7 we have:
Yo € OV (2(t)) (v,2'(t)) > 0. (3)

Then (Vz2)'(t) > 0 for almost every t € [0,T]. In particular, z(T') # z(0).

Proof By Lemma 1 there exists a sequence {x;}?2, convergent to 0 € R"
such that:
Vi e [0,T]\ AVE >0 z(t) = 2(t) + zx € Qv,

where A C [0,77] is a set of measure 0, containing the points in which z fails to
be differentiable. We may also suppose that (3) is valid for every ¢ € [0, T]\ A.

It is easily seen that the absolutely continuous functions Vz; are equi-
bounded and that | (V'z;)" | are uniformly dominated by an integrable func-
tion t — C' || 2/(¢) || with C' a positive constant (this follows from Lemma 2).
Therefore (see e.g. [AC]) we can extract a subsequence {V z, }5°, such that the
derivatives (V zy,)’ converge weakly in L'([0,T], R) to (Vz)'. By Mazur Lemma

there exists a sequence of convex combinations {w;}°,, w; = ioj Ao (V)
Jj=i
convergent to (Vz) in L'([0,T], R). Thus, without loss of generality, we have
lim w;(t) = (V2)'(t) for every t € [0,T] \ A.
Fix t € [0, T]\ A. By (3) there exists a real a; > 0 such that (v, 2/(t)) > 2«

for every v € OV (z(t)). By Lemma 2 and uppersemicontiniuity of 0V, there
exists a number kj, such that, for every k > ko,, we have

(Vzr)'(t) = (V' (2(2) + 2), 2'())
€ {{v+u,2 () v edV(z(t) and |u[<ai/ | 2'() [}
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and, consequently, (Vz)'(t) > oy for every k > ko,.
Thus, w;(t) > « for i large enough and we conclude that (Vz)'(t) > oy > 0,

which proves the first statement of the lemma.
T
In particular, Vz(T) — Vz(0) = [(Vz)'(7)dT > 0, so 2(T") # z(0). O

0

Definition 1 V is said to be a direct potential (with a constant rq > 0) if
Vo € R"\ B(rg) Yv,w € 0V (x) (v,w) #0

Note that the above definition will not change if we replace # by > .
Our definition agrees with the classical one for C'! functions presented, for
example, in [M].

The following lemma defines the index of a direct potential:

Lemma 4 Let V be a direct potential (with a constant rg). Set ¢ : R" ~»
R™ as follows: ¢ = Idgn — V. We define Ind(V) = Indm(rgmcp,B(ro)),
where 1o, 1s the radial retraction of R™ onto B(2ry). (Here ¢ and rs,, are
admissible, so the decomposition for defining the index is taken naturally as
the composition ray,p.) Then Indggp(r2rp, B(R)) = Ind(V') for every R > ro.

Proof The proof is straightforward and follows from homotopy invariance,
additivity and contraction properties of the fixed point index. O

Let V be as in the previous lemma. Now consider a multivalued mapping
Wy @ R" ~ R", given Wy (z) = conv(r;0V (z)), where r; : R" — R™ is the
radial retraction onto B(1) C R" and conv stands for the convex hull. It is not
hard to see that Wy is u.s.c., bounded by 1 and has compact, convex values.

The following lemma is analogous to a result obtained in [GP]:

Lemma 5 Set a number T > 0. There exists Ry > 0 such that for every
r > Ry there is t, € (0,T] such that every solution of the problem:

2/ (t) € Wy (z(t))
{ | 2(0) ||= r 4)

has the following properties:
(1) Vt € (0,t,] Yo € OV (x(0)) (z(t) — x(0),v) > 0,
(17) ¥t € (0,T] x(t) —x(0) # 0.
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Proof Lemma 0 gives the existence of a number Ry > 7y such that for
every solution of the problem:

{ 2'(t) € Wy (z(1))
I z(0) [[> Ro

we have || z(t) ||> ro for every t € [0,T].
Since JV is u.s.c. with compact values and V' is a direct potential, we
obviously have:

VR > rq deg > 0 Vz, yEB(

)\ B(ro) CR": ||z —y|[<er
Vw € oV (x) Vv € OV (y

) (w,v) > 0. (5)
Fix r > Ry and let ¢, < .47, € (0,7]. Let = be a solution of (4).
t
We have || z(t) ||< v+ [ | 2/(7) || dr < r+ T for every t € [0,T] and
0

t
| x(t) —z(0) |< [ || /(1) || dr <t < gpqq for every t € (0,¢,]. Hence, by (5):
0

vt € (0,t,] Yw € OV (z(t)) Yv € OV (z(0)) (w,v) > 0.

