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Abstract. We study the Cauchy problem for a strictly hyperbolic n × n system of
conservation laws in one space dimension

ut + f(u)x = 0,

u(0, x) = ū(x).

The initial data ū is a small BV perturbation of a single rarefaction wave with an
arbitrary strength. All characteristic fields are assumed to be genuinely nonlinear
or linearly degenerate in the vicinity of the reference rarefaction curve. We prove
that a suitable BV stability condition yields uniform bounds on the total variation
of perturbation, thus implying the existence of a global admissible solution. On
the other hand, a stronger L1 stability condition guarantees the existence of the
Lipschitz continuous flow of solutions. Our proof relies on the construction of a
Lyapunov functional which is almost decreasing in time and which is equivalent to
the L1 distance between the two solutions.

1. Introduction and statement of the main results

The system of conservation laws in one space dimension is the following first
order system of nonlinear PDEs:

ut + f(u)x = 0.(1.1)
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The well-posedness of (1.1) has been the objective of vast research in recent years,
however at a considerable level of generality it remains an open problem. A com-
plete analysis of the issue has been carried out for strictly hyperbolic flux in (1.1)
and initial data ū ∈ BV having suitably small total variation.

u(0, x) = ū(x).(1.2)

Namely, the entropy solutions to (1.1) (1.2) constitute a flow which is Lipschitz
continuous with respect to time and initial data. As shown recently in [BiB], its
trajectories are the limits of the solutions to the parabolic regularizations of (1.1),
when the viscosity parameter vanishes to zero.

Another approach was implemented in a series of papers [BC, BCP, BLY]. It
relies on building piecewise constant approximations of solutions to (1.1) (1.2) and
then controlling the evolution of their BV or L1 norm. The fundamental block
in this construction is provided by solutions of the Riemann problems, that is for
initial data ū consisting of a single discontinuity:

u(0, x) =

{

u− x < 0,
u+ x > 0.

(1.3)

To analyze how much the crucial so far condition of the smallness of initial data
can be relaxed, one wishes to study the well-posedness of (1.1) (1.2) with ū being a
small perturbation of a fixed Riemann data of arbitrarily large strength. We assume
that the solution of the latter is given and that it consists of a number of waves of
different characteristic families. More generally, we wish to study the stability of a
reference pattern containing possibly strong but noninteracting waves. The above
mentioned results say that the trivial pattern with no waves present is stable, as
one can control the amount (measured in TV or in the L1 norm) of initially small
perturbation of this pattern.

An example in [BC] points out that this is no longer true in presence of strong
waves. Indeed, one has to account for the waves’ mutual influence as well as for
their interaction with the perturbation, and therefore extra stability conditions are
necessary. These conditions in essence refer to the existence of weights with respect
to which the flow generated by the associated linearized problem is a contraction;
the linearization is taken at states attained by the reference solution [BM]. This
approach was realized in a series of papers [BC, Scho, BM, LeT, Le1]. All these
works however concentrate mainly on patterns with strong shocks or deal solely
with the BV stability in presence of rarefactions.

In [BC] the authors study systems of 2 equations and prove their BV and L1

stability under the corresponding non-resonance conditions relating to 2 shocks.
The presence of strong rarefaction waves is also admitted, however being extreme
fields waves their stability follows without any additional restrictions [Le3]. More
general n × n systems of conservation laws are studied in [Scho] and the BV sta-
bility of patterns including strong shocks, rarefactions and contact discontinuities
is established. In particular this yields the local in time existence of solutions to
(1.1) (1.2) within the class of initial data with bounded variation. In [Le1] we
established both the BV and the L1 stability of patterns of noninteracting strong
classical shocks in n×n systems. The crucial ingredient for proving the L1 stability
was the Lyapunov functional approach from [BLY]; let us anticipate that the same
method will be used in the present article. The role of the stability conditions from
[BM, Le1] and their relations to [BC, Scho] were explained in [Le2].
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As a next step, this paper studies BV and L1 stability of solutions to (1.1) (1.2)
close to a reference pattern which is a single rarefaction wave of arbitrary strength.
The results of this work combined with [Le1] yield thus the well-posedness analysis
for patterns of noninteracting shock and rarefaction waves (compare also [Le3]).
The stability conditions presented in this paper are studied in a complementary
work [Le3].

We now state our basic hypotheses and set the notation.







The system (1.1) is strictly hyperbolic in a domain Ω ⊂ Rn to be
specified later. That is, for each u ∈ Ω the Jacobian matrix Df(u)
of the smooth flux f : Ω −→ Rn has n distinct and real eigenvalues:
λ1(u) < . . . < λn(u).

(H1)

Let {ri(u)}n
i=1 be the basis of right eigenvectors of Df ; Df(u)ri(u) = λi(u)ri(u).

Call {li(u)}n
i=1 the dual basis of left eigenvectors, so that 〈ri(u), lj(u)〉 = δij for all

i, j : 1 . . . n and all u ∈ Ω.
Fix k : 1 . . . n and consider an integral curve Rk of the vector field rk joining

states ul, ur ∈ Ω:

d

dθ
Rk(θ) = rk(Rk(θ)),

ul = Rk(0), ur = Rk(Θ), Θ > 0.
(1.4)

Rk is called the rarefaction curve. For a small c > 0 we define the domain

Ω = Ωc = {u ∈ Rn : ||u−Rk(θ)|| < c for some θ ∈ [0,Θ]} ;(1.5)

all the subsequent reasoning will be restricted to this domain, with the parameter
c appropriately small. We further assume that:

[

In Ω, each characteristic field i : 1 . . . n is either linearly degenerate:
〈Dλi, ri〉 ≡ 0, or it is genuinely nonlinear which means that 〈Dλi, ri〉 > 0.
The k-th characteristic field is assumed to be genuinely nonlinear.

(H2)

In the case of linearly degenerate fields we set ||ri(u)|| = 1, while when the i-th
field is genuinely nonlinear we choose the normalization of right eigenvectors ri(u)
so that 〈Dλi(u), ri(u)〉 = 1 for all u ∈ Ω. In particular we have:

〈Dλk(u), rk(u)〉 = 1 for all u ∈ Ω(1.6)

and thus Θ = λk(ur) − λk(ul).

The piecewise smooth, self-similar function, called the centered rarefaction wave
is given by:

u0(t, x) =







ul if x < tλk(ul)
Rk(θ) if x = tλk(Rk(θ)), θ ∈ [0,Θ]
ur if x > tλk(ur)

(1.7)

and provides an entropy admissible solution of (1.1) [Sm, D]. The objective of this
paper is a study of the stability of u0. Our main results are the following:

Theorem I. Assume that (H1), (H2) and the BV stability condition (2.6) hold.
For c, δ > 0 let Ec,δ denote the set of all continuous functions ū satisfying:

(i) ū(x) ∈ Ωc for all x ∈ R,
(ii) limx→−∞ ū(x) = ul and limx→∞ ū(x) = ur,
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Figure 1.1

(iii) |TV (ū) − |Rk|| < δ, where |Rk| = TV (Rk) is the arc-length of the rarefaction
curve Rk(θ), θ ∈ [0,Θ].

There exist small parameters c, δ > 0 such that for every ū ∈ cl Ec,δ, where cl
denotes the closure in L1

loc, the Cauchy problem (1.1) (1.2) has a global entropy
admissible solution u(t, x).

Theorem II. Assume that (H1), (H2) and the L1 stability condition (3.1) are
satisfied. Then there exists a closed domain D ⊂ L1

loc(R,Ω), containing all con-
tinuous functions ū satisfyling (i), (ii), (iii) in Theorem I, for some c, δ > 0, and
there exists a semigroup S : D × [0,∞) −→ D such that:

(i) ||S(ū, t) − S(v̄, s)||L1 ≤ L · (|t − s| + ||ū − v̄||L1) for all ū, v̄ ∈ D, all t, s ≥ 0
and a uniform constant L, depending only on the system (1.1),

(ii) for all ū ∈ D, the trajectory t 7→ S(ū, t) is the solution to (1.1) (1.2) given in
Theorem I.

We now set other preliminaries. For each i : 1 . . . n and u ∈ Ω, call σ 7→ Si(u, σ)
and σ 7→ Ri(u, σ), the i-th shock and the i-th rarefaction curves through the point
u [L, D]. In particular we have Rk(ul, θ) = Rk(θ). Both curves are defined at least
locally, that is for σ ∈ (−c, c) and have second order contact at σ = 0:

Si(u, σ) −Ri(u, σ) = O(1)|σ|3.(1.8)

The curves’ parametrization is consistent with the normalization of the right eigen-
vectors ri. That is, they are parametrised by arc length if the i-th characteristic
field is linearly degenerate, and by the corresponding eigenvalue λi if the i-th field
is genuinely nonlinear:

λi(Si(u, σ))) − λi(u) = σ = λi(Ri(u, σ))) − λi(u).(1.9)

By this choice of parametrisation we have:

Si(Si(u, σ),−σ) = u.(1.10)

The speed λ of a weak shock wave (u−, u+ = Si(u
−, σ)) with strength σ < 0 can

be computed from the Rankine-Hugoniot identity:

f(u+) − f(u−) = λ · (u+ − u−).(1.11)

Throughout the paper, by O(1) we mean any uniformly bounded function, depend-
ing only on the system (1.1). Any sufficiently small but positive constant is denoted
by c. The Riemann data as in (1.3) is for simplicity denoted by (u−, u+).
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The paper is constructed as follows. In sections 2 and 3 we present the stability
conditions and their primary motivation. In section 4 we prove Theorem I. The
proof relies on the construction of approximate solutions by means of the wave front
tracking algorithm [HR, BaJ], and applying the Glimm analysis in view of the BV
stability condition. In section 9 we prove that the domain of applicability of these
techniques actually contains the data with properties as in Theorem I.

Towards the proof of Theorem II, in section 6 we give the definition of the Lya-
punov functional measuring the L1 distance between the two approximate solutions
constructed in section 4. The crucial observation forour construction is noting that
in the initial time interval where the solutions are apart from each other, this dis-
tance decreases rapidly. A convenient tool to estimate the decrease is the first
order rarefactions, introduced in section 5. For other times, the pointwise distance
between solutions is calculated along shock curves, as in [BLY]. The decrease of
the functional follows then from the assumed L1 stability condition and the main
concern of sections 7 and 8.

2. The weighted BV stability condition

In this section we discuss a stability condition guaranteeing the existence of
solutions to the problem (1.1)(1.2) in the vicinity of the reference rarefaction wave
(1.7). To motivate our approach we first recall the argument from [Le1, BM]. The
stability conditions there were formulated in terms of the existence of a family
of weights wi > 0, i : 1 . . . n, corresponding to different characteristic families
of perturbation v, and depending on the location of perturbing waves inside the
reference pattern u0. The conditions required that the weighted BV or L1 norm of
any solution of

vt +Df(u0)vx + [D2f(u0) · v] · (u0)x = 0

was nonincreasing in time.

Let w1 . . . wk−1, wk+1 . . . wn : (−c,Θ + c) −→ R+ be smooth, nonnegative func-
tions defined along the rarefaction curve Rk in (1.4). We can extend this definition
on the whole neighbourhood Ω by setting

∀i 6= k ∀u ∈ Ω wi(u) = wi(θ) where λk(u) = λk(Rk(θ)).(2.1)

Consider an interaction of a weak i-th wave with a small part of the rarefaction
Rk, located at the state u = Rk(θ). To fix the ideas, assume that i < k and
call the strengths of the incoming waves and the states they join to u respectively:
q−k > 0, q−i , u

−, u+ (as in Figure 2.1 a)). In particular, we have u = Rk(u−, q−k )

and q−k = θ − λk(u−). The strengths of waves are computed in terms of change
in the corresponding eigenvalue for genuinely nonlinear fields, or the arc-length of
the rarefaction curve connecting the two states, for linearly degenerate fields. We
thus remain consistent with the parametrization of the right eigenvectors, given in
section 1. Now if q−k and q−i are small enough, the Riemann problem (u−, u+) has a

self-similar solution composed of n outgoing waves having strengths q+1 . . . q
+
n . For

the basic properties of this construction we refer to [L, Sm, B, D]. Assigning to
each wave the weight wi corresponding to its characteristic family and computed
at the wave’s left state, we now require that the weighted amount of perturbation
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decreases across the interaction, so that:
∑

j 6=k

w+
j |q+j | < w−

i |q−i |.(2.2)

Recall the standard Taylor estimates [Sm]:
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Figure 2.1

∀j 6= k q+j = δij · q−i + 〈lj(u), [ri, rk](u)〉 · q−i q−k
+ O(1)|q−i q−k |(|q−i | + |q−k |).

(2.3)

Here [ri, rk] = Dri · rk − Drk · ri stands for the Lie bracket of two vector fields and
δij is the Kronecker delta.

In view of (2.3), we have:

∀j 6= k, i w+
j |q+j | =wj(u) · |〈lj(u), [ri, rk](u)〉| · |q−i q−k |

+ O(1)|q−i q−k |(|q−i | + |q−k |).
On the other hand:

w+
i q

+
i − w−

i q
−
i =(w+

i − w−
i )q−i + w+

i (q+i − q−i )

= − w′
i(θ) · q−i q−k + wi(u) · 〈li, [ri, rk]〉(u) · q−i q−k

+ O(1)|q−i q−k |(|q−i | + |q−k |).
Hence:

w+
i |q+i | − w−

i |q−i | =(sgn q−i ) · (w+
i q

+
i − w−

i q
−
i )

=
{

wi(u) · 〈li, [ri, rk]〉(u) − w′
i(θ)

}

· |q−i q−k |
+ O(1)|q−i q−k |(|q−i | + |q−k |).

Condition (2.2) is thus equivalent to:




∑

j 6=i,k

wj(θ) · |〈lj , [ri, rk]〉(Rk(θ))|



 + wi(θ) · 〈li, [ri, rk]〉(Rk(θ)) < w′
i(θ).(2.4)

Analogously, for i > k one obtains:




∑

j 6=i,k

wj(θ) · |〈lj , [rk, ri]〉(Rk(θ))|



+ wi(θ) · 〈li, [rk, ri]〉(Rk(θ)) < −w′
i(θ).(2.5)
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Define the (n− 1) × (n− 1) matrix function:

P(θ) = [pij(θ)]i,j:1...n,
i,j 6=k

for θ ∈ [0,Θ],

pij(θ) =

{

|〈lj , [ri, rk]〉(Rk(θ))| if i 6= j,

sgn(k − i) · 〈li, [ri, rk]〉(Rk(θ)) if i = j.

Combining (2.4) and (2.5), we have proved:

Lemma 2.1. Condition (2.2) is equivalent to the following:

































BV Stability Condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0,Θ] → R+ such that

P(θ) ·





















w1(θ)
...

wk−1(θ)
wk+1(θ)

...
wn(θ)





















<





















w′
1(θ)
...

w′
k−1(θ)

−w′
k+1(θ)
...

−w′
n(θ)





















for every θ ∈ (0,Θ),

where the above vector inequality is understood componentwise.

(2.6)

Remark 2.2. Notice that because of the strict inequalities in (2.4) and (2.5), the
condition (2.6) implies a stricter version of (2.2):

∑

j 6=k

w+
j |q+j | < w−

i |q−i | − c|q−i q−k |

for a small constant c.

Remark 2.3. The inequality in (2.6) is independent from rescaling wi 7→ α · wi,
for any α > 0. Thus, in particular we may assume that

|wi(u)| < 1 and ||Dwi(u)|| < 1

for each i and every u ∈ Ω.

Remark 2.4. If all pij(θ) ≥ 0, we can regard the quantity wi(θ) as the measure of
the amount of potential future interactions of the i-th perturbation wave located at
the state Rk(θ). For i < k each wi is an increasing function of θ, and for i > k each
wi is decreasing along the curve Rk. Indeed, the slow waves (λi < λk for i < k)
travel in the direction of decreasing θ on the t − x plane, and thus the bigger the
parameter θ corresponding to their location is, the more potential contribution to
the future amount of perturbation they create. The converse assertion is true for
the fast waves of characteristic families i > k.

By an approximation argument, as the inequality in (2.6) is strict, we see that
(2.2) holds also for any state u ∈ Ωc. For the more detailed discussion of condition
(2.6) we refer to the paper [Le3]. In particular, we have:
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Lemma 2.5. [Le3] Let the condition (2.6) be satisfied. There exists c > 0 such that
for every u−, u+ ∈ Ω with λk(u+) − λk(u−) > −c, the Riemann problem (u−, u+)
for (1.1) has the unique self-similar solution attaining states in Ω. The solution is
composed of n − 1 weak waves of families 1 . . . k − 1, k + 1 . . . n and a k-th wave
which is either a weak shock or a rarefaction.

Condition (2.6) is independent of the parametrization of the eigenvectors in Ω.
The next lemma gathers several other properties of this condition.

Lemma 2.6. [Le3] In any of the following cases (2.6) is satisfied:

(i) when the reference rarefaction is sufficiently weak, that is 0 < Θ << 1,
(ii) when the reference rarefaction belongs to an extreme characteristic field (k = 1

or n),
(iii) when (1.1) has a coordinate system of Riemann invariants [Sm, D, S].

In particular, any rarefaction wave in any 2×2 system or the 3×3 system of Euler
equations of gas dynamics [D, Sm, Scho] is BV stable.

(iv) For n = 3 and k = 2, (2.6) is equivalent to the existence of a positive solution
v : [0,Θ] −→ R+ to the Riccati equation:

v′(θ) = p12(θ) + [p11(θ) + p22(θ)] · v(θ) + p21(θ) · v2(θ).

3. The weighted L1 stability condition

The production matrix P in condition (2.6) accounts for the infinitesimal change
of the strength of perturbation as it passes through the rarefaction fan (1.7). The
elements of P(θ) are second order coefficients in the Taylor expansion of the strength
of waves produced through the interaction with a part of the large rarefactionRk(θ).
In order to deal with the L1 stability one is led to a “mass production” matrix M(θ)
whose components additionally account for the shifts in locations of the perturbing
waves of different characteristic families before and after the interaction. More
precisely, define:

M(θ) = [mij(θ)]i,j:1...n,
i,j 6=k

for θ ∈ [0,Θ],

mij(θ) =















pij(θ) ·
|λj − λk|
|λi − λk|

(Rk(θ)) if i 6= j,

pij(θ) +
Dλi · rk
|λi − λk|

(Rk(θ)) if i = j.