Combining the above with the following evident remark:

Yy e R"VYw € Wy(y) Ja>1 aw € IV (y), (6)
we obtain
Vit € (0,t,] Yw € Wy (z(t)) Yo € OV (2(0)) (w,v) >0
and, finally,
t
vt e (0,4,] Yo € 9V (2(0)) (x(t) — 2(0),v) = / v)dr > 0.
0

Moreover, by (6), we have (v,2'(t)) > 0 for almost every ¢ € [0,7] and
every v € 9V (z(t)), which, by Lemma 3 completes the proof of (ii). a

4 Main Results

When V is in C?, the following definition reduces to the corresponding one in
[GP].

Definition 2 Let f : [0,7] x R* — R", V be a direct potential with a
constant ro. 'V is called a guiding function for f, whenever

Vo € R"\ B(rg) Yw € 0V (z) Vt € [0,T] (f(t,z),w) > 0.
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Here comes our first main result.

Theorem 1 Let f : [0,7] x R* — R" be a Caratheodory function with
integrably bounded growth. Suppose that f has a guiding function V (with a
constant rq) such that Ind(V') # 0. Then the problem (1) has at least one
solution.

Proof Consider the following family of differential inclusions, with x €
0,1] :
Z(t) € kWy (2(t) + (1 — k) f(t, 2(1)).

By Lemma 0, there exists R > 1o such that for any z : [0,7] — R" that is
a solution of the above problem for some x € [0, 1] and satisfies || z(0) ||> R,
we have || z(t) ||> ro for every t € [0, T].

Let tg be as in Lemma 5. Take the decomposable homotopy H : B(2R) x
[0,1] ~ B(2R), given by

H(z,\) =rp((L=X) - (z =0V (x)) + X (22 — e, Swy, (7)),

where rop is, as usual, the radial retraction of R" onto B(2R) and e, :
C([0,T], R") — R™ is by definition e;,(z) = z(tg) (the explicit formula for
the decomposition of H is not complicated but long, so we omit it).

We will show that H has no fixed points in 0B(R). Conversely, suppose
that there exists x € H(x, \), with © € 0B(R) and X € [0, 1]. Then

Jv € OV (x) Iz € Sy (x) 0= (1 =N)(z —v)+ 22 — 2(tg)) — x ||°=

L= o [P +2% || 2(tr) — 2(0) [I* +2(1 = N)A{v, 2(tr) — 2(0)),

which contradicts Lemma 5.
By the above formula, Lemma 4 and the homotopy invariance of the fixed
point index we have

IDd(V) = Indm(rgR(Qldm - etRSWv)a B(R)) (7)

(the decompositions of the multivalued maps in the formula are induced by
the decomposition of the homotopy H).
Consider G : [0,7] x R™ x [0,1] ~ R™, given by

G(tv Z, )‘) = k:()‘)WV(x) + (1 - k()\))f(t,$),
where k : [0, 1] — R is by definition

1 for Ae[0,1/2)
k(A) :{ 2—2X\ for A€ [1/2,1].
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It is easy to check that G has the properties of the map 1, introduced in para-
graph 1, thus the following homotopy is decomposable K : B(2R) x [0,1] ~
B(2R),

K(x,A) = r2r(22 — ennSa(., 0 (%)),
where h : [0,1] — R is given by

Q(T—tR))\—FtR for AE [0,1/2)
h(A) = { T for A e[1/2,1].

Now suppose that the problem (1) has no solutions. We will first show that
K has no fixed points in 0B(R). Conversely, suppose that z € K(z, ) for a
point x € OB(R) and A € [0, 1].

If A €[0,1/2), then z(h(\)) = 2(0) for a function z € Sy, (x), that con-
tradicts Lemma 5 (i1).