We have the following:

[

L1 Stability Condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0,Θ] → R+ such that the inequality in (2.6)
is satisfied with M(θ) replacing the matrix P(θ).

(3.1)

Note that an observation as in Remark 2.3 remains valid.

A more restrictive version of (3.1), where all weights wi are linear, was introduced
in [BM] in the context of the well-posedness of the associated variational system.

Lemma 3.1. [Le3] We have:

(i) Condition (3.1) is stronger than the BV stability condition (2.6).
(ii) The assertions of Lemma 2.6 hold in their respective versions.
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(iii) For all i 6= j and all θ ∈ [0,Θ] there holds: mij(θ) = |〈lj ,Dri · rk〉(Rk(θ))|
and mii(θ) = sgn (k − i) · 〈li,Dri · rk〉(Rk(θ)).

We end this section by presenting a consequence of (3.1) which plays the same
role as Lemma 2.1 and Remark 2.2 for the condition (2.6). Its proof will follow
from the more general Lemma 8.2. To fix the ideas, let

Sk(q−k ) ◦ Si(u, q
−
i ) = Sn(q+n ) ◦ . . .S1(u, q

+
1 )

with u ∈ Ω, {q−j }j=i,k small enough and q−k ≥ 0. Then for a small uniform constant
γ we have:

∑

j 6=k

w+
j |q+j | · |λ+

j − λ+
k | < w−

i |q−i | · |λ−i − λ−k | − γ|q−i q−k |.

Namely, the total weighted mass of perturbation decreases as it passes through the
rarefaction wave (1.7). Recall [BM] that the ratio ∆/∆0 of shifts in the reflected or
transmitted wave with respect to the shift in an incoming wave can be computed as
|λ+ −λk|/|λ− −λk|. As in Figure 2.1 b), λ− and λ+ denote speeds of the modified
waves before and after the interaction with a reference wave traveling with speed
λk.

4. Existence of solutions – a proof of Theorem I

Recall that given a Cauchy problem (1.1) (1.2) with ū having small total vari-
ation, its solution can be obtained in the limit when ǫ → 0 of piecewise con-
stant ǫ-approximations uǫ(t, x) constructed via the wave front tracking algorithm
[BaJ, HR]. For the detailed description of the algorithm we refer to [B]. The crucial
ingredient in proving the global existence of the approximate solutions and the com-
pactness of its sequence is the Glimm functional [G] controlling the total variation
of perturbation and the amount of the future interactions. Below we briefly discuss
a natural modification of this standard construction, applicable when the reference
pattern is a strong k-th rarefaction Rk rather than a constant state. We then show
that our Glimm-type functional Γ is indeed nonincreasing along any wave front
tracking approximate solution, thanks to the BV stability condition (2.6).

Definition 4.1. Let ǫ0 > 0. By Dǫ0 we denote the set of piecewise constant func-
tions v : R −→ Rn enjoying the following properties:

(i) v(−∞) = ul, v(+∞) = ur,
(ii) v(x) ∈ Ω for all x ∈ R,
(iii) all jumps in v have amplitudes smaller than ǫ0 (and thus the corresponding

Riemann problems admit the standard self-similar solution). We order the
waves in these solutions according to their location and speed; for a wave α
by iα : 1 . . . n we denote its characteristic family and by ǫα its strength,

(iv) setting ǫ+α = max(0, ǫα) and ǫ−α = max(0,−ǫα) there holds:
∣

∣

∣

∣

∣

(

∑

iα=k

ǫ+α

)

− Θ

∣

∣

∣

∣

∣

+

(

∑

iα=k

ǫ−α

)

+





∑

iα 6=k

|ǫα|



 ≤ ǫ0.(4.1)

Remark 4.2. Let v satisfy (i) (iii) of Definition 4.1 and let the bound (4.1) hold
with ǫ0 exchanged by another parameter δ. Then if only δ is small enough with
respect to ǫ0 then v(x) ∈ Ω2c for all x ∈ R implies v(x) ∈ Ωc for all x ∈ R.
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Take a function u(0, ·) ∈ Dǫ0 , for some small ǫ0 > 0. Let ǫ << ǫ0. Recall that the
fundamental block for constructing the approximate solution uǫ(t, x) is provided by
piecewise constant approximations of self-similar solutions to Riemann problems.

As customary, the non-physical waves generated by the Simplified Riemann
Solver are said to belong to (n+1)-th characteristic family. The Simplified Riemann
Solver is used whenever one of the interacting waves is non-physical or when the
product of strenghts of incoming waves is bigger than a treshold parameter ρ(ǫ).
The details can be found in [B], chapter 7. The associated non-physical weight
wn+1 is defined as follows:

wn+1(u) = c · exp(−C · λk(u)) for u ∈ Ω,(4.2)

for some suitable constants c, C > 0. Let wk be a positive constant, strictly smaller
than all other weights wi(u) defined in Ω by (2.6) and (2.1). Recall that given a
weak i-th wave, we associate with it the weight wi computed at its left state.

Definition 4.3. Let u(0, ·) ∈ Dǫ0 , with some small ǫ0 > 0. Let uǫ be the piecewise
constant ǫ-approximate solution, given by the wave front tracking algorithm. As-
sume t is not an interaction time of fronts in uǫ. Using the notation of Definition
4.1 we set:

V (uǫ(t, ·)) =

∣

∣

∣

∣

∣

(

∑

iα=k

ǫ+α

)

− Θ

∣

∣

∣

∣

∣

+

(

∑

iα=k

ǫ−α

)

+





∑

iα 6=k

|ǫα|



 ,

where the summations extend on all waves α present in uǫ(t, ·). The quadratic
interaction potential is defined:

Q0(u
ǫ(t, ·)) =

∑

(α,β)∈A

|ǫα · ǫβ |,

with the set A containing all couples of perturbation waves (α, β) in uǫ(t, ·) ap-
proaching each other. More precisely, assuming xα < xβ, we have (α, β) ∈ A iff
iα > iβ or else iα = iβ and at least one of the waves is a genuinely nonlinear shock.
In both cases we require that none of the waves α, β is a positive k-wave. Finally,
let:

Qlarge(u
ǫ(t, ·)) =

∑

iα 6=k

wiα
(uǫ(t, xα−)) · |ǫα| +

∑

iα=k

wk · ǫ−α ,

Q = Q0 +Qlarge, Γ = V + κ ·Q,

for some large constant κ, to be determined later.

Lemma 4.4. Assume that the BV stability condition (2.6) holds. Then for some
constants c, ǫ0, κ > 0 we have the following. Let u(0, ·) ∈ Dǫ0 and let uǫ be the
corresponding piecewise constant approximate solution obtained through the wave
front tracking algorithm. Then for any t > 0 when two wave fronts α and β interact,
if Γ(uǫ(t−, ·)) ≤ ǫ0 then

∆Q = Q(uǫ(t+, ·)) −Q(uǫ(t−, ·)) ≤ −c · |ǫαǫβ|,
∆Γ = Γ(uǫ(t+, ·)) − Γ(uǫ(t−, ·)) ≤ −c · |ǫαǫβ |.

(4.3)
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Proof. The proof consists of several cases, depending on whether the Accurate or
the Simplified Riemann Solver is used and whether the interaction involves a k-th
positive wave which we will view as a part of the reference rarefaction Rk. We only
give the main ideas, the detailed analysis is left to the reader.

~

b)a)

c)

Simplified Riemann Solver

Accurate Riemann Solver

εα
εβ

outεn+1outεβ
εout

α

εα
εβ

outεβ

εα

outεn+1
u

εβ

εout
α

εβ

u

u

Figure 4.1

Case 1. - None of the interacting waves is a positive k-th wave, and the in-
teraction is solved by the Accurate Riemann Solver (Figure 4.1 c)). By standard
analysis [B] we have:

∆V = O(1)|ǫαǫβ |
∆Q0 ≤ −|ǫαǫβ | + O(1)ǫ0 · |ǫαǫβ|.

Further,

∆Qlarge ≤





∑

j 6=iα,iβ

wout
j · |ǫout

j |



+
(

wout
iα

|ǫout
α | − wiα

|ǫα|
)

+
(

wout
iβ

|ǫout
β | − wiβ

|ǫβ |
)

.

Consequently, ∆Qlarge ≤ C · |ǫαǫβ|, where the constant C depends linearly on the
upper bound of the weights {wi} as well as their derivatives {Dwi}. In view of
Remark 2.3 and assuming ǫ to be small enough we thus obtain the first estimate in
(4.3), which in turns yields the second one for large κ.

Case 2. - Interaction of a wave of family iβ 6= k with a k-th positive wave
(iα = k, ǫα > 0) solved by Accurate Riemann Solver (Figure 4.1 c)). As before, we
obtain:

∆V = O(1)|ǫαǫβ|
∆Q0 = O(1)ǫ0 · |ǫαǫβ|.

(4.4)
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We view ∆Qlarge as a function of the state u ∈ Ω attained by uǫ between the
interacting fronts α and β and the strenghts ǫα and ǫβ:

∆Qlarge = −wiα
· |ǫα| +

∑

j 6=k

wout
j · |ǫout

j | = G(u, ǫα, ǫβ).

Choose θ ∈ [0,Θ] such that ||u −Rk(θ)|| < ǫ0. Since G(u, ǫα, 0) = G(u, 0, ǫβ) = 0,
we have:

|G(u, ǫα, ǫβ) −G(Rk(θ), ǫα, ǫβ)|

≤ |ǫαǫβ| ·
∫ 1

0

∫ 1

0

∣

∣

∣

∣

∂2

∂ǫα∂ǫβ
G(u, sǫα, zǫβ) − ∂2

∂ǫα∂ǫβ
G(Rk(θ), sǫα, zǫβ)

∣

∣

∣

∣

dsdz.

If only the constant c in the definition (1.5) of Ω is small enough, the integrand in
the above estimate is as small as we wish. Thus in view of Remark 2.2 we obtain
∆Qlarge ≤ −c · |ǫαǫβ | for some different constant c > 0, taking wk sufficiently small
with respect to other weights. If ǫ is small enough and κ large this implies (4.3).

We remark that if the interaction as in case 2 is to be solved by the Simplified
Riemann Solver (Figure 2.1 a)), then (4.3) follows exactly as above provided we
define ǫout

k to be equal to ǫout
k in the accurate solution and take the scaling constant

c in (4.2) small with respect to other weights wi, i : 1 . . . n.

Case 3. - Interaction of a non-physical front (iα = n+1) with a positive k-wave
(iβ = k, ǫβ > 0) solved by the Simplified Riemann Solver (Figure 4.1 b)). Again
(4.4) is valid. Call u the left state of the wave α and ũ the state attained by uǫ

between the two outgoing waves. Then

∆Qlarge = wn+1(ũ) · |ǫout
n+1| − wn+1(u) · |ǫα|

≤ (wn+1(ũ) − wn+1(u)) · |ǫα| + O(1)wn+1(ũ) · |ǫαǫβ|
= c · exp(−Cλk(ũ)) · [1 − exp(−Cǫβ) + O(1)ǫβ ] · |ǫα|

= c · exp(−Cλk(ũ)) ·
[

O(1) − exp(Cǫβ) − 1

ǫβ

]

· |ǫαǫβ|

≤ −cC
4

exp(−Cλk(ũ)) · |ǫαǫβ|

if only C in (4.2) is large enough. Taking ǫ0 small and κ large, we conclude (4.3).

Define now the domain

D̄ǫ0 = cl {v ∈ Dǫ0 , Γ(v) ≤ ǫ0},(4.5)

where cl denotes the closure in L1
loc. Relying on Lemma 4.4 and Remark 4.2, we

obtain:

Lemma 4.5. In the setting of Lemma 4.4, an approximate solution uǫ(t, x) gener-
ated by the algorithm from initial data ū ∈ D̄ǫ0 exists for all times t > 0 and enjoys
the following properties:

(i) ||ū− uǫ(0, ·)||L1 ≤ ǫ,
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(ii) uǫ is piecewise constant, with jumps occuring along finitely many lines; jumps
are of three types: shocks (and contact discontinuities), rarefaction fronts and
non-physical waves; all jumps have strength < ǫ0, while all rarefaction fronts
have strength < ǫ,

(iii) along each shock or a rarefaction front not belonging to the k-th family we have
its speed differ from the exact speed (Rankine - Hugoniot speed for shocks and
the eigenvalue at the left state for rarefaction fronts) at most by ǫ; the speeds
of all k-positive waves are exact (that is, equal to λk evaluated at the left

state); all non-physical waves travel with speed λ̂,
(iv) at each time t ≥ 0 the sum of strengths of non-physical waves in uǫ is bounded

by ǫ,
(v) for all t ≥ 0 we have: Γ(uǫ(t, ·)) ≤ ǫ0.

Now a standard argument yields that a subsequence of approximations uǫ con-
verges to a solution of (1.1) (1.2) and that the domain D̄ǫ0 is positively invariant
with respect to the flow this way generated. Again, all the details can be found in
[B]. To prove Theorem I it thus suffices to show:

Lemma 4.6. Let ū ∈ cl Ec,δ for sufficiently small c, δ > 0, as in Theorem I. Then
ū ∈ D̄ǫ0 , for some ǫ0 = ǫ0(δ) and limδ→0 ǫ0(δ) = 0.

The proof will be given in section 9.

5. First order rarefactions

We call a positive k-th wave located at y0 at time T > 0 a first order k-rarefaction
wave if there exists a continuous curve y(t) with y(T ) = y0 such that for almost
all t ∈ [0, T ], y(t) is the location of a positive k-th wave. For each t ∈ [0,+∞) let
Lu(t) be the set of locations of first order k-rarefaction waves in u.

Lemma 5.1. Let uǫ(t, x) be as in Lemma 4.5 (in particular uǫ(t, ·) ∈ Dǫ0 for all
t ≥ 0). Then:

Ṽ (t) :=

∣

∣

∣

∣

∣

∣





∑

xα∈Lu(t)

ǫα



− Θ

∣

∣

∣

∣

∣

∣

+





∑

xα 6∈Lu(t)

|ǫα|



 = O(1) · ǫ0,(5.1)

above the summations extend on all waves α present in uǫ(t, ·). Moreover if y(t) is
continuous and y(t) ∈ Lu(t) for almost all t ∈ [0, T ] then:

∀t, s ∈ [0, T ] |λk(uǫ(t, y(t)−)) − λk(uǫ(s, y(s)−))| = O(1) · ǫ0.(5.2)

Proof. Above Ṽ (0) is understood as Ṽ (t), for t close to 0. To prove (5.1) one defines
new interaction potentials by the same formula as Q0 and Qlarge but treating
positive k-th waves located in R \ Lu(t) as perturbations. Then Lemma 4.4 and

its proof are still valid, with V exchanged there to Ṽ . Thus the estimate in (5.1)
follows.

In order to deduce (5.2) we may restrict our attention to the case t = T and
s = 0. It is convenient to consider the evolution of the related functional:

Γ̃(t) = |y′(t) − y′(0)| + κ · Ṽ (t) + κ2 ·Q(t),

where Ṽ (t) is defined as the sum of strengths of perturbation waves α in:

{xα < y(t) and iα ≥ k} ∪ {xα > y(t) and iα ≤ k}
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and κ > 1 is a large constant. We see that when y(t) interacts with another wave

α then ∆Q ≤ 0, ∆y′ = O(1)|ǫα| and ∆Ṽ = −|ǫα|. On the other hand at any other

time ∆y′ = 0 and ∆(Ṽ + κQ) ≤ 0. Thus Γ̃ is a nonincreasing function of t if only

κ is large. Hence |y′(T ) − y′(0)| ≤ Γ̃(0) = O(1)ǫ0 and (5.2) follows since

y′(t) = λk(uǫ(t, y(t)−))

for almost all t ∈ [0, T ].

6. Lyapunov functional – a proof of Theorem II

Towards a proof of Theorem II, in this section we carry out the construction of
the Lyapunov functional Φ. Following [LY, BLY], Φ(u, v) is supposed to control
the L1 distance between the two ǫ-approximate solutions u, v : [0,∞) × R −→ Rn

obtained by the wave front tracking algorithm and thus enjoying the properties in
Lemma 4.5. Assuming the L1 stability condition (3.1), the two crucial properties
of Φ will be the following:

Φ(u(t, ·), v(t, ·)) ≤ Φ(u(s, ·), v(s, ·)) + C · ǫ · (t− s),(6.1)

1

C
· ||u(t, ·) − v(t, ·)||L1 ≤ Φ(u(t, ·), v(t, ·)) ≤ C · ||u(t, ·) − v(t, ·)||L1 ,(6.2)

for all t > s ≥ 0 and a uniform constant C > 0 depending only on the system (1.1).
In the remaining part of the article we will concentrate on proving (6.1) (6.2) for
a below constructed functional Φ. Taking then D = D̄ǫ0 , for a small ǫ0 > 0, the
proof of Theorem II will follow by the already standard argument as in [B] chapter
8.3.

Fix a positive and small constant ν. Given piecewise constant functions u and
v, let

T = sup
{

t > 0; ∃x |λk(u(t, x)) − λk(v(t, x))| > ν
}

,(6.3)

Lemma 6.1. T defined as above is finite.