If X € [1/2,1), then 2(T) = 2(0) for a function z € Sg(..\ (x). We have
(2'(t),v) = E(A){(wyp,v) + (1 — k(X))(f(t, 2(t)),v) for almost every t € [0, T,
every v € OV(z(t)) and a point w, € Wy (z(t)). Now (f(¢,2(t)),v) > 0
because V is a guiding function for (1) and (w;,,v) > 0 from (6) and the
fact that V is a direct potential. Consequently (2'(¢),v) > 0 for almost every
t € [0,7] and every v € OV (z(t)), which contradicts Lemma 3.

The case A = 1 is already excluded by our assumption that (1) has no
solutions.

Now from the above and homotopy invariance of the fixed point index we
have

Inds== (T’QR(2[d etRSWV),B(R)) = Ind (TQR(Q]dm_eTSf>,B<R)).

B(2R) B(2R)

Recalling (7)

Indgz (rar (21 dggg — erSy). B(R)) = Ind(V) # 0.

By existence property of the fixed point index we obtain a fixed point of the
mapping 72 (2l dgzgy — erSy), namely x € B(R) such that € 2z — epSy(z)
which is equivalent to z € epSy(x). This means that (1) has a solution (with
the initial value x), that is against our contradictory assumption and thus
proves the theorem. O

Our next result gives a condition for a direct potential to have nonzero
index, as it is required in Theorem 1.

Theorem 2 Let V' be a direct potential (with a constant ro > 0). Suppose
that V' is coercive, that is lim V(x) = +o00. Then Ind(V') =

l[z[|—o0
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Proof For every v € R denote by A, the open and bounded subset of R",
given by V7!((—c0,7)). Take the numbers o, 3 > a and R > r > ry such
that:

B(rg) € Ay C A, C B(r) C B(r) Cc As C As C B(R).

Let
B -«
min{(v,w): v €IV (z), w € Wy(z), v € Az \ Au}
The above formula makes sence in view of (6) (V' is a direct potential) and
Az \ Ay C R"\ B(ro).

We will consider the following differential inclusion:

T=2

2(t) € =Wy (z(t)) (8)

and its solutions on the interval [0, 7.
We have divided the later proof into five steps.

Step 1 We will prove that for every v > « the set A, is positively invariant,
that is o o
Ve e A, Vz e Sy, (x) VE € [0,T] z(t) € A,.

The composition Vz is absolutely continuous, while (6) implies that for
almost every t € [0,T] such that z(t) € R"\ B(ry) we have (v,2/(t)) < 0 for
every v € 0V (z(t)). Using the same method as in the proof of Lemma 3, we
obtain (Vz)'(t) < 0 for almost every ¢ € [0, 7] such that z(t) € R"\ B(rg). If
there exist to, t; € [0,77, that z(tg) € OA, and z(t) & A, for every t € (to, 1],
then Vz(tg) = v and Vz(t) > v for t € (to,t1], hence Vz(t;) = Vz(ty) +

t1
J(Vz)(r)dr < 7, a contradiction.
to

Step 2 Consider the mapping S; : B(2R) x (0,1] ~ C([0,T], R™)

Si(z,\) ={w:[0,T] — R": w(t) = Z(M;\_x with z € S_y, (2)}.

Sy is ws.c. and has Rs values, because Sy (z,A) = $(S_aw, (z) — x). Moreover
| w'(t) ||< 1 for every w € Si(B(2R) x (0,1]) and for almost every ¢ €
[0, T]. Hence, by Ascoli-Arzeld Theorem, the set S1(B(2R) x (0, 1]) is relatively
compact in C'([0, 7], R™).

Let Sy : B(2R) x [0,1] ~ C([0,T], R™),

SQ(:EJ )‘> -
Si(z, A) for A#0
{w = klim wy : wy € S1(zg, ) with x, — z, \y >0, \p, — 0} for A =0.

It is readily verified that S5 is u.s.c. and has compact values.
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Finally, let S : B(2R) x [0,1] — C([0,T], R™)

B So(z, ) for A#0
Sz, A) = { conv Sy(x,0) for A =0.

It is not hard to see that S is u.s.c. with Rs values.
Step 3 Consider the decomposable homotopy K : B(2R) x [0, 1] ~ B(2R),
K(z,A\) = rop(MerS(z,0) + x) + (1 — A\)(z — oV (x))),

where ror and e are as in the proof of Theorem 1. We will show that K has
no fixed points in 0Ag. First, let us remark that:

Vo € 0Az 3a, > 03e, > 0Vy € B(x,e,) Yw € Wy (y) Yo € IV (z) (w,v) > ay.

Now let w € Sy(z,0) and v € JV (z) for a point x € DAg. By the definition

of Sy, w(T) = hm 2 QeT) =2k , where hm Tp =T, hm A = 0and N\, > 0,
Ak k=

2K € S_wy (T)- For k large enough A, < sx/(ZT) and H T — x| < €,/2, thus,
for any t € [0, \yT]

I26(t) =2 <l o =2 | + || 20(t) — 2x [ < &0

and hence
AT AT
AT — 1 1
AND w1 [ i), —vdr > = [ awdr = a,T.
)\k /\k 0 Ak 0

This implies (w(T), —v) > a,T > 0.
Now suppose that © € K(z,\) for an x € 0Az and A € [0, 1], hence 0 €
AerS(z,0)—(1=X)0V (z). By the definition of S(+, 0) there exist {wy, ..., w} C

k
So(,0), {\,..., A} C Ry, X N =1and v e dV(x) such that
i=1

0=[ A S hun(T) — (1— Ao ||?
=1
ey éAiwi(T) 12 +(1= 02 | v |2 +27(1 — /\)(é Aws(T), —v) > 0,

a contradiction.
Homotopy invariance and additivity of the fixed point index now yield

Ind(V) = Indm('rQR([dm —JV),B(R)) =
Indm(TQR(]dm — 0V), Aﬁ) = Indm(’l"gR(eTS(', 0) + ]dm), Aﬁ)
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Step 4 Let H : B(2R) x [0,1] ~ B(2R)
H(z,\) = rop(erS(z,\) + x),

H is a decomposable homotopy without fixed points in dAg. To show this
last statement, it is enough to prove that x ¢ H(x,\) for any = € 0Az and
A € (0,1]. Suppose the contrary; then x = z(AT') for a point z € 0Az and
z € S_wy (z). The sets Ag and A, C Ag are positively invariant by Step 1,
hence z(t) € Ag\ A, C Ag\ B(ro) for every t € [0, \T]. As in Step 1, we obtain

(Vz)'(t) < 0 for almost every t € [0, \T] and, finally 0 = Vz(A\T) — V(z) =
AT

[ (Vz)(r)dr <0, a contradiction.

0

The homotopy invariance of the fixed point index forces:

Inng(QR) <T2R(€TS(-, O) + [dm), Aﬁ) = Indm<7"2ReT57WV’ Aﬁ)

Step 5 Take the decomposable homotopy L : B(2R) x [0, 1] ~ B(2R)
L(l’, )\) = ’I“QR()\ : eTS—WV (,T))
If we had = € 0Ag, z € S_w, (z) and A € [0, 1) such that x = Az(T"), it would

follow 0 =[| z — Az(T) |[>|| = || — || 2(T) || and 2(T) € R"\ B(r) C R"\ A,.
Thus Vz(T) > o and 2(t) € A, for every t € [0,T]. Hence:
B—a>V(z) - Va(T) = / —(V2)(r)dr. 9)

0

Using the same technique as in the proof of Lemma 3 it can be easily
seen that, for almost every t € [0,T], 2/(t) € —Wy(2(t)) and there exists
{2332, convergent to 0 € R™ such that —(Vz)'(¢) is a limit of a sequence
{w};.}32,, where each w} is a convex combination of some numbers in the set
{(=V"(2(t) + ), 2'(t)), i =k, k+1,...}.

Set a number k, for i large enough we have (=V'(z(t) + z;),2'(t)) €
{{(=v,2'(t)) : v e dV(z(t))+B(1/k)}. Consequently, —(Vz)'(t) € {{(—v, 2/(t)) :
vedV(z(t) + B(1/k)} and

—(V2)'(t) € {{v,w) : vedV(z(t)), we Wy(2(t)}

for almost every ¢ € [0, 7.
Recalling (9), we obtain:

B —a>Tmin{{v,w): ve IV (x), we Wy(x), T € Ag\ As} = 2(8 — ),

a contradiction. In this way we have shown that L has no fixed points in 0Ag.
By the homotopy invariance and units properties of the fixed point index,

IndiB(zR) (TQRGTS,WV, Aﬁ) = IndiB@R)(O? Aﬁ) =1
and, finally, by Steps 3-5 we obtain Ind(V') = 1. O
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