Proof. Notice that since the total strength of perturbation waves is of the order ǫ0
at each time t, then taking ǫ << ǫ0 we have:

sup
t≥1,x

||u(t, x) − ũ(t, x)|| + sup
t≥1,x

||v(t, x) − ṽ(t, x)|| = O(1)ǫ0.(6.4)

The functions ũ and ṽ : [1,+∞) × R −→ Rn are smooth solutions to (1.1) with
initial data:

ũ(1, x) = u0(1, ψ(x)), ṽ(1, x) = v0(1, φ(x))

where ψ and φ : R −→ R are some increasing diffeomorphisms. We want to show
that

lim
t→+∞

sup |λk(ũ(t, x)) − λk(ṽ(t, x))| = 0,(6.5)

which in view of (6.4) and taking ǫ << ǫ0 will imply that T < +∞.
Notice that for each t ≥ 1, ũ is constant outside the interval:

Ju
t =

[

ψ−1(λk(ul)) + λk(ul) · (t− 1), ψ−1(λk(ur)) + λk(ur) · (t− 1)
]
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and that it propagates along the straight lines - characteristics having slopes λk

inside the region {(t, x); x ∈ Ju
t }. Consequently, one has:

sup
x∈Ju

t ∩Jv
t

|λk(ũ(t, x)) − λk(ṽ(t, x))| ≤
max

w,z∈{ul,ur}
|ψ−1(λk(w)) − φ−1(λk(z))|

t− 1
,(6.6)

where the interval Jv
t is defined as Ju

t , by means of the diffeomorphism φ. Obviously,
the right hand side of (6.6) vanishes as t → +∞. Likewise, supx 6∈Ju

t ∩Jv
t
|λk(ũ(t, x)−

λk(ṽ(t, x))| also converges to 0, because of the spreading of the rarefactions in ũ
and ṽ. This establishes (6.5).

The definition of the functional Φ(u, v) falls in two parts.

Case 1 (the profiles u and v are apart from each other): t ∈ [0,T]. Let
T > 0. Without loss of generality we may assume that for some x there holds:
λk(u(t, x)) > λk(v(t, x))+3ν/4 (the case of the opposite inequality may be treated
similarily). Because of the estimate in (5.1) and taking ǫ0 << ν, there exists then
a nonempty interval I(T ) = [z−0 , z

+
0 ] such that z−0 ∈ Lu(T ), z+

0 ∈ Lv(T ) and:

∀x, y ∈ I(T ) λk(u(T, x)) − λk(v(T, y)) > ν/2.(6.7)

For t ∈ [0, T ] call I(t) the space interval whose boundary is continuous polygonals
z−(t) ∈ Lu(t), z+(t) ∈ Lv(t) with z−(T ) = z−0 and z+(T ) = z+

0 . Notice that taking
ǫ0 small enough Lemma 5.1 yields:

∀t ∈ [0, T ] ∀x, y ∈ I(t) λk(u(t, x)) − λk(v(t, y)) > ν/3.(6.8)

For all t ∈ [0, T ) the Lyapunov functional Φ is defined by the formula:

Φ(u, v)(t) = ||u(t, ·) − v(t, ·)||L1 + κ1 · |I(t)|,(6.9)

where |I(t)| stands for the length of the interval I(t) and κ1 is a sufficiently large
integer constant.

Lemma 6.2. If only κ1 is large enough then the functional Φ satisfies:

Φ(u(t′, ·), v(t′, ·)) ≤ Φ(u(t, ·), v(t, ·))(6.10)

||u(t, ·) − v(t, ·)||L1 ≤ Φ(u(t, ·), v(t, ·)) ≤ C · ||u(t, ·) − v(t, ·)||L1 ,(6.11)

for all 0 ≤ t ≤ t′ ≤ T and a uniform constant C > 0.

Proof. The equivalence (6.11) of Φ with the L1 distance follows in view of (6.8).
Denote by J (u) and J (v) the sets of all jumps in u and v, respectively. To prove

(6.10) fix t ∈ [0, T ) which is not a time of interaction of any couple of fronts in u
or v. We have:

d

dt
Φ(u, v)(t) =

∑

α∈J (u)∪J (v)

∣

∣

∣|u(xα+, t) − v(xα+, t)| − |u(xα−, t) − v(xα−, t)|
∣

∣

∣ · ẋα

+ κ1 ·
d

dt
|I(t)|.

(6.12)

The first term in (6.12) is of the order of O(1) because of the finite speed of prop-
agation, boundedness of TV (u(t)) and TV (v(t)), and:

|u(xα+, t) − v(xα+, t)| − |u(xα−, t) − v(xα−, t)| = O(1)|ǫα|.
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On the other hand in view of (6.8) we have d/dt |I(t)| ≤ −ν/4. Thus if κ1 is large
with respect to the system constants and the prechosen ν, we obtain:

d

dt
Φ(u, v)(t) ≤ 0.

Integrating in time we conclude (6.10).

Case 2 (u and v close): t ≥ T. The Lyapunov functional Φ is defined as in
[BLY, B]:

Φ(u, v) =

∫ +∞

−∞

n
∑

i=1

Wi(x) · wi(x) · |qi(x)| dx.(6.13)

The scalar quantities qi(x) are roughly speaking the curvlinear coordinates of the
vector v(x)−u(x), computed along combinations of shock curves in Ω. The precise
definition of Wi and wi will be our concern in the sequel.

The coordinates {qi(x)}n
i=1 are implicitely defined by:

v(x) = Sn(qn(x)) ◦ . . .Sk(qk(x)) ◦ . . .S1(u(x), q1(x)).(6.14)

Such decomposition exists if ν is small enough, as |λk(u(x, t))−λk(v(x, t))| ≤ ν for
all x and t ≥ T . The weights wi(x) are given by:

wi(x) = wi

(

Si−1(qi−1(x)) ◦ . . .S1(u(x), q1(x))
)

(6.15)

where the wi-s in the right hand side are given by (2.1) and the L1 stability condition
(3.1). We see that the weights wi(x) in (6.15) are computed at the left states of
the corresponding waves. Recall that wk > 0 is constant in Ω.

We will now define the functional weights Wi(x). Recall that iα ∈ {1 . . . n + 1}
is the family of the jump located at xα with strength ǫα. Also, by J (u) and J (v)
we denoted the sets of all jumps in u and v. Let P(u) and P(v) be the resepective
subsets of J (u) and J (v), containing these α for which iα 6= n+1 and either iα 6= k
or iα = k and ǫα < 0.

Define the quantities Ai(x) measuring the total amount of physical perturbation
waves in u and v which approach the i-th wave qi(x) located at x [BLY]. More
precisely, when the i-th field is linearly degenerate we set:

Ai(x) =





∑

α∈P(u)∪P(v)
xα<x, iα>i

+
∑

α∈P(u)∪P(v)
xα>x, iα<i



 |ǫα|.

For a genuinely nonlinear i-th field:

Ai(x) =





∑

α∈P(u)∪P(v)
xα<x, iα>i

+
∑

α∈P(u)∪P(v)
xα>x, iα<i



 |ǫα|

+















































∑

α∈P(u)
xα<x, iα=i

+
∑

α∈P(v)
xα>x, iα=i



 |ǫα| if qi(x) < 0,





∑

α∈P(v)
xα<x, iα=i

+
∑

α∈P(u)
xα>x, iα=i



 |ǫα| if qi(x) ≥ 0.
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Define:

∀i : 1 . . . n Wi(x) = 1 + κ2(Q(u) +Q(v)) + κ3Ai(x) + δik · κ4|qk(x)|.(6.16)

Here Q stands for the Glimm’s interaction potential from Definition 4.3, δik is the
Kronecker delta. The (large) constants κ2, κ3, κ4 are to be determined later; we see
that as soon as they have been assigned, we can impose a suitably small bound on
the amount of perturbation in u and v (by taking ǫ0 small in (4.5), or in particular
δ small in Theorem I), so that

1 ≤Wi(x) ≤ 4 for all i, x.(6.17)

This ends the definition of the functional Φ.

Lemma 6.3. The functional Φ constructed above satisfies (6.1) and

1

C
||u(t, ·) − v(t, ·)||L1 ≤ Φ(u(t, ·), v(t, ·)) ≤ ||u(t, ·) − v(t, ·)||L1 ,(6.18)

for all t′ > t ≥ T and a uniform constant C > 0 depending only on the system
(1.1).

Proof. The equivalence of Φ with the L1 distance as in (6.18) follows from (6.17)
if we take the weights {wi}n

i=1 small enough.
To prove the estimate in (6.1), define λi(x) as the Rankine-Hugoniot speed of

the shock/contact qi(x).
Recall that a direct calculation [BLY] gives:

d

dt
Φ(u(t), v(t)) =

∑

α∈J (u)∪J (v)

n
∑

i=1

Eα,i,(6.19)

with

Eα,i = (Wi · wi · |qi|) (xα+) · (λi(xα+) − ẋα)

− (Wi · wi · |qi|) (xα−) · (λi(xα−) − ẋα).
(6.20)

Above ẋα denotes the speed of propagation of the wave α located at xα. We will
prove that:

d

dt
Φ(u(t), v(t)) ≤ O(1)ǫ(6.21)

for every time t ≥ T where the fronts in u or v do not interact. Indeed, this will be
the goal of the next section.

Next, let t be such that say fronts ǫα and ǫβ in u interact. It is easy to notice
that for every x and i we have:

Ai(t+, x) −Ai(t−, x) ≤ O(1)|ǫαǫβ |.

On the other hand, by Lemma 4.4, the quantity Q(u) decreases by the same order
of magnitude. Thus if κ2 in (6.16) is large enough, all functional weights Wi(x)
must decrease across the time t. Consequently, the whole functional Φ decreases as
well. Based on these two observations and integrating (6.21) in time, we conclude
(6.1).
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7. Stability estimates

In this section we want to establish the inequality (6.21) by estimating local
terms Eα,i in (6.20). All calculations refer to a fixed jump α ∈ J (v), propagating
with speed ẋα and belonging to a characteristic family iα : 1 . . . n + 1. When
α ∈ J (u) only minimal and obvious modifications of our arguments are required
and so we leave them to the reader.

We first focus on the case iα = n+ 1. We will prove that:

n
∑

i=1

Eα,i ≤ O(1)|ǫα|,(7.1)

Indeed:

∀ i 6= k |w+
i q

+
i − w−

i q
−
i | + |λ+

i − λ−i | = O(1)|ǫα|.

Also, for i 6= k and if sgn q−i = sgn q+i we have: W+
i = W−

i . On the other hand, if
sgn q−i 6= sgn q+i then |q+i | + |q−i | = O(1)|ǫα| and consequently:

∑

i6=k

Eα,i ≤ O(1)|ǫα|.

In a similar manner, Eα,k ≤ O(1)|ǫα| if sgn q−k 6= sgn q+k . The same is true if

sgn q−k = sgn q+k because then

∆Wk = O(1)|ǫα|.
The bound (7.1) is thus proven. Now, recalling Lemma 4.5 (iv), (7.1) yields:

∑

iα=n+1

n
∑

i=1

Eα,i ≤ O(1)ǫ.(7.2)

Let now iα : 1 . . . n. Our goal will be to prove that:

n
∑

i=1

Eα,i = O(1)ǫ|ǫα|.(7.3)

Recall that by Lemma 4.5 |ǫα| < ǫ, whenever α is a rarefaction wave. In view of
(1.8) and the definition (6.20) we may thus without loss of generality replace each
rarefaction wave α by a (possibly non-entropic) shock having the original strength
ǫα and the speed ẋα = λk(v(xα−)). We will prove that with this modification
the same estimate as in (7.3) holds. For simplicity, we write W+

i = Wi(xα+),
q−i = qi(xα−), etc ...

The proof falls in several cases. Throughout the calculations, we often use the
estimates from section 8. When α is a part of the rarefaction Rk, our estimates
rely on the stability condition (3.1), the parameters wk and ν are chosen so that
the negative term in (8.3) overcomes extra contributions which are not of the order
O(1)ǫ2α. When α is a perturbation wave, our argument is essentialy a modification
of the one from [BLY]. We again adjust ν appropriately and then take the constant
κ3 in (6.16) to be large with respect to other quantities in the derived estimates.
The parameter ǫ0, measuring the amount of perturbing waves present at any time
in both approximate solutions u and v, is always set to be as small as needed, in
particular ǫ0 << ν.
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Case 1. iα = k and ǫα > 0. Recall that by Lemma 4.5 we have |ǫα| < ǫ. We
will prove:

n
∑

i=1

Eα,i = O(1)ǫ2α,(7.4)

which will clearly imply (7.3). We first estimate
∑

i6=k

Eα,i =
∑

i6=k

(∆Wi) · w−
i |q−i |(λ−i − ẋα)

+
∑

i6=k

W+
i ·
[

w+
i |q+i |(λ+

i − ẋα) − w−
i |q−i |(λ−i − ẋα)

]

(7.5)

Fix i 6= k. Notice that if sgn q+i 6= sgn q−i then

|q−i | ≤ |q+i − q−i | and ∆Wi = O(1)κ3ǫ0.(7.6)

On the other hand, if sgn q+i = sgn q−i then ∆Wi = 0. Thus the first summand in
(7.5) can be estimated using Lemma 8.1:

∑

i6=k

(∆Wi) · w−
i |q−i |(λ−i − ẋα)

≤ O(1)κ3ǫ0 ·
[

ǫα ·
(

∑

s>k

|q−s |
)

+ ǫα · |q−k |2 + ǫ2α

]

.

(7.7)

In order to deal with the second summand in (7.5), we notice that if sgn q+i 6= sgn q−i
then by (7.6) and Lemma 8.1, there holds:

∣

∣w+
i |q+i |(λ+

i − ẋα) − w−
i |q−i |(λ−i − ẋα)

∣

∣

≤ O(1)

[

ǫα ·
(

∑

s>k

|q−s |
)

+ ǫα · |q−k |2 + ǫ2α

]

.
(7.8)

The same is true when sgn q+i = sgn q−i , as in this case the left hand side of (7.8)
equals to |w+

i q
+
i (λ+

i − ẋα) − w−
i q

−
i (λ−i − ẋα)| and so one can again employ the

estimates of Lemma 8.1. In view of Remark 2.3, combining (7.5) (7.7) and (7.8) we
obtain:

∑

i6=k

W+
i ·
[

w+
i |q+i |(λ+

i − ẋα) − w−
i |q−i |(λ−i − ẋα)

]

≤ [1 + κ2(Q(u) +Q(v))] ·
∑

i6=k

[

w+
i |q+i |(λ+

i − ẋα) − w−
i |q−i |(λ−i − ẋα)

]

+ O(1)κ1ǫ0 ·
[

ǫα ·
(

∑

s>k

|q−s |
)

+ ǫα · |q−k |2 + ǫ2α

]

.

(7.9)

Estimating the first term in the right hand side of (7.9) by Lemma 8.3 and noting
(7.7), the quantity in (7.5) can be further bounded by:

∑

i6=k

Eα,i ≤ −γ1

2
ǫα ·

(

∑

s>k

|q−s |
)

+ O(1) ·
[

ǫα · |q−k |2 + ǫ2α
]

,(7.10)

if ǫ0 is small enough.
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We now aim at establishing (7.4) by estimating the remaining term Eα,k. We
distinguish two subcases.

Subcase 1.1. sgn q+k 6= sgn q−k . Then:

∆Wk = O(1)κ4ǫα + O(1)κ3ǫ0.

Therefore we have:

(∆Wk)wk|q−k |(λ−k − ẋα) ≤ O(1)wkǫα (κ4ǫα + κ3ǫ0) ·
(

ǫα +
∑

s>k

|q−s |
)

≤ O(1)wkκ1ǫ0ǫα ·
(

ǫα +
∑

s>k

|q−s |
)

+ O(1)κ4ǫ
2
α.

(7.11)

On the other hand:

W+
k wk

[

|q+k |(λ+
k − ẋα) − |q−k |(λ−k − ẋα)

]

≤ O(1)wkǫα
[

|λ+
k − ẋα| + |λ−k − ẋα|

]

≤ O(1)wkǫα ·
(

∑

s>k

|q−s |
)

.
(7.12)

Summing (7.11) and (7.12) we obtain

Eα,k = O(1)wkǫα ·
(

∑

s>k

|q−s |
)

+ O(1)κ4ǫ
2
α.(7.13)

The bound (7.4) now follows by (7.13) and (7.10) if only wk is choosen suitably
small with respect to the constant γ1 and for small ǫ0.

Subcase 1.2. sgn q+k = sgn q−k . By Lemma 8.1, we have:

∆|qk| = (sgn qk) · ǫα + O(1)ǫα

(

|q−k |2 +

(

∑

s>k

|q−s |
)

+ ǫα

)

.

Thus, if only ǫ0 and ν are small enough:

(sgn qk) · ∆|qk| ≥ ǫα/2.

Moreover:

λ−k − ẋα = O(1)

(

∑

s>k

|q−s |
)

+ (sgn qk) ·
(

−|q−k |
2

+ O(1)|q−k |2
)

+ O(1)ǫ2α.(7.14)

Recall that ∆Wk = κ4∆|qk|. Hence:

(∆Wk) · wk|q−k |(λ−k − ẋα) = κ4wk · (∆|qk|) · |q−k |(λ−k − ẋα)

= wkκ4 ·
[

O(1)ǫα|q−k |
(

∑

s>k

|q−s |
)

+ O(1)ǫα|q−k |3

− 1

2
(∆|qk|)(sgn qk)|q−k |2

]

+ O(1)κ4ǫ
2
α

≤ wk ·
[

O(1)κ4ǫα|q−k |
(

∑

s>k

|q−s |
)

+ O(1)ǫα|q−k |2
]

− wk
κ4

4
ǫα|q−k |2 + O(1)κ4ǫ

2
α.

(7.15)
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Now, using (7.14) and Lemma 8.1 we obtain:

(q+k − q−k )(λ−k − ẋα) = −q
−
k ǫα
2

+ O(1)ǫα

(

|q−k |2 +

(

∑

s>k

|q−s |
)

+ ǫα

)

.(7.16)

On the other hand, by Lemma 8.1:

q+k (λ+
k − λ−k ) =

q−k ǫα
2

+ O(1)ǫα

(

|q−k |2 +

(

∑

s>k

|q−s |
)

+ ǫα

)

.

Thus, in view of (7.16):

q+k (λ+
k − ẋα) − q−k (λ−k − ẋα) = O(1)ǫα

(

|q−k |2 +

(

∑

s>k

|q−s |
)

+ ǫα

)

.

The above bound combined with (7.15) yields:

Eα,k = wk ·
[

− κ4

5
ǫα|q−k |2 + O(1)κ4ǫα|q−k |

(

∑

s>k

|q−s |
)

+ O(1)ǫα

(

∑

s>k

|q−s |
)

]

+ O(1)κ4ǫ
2
α,

(7.17)

if only the constant κ4 is larger than several independent quantities O(1) in the
above series of estimates. Combining (7.17) and (7.10) we obtain (7.4) for wk small
and κ4 large enough.

Case 2. iα 6= k. Note that for i 6= k the quantities Eα,i can be estimated exactly
as in [BLY], see also [B] chapter 8.2. On the other hand, for i = k:

∆Wk = κ3 · sgn (iα − k) · |ǫα| + κ4 · ∆|qk|

and

∆|qk| = O(1)|ǫα| ·
n
∑

i=1

|q−i | = O(1)|ǫα|(ǫ0 + ν).

Thus the term in Eα,k containing ∆Wk can be estimated as follows:

(∆Wk)wk|q−k |(λ−k − ẋα) ≤− κ3wkǫα|q−k ||λ−k − ẋα|
+ O(1)κ4wkǫα(ǫ0 + ν)|q−k ||λ−k − ẋα|

≤ − κ3

2
wkǫα|q−k ||λ−k − ẋα|,

if only ǫ0 + ν is small enough. The analysis in [BLY] can thus be applied to get
(7.3).

Case 3. iα = k and ǫα < 0. If |ǫα| < ǫ and |q−k | ≤ 2|ǫα| then recalling that

∆Wk ≤W−
k +W+

k ≤ 8 by (6.17), and using (8.64) from [B] we conclude (7.3). The

same argumentation as in [B] page 167 yields (7.3) when q+k < 0 < q−k .
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We will now focus on the case when q−k and q+k have the same sign. In view of
the analysis of Lemma 8.3 we have:

∆Wk = κ3(sgn qk)|ǫα| + κ4|q+k − q−k | = κ3(sgn qk)|ǫα|

+ κ4(sgn qk) ·
[

−|ǫα| + O(1)|ǫα||q−k |2 + O(1)|ǫα|
(

∑

s>k

|q−s |
)

+ O(1)ǫ2α

]

.
(7.18)

Recalling the formula (8.50) from [B]:

ẋα − λ−k =
q−k + ǫα

2
+ O(1)



|q−k + ǫα|(|q−k | + |ǫα|) +
∑

s6=k

|q−s |



 ,

the estimate (7.18) implies for κ3 large (also κ3 > 2κ4) and ǫ0 small:

(∆Wk)wk|q−k |(λ−k − ẋα) ≤− κ3

3
wk|ǫα||q−k ||q−k + ǫα|

+ O(1)κ3wk|ǫα||q−k | ·





∑

s6=k

|q−s |



+ O(1)κ4ǫ
2
α.

(7.19)

Now, by the same reasoning as in [B] chapter 8.2. page 165, we see that for ν small
and some constant c > 0, there holds:

Wkwk∆[|qk|(λk − ẋα)] +
∑

i6=k

Eα,i ≤ −cκ3|ǫα|
∑

s∈I

|q−s |

+ O(1)|ǫα|



|q−k ||q−k + ǫα| +
∑

s6=k

|q−s |



 ,

(7.20)

∑

i6=k

|q−i | ≤ |q−k ||q−k + ǫα| + 2
∑

s∈I

|q−s |.(7.21)

The index set I is defined as: I = {i : 1 . . . n; i 6= k and sgn q−i = sgn q+i }. Thus
(7.19) becomes by (7.21):

(∆Wk)wk|q−k |(λ−k − ẋα) ≤− κ3

4
wk|ǫα||q−k ||q−k + ǫα|

+ O(1)κ3wk|ǫα||q−k | ·
(

∑

s∈I

|q−s |
)

+ O(1)κ4ǫ
2
α,

if only ν is small enough. In view of (7.20), this implies:

n
∑

i=1

Eα,i ≤− cκ3|ǫα|
(

∑

s∈I

|q−s |
)

+ O(1)|ǫα|
(

|q−k ||q−k + ǫα| +
∑

s∈I

|q−s |
)

− κ3

4
wk|ǫα||q−k ||q−k + ǫα| + O(1)κ3wk|ǫα||q−k | ·

(

∑

s∈I

|q−s |
)

+ O(1)κ4ǫ
2
α,

and consequently we obtain (7.4) for κ3 large.
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8. Technical lemmas

Lemma 8.1. Let

v = Sn(q−n ) ◦ . . .S1(u, q
−
1 ), Sk(v, ǫα) = Sn(q+n ) ◦ . . .S1(u, q

+
1 ),

with u ∈ Ω and {q−i }n
i=1, ǫα small enough. For every i : 1 . . . n, call λ±i the speed of

the shock wave q±i , as in (1.11). Let E be any quantity satisfying the bound:

E = O(1)|ǫα|
{

|q−k |2 +
∑

s>k

|q−s | + |ǫα|
}

Then:

(i) |q+k − q−k − ǫα| +
∑

i6=k

|q+i − q−i | = E,

(ii) λ+
k − λ−k = ǫα/2 + E,

(iii) for all i < k we have: λ+
i − λ−i = E, while for all i > k there is: λ+

i − λ−i =
O(1)|ǫα| + E.

Proof. We will prove only (i), the other assertions following similarily. For every
i : 1 . . . n, introduce an auxiliary function Gi:

Gi(u, q
−
1 . . . q

−
n , ǫα) = q+i − q−i .

We have:

Gi =ǫα ·
[

∂Gi

∂ǫα
(u, q−1 . . . q

−
k , q

−
i = 0 for i > k, ǫα = 0) + O(1)

∑

s>k

|q−s |
]

+ O(1)ǫ2α.

(8.1)

Moreover

Gi(u, q
−
1 . . . q

−
k , q

−
i = 0 for i > k, ǫα = 0) − δik · ǫα

= O(1)||G(u−k−1, q
−
k , ǫα)||,

(8.2)

where the quantity G is defined as:

G(u−k−1, q
−
k , ǫα) = Sk(u−k−1, q

−
k + ǫα) − Sk(Sk(u−k−1, q

−
k ), ǫα)

for u−k−1 = Sk−1(q
−
k−1) ◦ . . .S1(u, q

−
1 ). Since

G(u−k−1, q
−
k = q, ǫα = −q) = G(u−k−1, q

−
k = q, ǫα = 0)

= G(u−k−1, q
−
k = 0, ǫα = q) = 0,

consequently we obtain:

∂2G

∂ǫα∂q
−
k

(u−k−1, q
−
k = 0, ǫα = 0) = 0.

Thus

G(u−k−1, q
−
k , ǫα) = O(1)(|ǫα| · |q−k |2 + ǫ2α)

which in view of (8.1) and (8.2) implies (i).

We now prove a generalization of the observation in section 3.
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Lemma 8.2. Assume that the L1 stability condition (3.1) is satisfied. There exists
a constant γ > 0, depending only on the weights {wi(θ)}i6=k such that the following
holds. Let u, v, ǫα, {q±i } be as in Lemma 8.1 with all {q−i }i≤k be equal to 0 and
ǫα ≥ 0. By w±

i we denote the weight associated to the shock wave q±i , computed at
its left state, by means of (2.1). Then:

∑

i>k

[

w+
i |q+i | · (λ+

i − λk(v)) − w−
i |q−i | · (λ−i − λk(v))

]

+
∑

i<k

w+
i |q+i | · |λ+

i − λk(v)| ≤ −γǫα ·
∑

i>k

|q−i |.
(8.3)

Analogously, if:

Sk(q+k ) ◦ Sk−1(q
−
k−1) ◦ . . .S1(u, q

−
1 )

= Sn(q+n ) ◦ . . .Sk+1(q
+
k+1) ◦ Sk−1(q

+
k−1) ◦ . . .S1(q

+
1 ) ◦ Sk(u, ǫα),

for some u ∈ Ω and {q−i }i<k with ǫα ≥ 0 then

∑

i<k

[

w+
i |q+i | · (λ+

i − λk(u)) − w−
i |q−i | · |λ−i − λk(u)|

]

+
∑

i>k

w+
i |q+i | · |λ+

i − λk(u)| ≤ −γǫα ·
∑

i<k

|q−i |.

Proof. We only prove the formula (8.3); the second part of the lemma follows by
the same method. By standard interaction estimates [Sm] we have:

∀ i > k |q+i | − |q−i | ≤
∑

s>k, s6=i

ǫα|q−s | · |〈li, [rk, rs]〉(v)|

+ ǫα|q−i | · 〈li, [rk, ri]〉(v)

+ O(1)ǫα

(

∑

s>k

|q−s |
)





∑

s≥k

|q−s |



 ,

(8.4)

∀ i < k |q+i | ≤
∑

s>k

ǫα|q−s | · |〈li, [rk, rs]〉(v)|

+ O(1)ǫα

(

∑

s>k

|q−s |
)





∑

s≥k

|q−s |



 .

(8.5)

Also we have:

∀ i > k w+
i − w−

i = ǫα · w′
i(λk(v)) + O(1)

[

ǫα ·
(

∑

s>k

|q−s |
)

+ ǫ2α

]

,(8.6)

∀ i > k λ+
i − λ−i = ǫα · 〈Dλi, rk〉(v) + O(1)

[

ǫα ·
(

∑

s>k

|q−s |
)

+ ǫ2α

]

.(8.7)
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Thus:
∑

i>k

|q−i |(w+
i − w−

i )|λ+
i − λk(v)| +

∑

i>k

|q−i |w−
i (λ+

i − λ−i )

≤
∑

i>k

w′
i(λk(v)) · ǫα|q−i | · |λi(v) − λk(v)| +

∑

i>k

wi(v)ǫα|q−i | · 〈Dλi, rk〉(v)

+ O(1)



ǫ2α ·
(

∑

s>k

|q−s |
)

+ ǫα ·
(

∑

s>k

|q−s |
)2


 .

(8.8)

Moreover, by (8.4) one arrives at:

∑

i>k

w+
i ·
(

|q+i | − |q−i |
)

|λ+
i − λk(v)|

≤
∑

i>k

ǫα|q−i | ·
(

wi(v)|λi(v) − λk(v)| · 〈li, [rk, ri]〉(v)

+
∑

s>k, s6=i

ws(v)|λs(v) − λk(v)| · |〈ls, [ri, rk]〉(v)|
)

+ O(1)ǫα

(

∑

s>k

|q−s |
)(

ǫα +
∑

s>k

|q−s |
)

.

(8.9)

Adding (8.8) and (8.9), and noting (8.5) we see that the left hand side of (8.3) can
be estimated as follows:

ǫα ·
∑

i>k

|q−i | · |λi(v) − λk(v)| ·
[

w′
i(λk(v)) + wi(v) ·

〈Dλi, rk〉(v)
|λi(v) − λk(v)|

+ wi(u) · 〈li, [rk, ri]〉(v) +
∑

i6=k,i

ws(v)
|λs(v) − λk(v)|
|λi(v) − λk(v)| · |〈ls, [ri, rk]〉(v)|

]

+ O(1)ǫα

(

∑

s>k

|q−s |
)(

ǫα +
∑

s>k

|q−s |
)

.

(8.10)

Applying the inequality (3.1) with θ ∈ (−c,Θ + c) such that λk(v) = λk(Rk(θ))
and by a compactness argument, we obtain that (8.10) is bounded by the quantity
in the right hand side of (8.3). The proof is done.

Lemma 8.3. Assume that the L1 stability condition (3.1) is satisfied. Let u, v, ǫα,
{q±i }n

i=1 be as in Lemma 8.1, with ǫα ≥ 0. Then:
∑

i6=k

[

w+
i |q+i |(λ+

i − λk(v)) − w−
i |q−i |(λ−i − λk(v))

]

≤ −γ1 · ǫα ·
(

∑

s>k

|q−s |
)

+ O(1)
[

ǫα · |q−k |2 + ǫ2α
]

,

for some constant γ1 > 0, depending only on weights {wi(θ)}n
i=1 and the uniform

system bounds O(1).
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Proof. Let Ξ denote the left hand side of the desired inequality. We write {q̃s}n
s=1

and {q̂s}n
s=1 for the quantities introduced implicitely by:

Sn(q̃n) ◦ . . .Sk+1(q̃k+1) ◦ Sk−1(q̃k−1) ◦ . . .S1(q̃1) ◦ Sk(uk, q̃k) = Sk(v, ǫα),

Sk(v, ǫα) = Sn(q̂n) ◦ . . .S1(q̂1) ◦ Sk(uk−1, q
−
k−1 + q̃k).

uk−1 = Sk−1(q
−
k−1) ◦ . . .S1(u, q

−
1 ) and uk = Sk(uk−1, q

−
k ).

By w̃s, ŵs and λ̃s, λ̂s, we naturally denote weights and speeds corresponding to the
waves q̃s and q̂s. We then have:

Ξ =

{

∑

i>k

[

w̃i|q̃i|(λ̃i − λk(v)) − w−
i |q−i |(λ−i − λk(v))

]

−
∑

i<k

w̃i|q̃i|(λ̃i − λk(v))

}

+
∑

i6=k

w+
i |q+i |(λ+

i − λk(v)) −
∑

i<k

w−
i |q−i |(λ−i − λk(v))

−
∑

i>k

w̃i|q̃i|(λ̃i − λk(v)) +
∑

i<k

w̃i|q̃i|(λ̃i − λk(v)).

(8.11)

Observe that q̃k = ǫα + O(1)ǫα ·
(
∑

s>k |q−s |
)

. Using the same arguments as in the
proof of Lemma 8.1, we arrive at:





∑

i6=k

|q̃i − q̂i|



+ |q̂k| ≤ O(1) ·
[

ǫα|q−k |2 + ǫ2α
]

.(8.12)

A similar bound is true for the corresponding differences of λ̂i and λ̃i, and ŵi and
w̃i. Estimating the first term in (8.11) in view of Lemma 8.3, we obtain:

Ξ ≤− γǫα ·
(

∑

s>k

|q−s |
)

+ O(1) ·
[

ǫα · |q−k |2 + ǫ2α
]

+
∑

i>k

[

w+
i |q+i |(λ+

i − λk(v)) − ŵi|q̂i|(λ̂i − λk(v))
]

+
∑

i<k

[

w+
i |q+i |(λ+

i − λk(v)) − w−
i |q−i |(λ−i − λk(v))

]

+
∑

i<k

ŵi|q̂i|(λ̂i − λk(v)).

(8.13)
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Now, by standard interaction estimates [L], we have:

∑

i<k

∣

∣q+i − (q−i + q̂i)
∣

∣+
∑

i>k

∣

∣q+i − q̂i
∣

∣

= O(1) ·





(

∑

i<k

|q̂i|
)

·
(

∑

i<k

|q−i |
)

+
∣

∣q−k + ǫα
∣

∣ ·





∑

i≤k

|q̂i|









= O(1)ǫα ·
[(

∑

s>k

|q−s |
)

+ |q−k |2 + ǫα

]

·
[(

∑

s<k

|q−s |
)

+ |q−k | + ǫα

]

= O(1) · ǫα ·
(

∑

s>k

|q−s |
)[(

∑

s<k

|q−s |
)

+ |q−k |
]

+ O(1)
[

ǫα|q−k |2 + ǫ2α
]

.

(8.14)

Noting that
(
∑

s<k |q−s |
)

+ |q−k | = O(1) · (ǫ0 + ν), we obtain:

∑

i>k

[

w+
i |q+i |(λ+

i − λk(v)) − ŵi|q̂i|(λ̂i − λk(v))
]

= O(1) · (ǫ0 + ν)ǫα ·
(

∑

s<k

|q−s |
)

+ O(1) · ǫα|q−k |2 + O(1)ǫ2α.

In view of (8.14), exactly the same bound as above is valid for the terms:

∑

i<k

[

w+
i |q+i |(λ+

i − λk(v)) + ŵi|q̂i|(λ̂i − λk(v)) − w−
i |q−i |(λ−i − λk(v))

]

.

Hence by (8.13) the lemma follows, if only the constant ǫ0 and ν is small enough.

9. A sufficient condition for admissibility of initial data – a proof

of Lemma 4.6

Lemma 4.6. Let ū ∈ cl Ec,δ for some sufficiently small c, δ > 0, as in Theorem I.
Then ū ∈ D̄ǫ0 , defined in (4.5), for some ǫ0 = ǫ0(δ) and limδ→0 ǫ0(δ) = 0.

Proof. 1. Without loss of generality we may assume that ū is piecewise constant,
consecutively attaining N states ul = u0, u1 . . . uN = ur in Rn, that for each
α : 1 . . .N − 1 we have: ||uα+1 − uα|| < δ, and that (i) (ii) (iii) as in Theorem I are
satisfied. For α : 0 . . .N − 1 and i : 1 . . . n define:

γi
α = 〈li(uα), uα+1 − uα〉.

Note that the self-similar solution of each Riemann problem (uα, uα+1) is composed
of n waves having corresponding strengths ǫ1α . . . ǫ

n
α with the following obvious es-

timate:

N−1
∑

α=0

n
∑

i=1

|γi
α − ǫiα| ≤

N−1
∑

α=0

||uα+1 − uα||2 < δ ·
N−1
∑

α=0

||uα+1 − uα|| = O(1)δ.
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To simplify the presentation we will assume that ||rk(u)|| = 1 for all u ∈ Ω. In
order to prove the Lemma it is thus enough to show that:

∣

∣

∣

∣

∣

(

N−1
∑

α=0

(γk
α)+

)

− |Rk|
∣

∣

∣

∣

∣

< ǫ0 and
N−1
∑

α=0



(γk
α)− +

∑

i6=k

|γi
α|



 < ǫ0,(9.1)

where |Rk| denotes the arc-length of the curve Rk(θ), θ ∈ [0,Θ].

2. Fix a small constant c > 0 and divide the set of discontinuities in ū into three
subsets:

G =

{

α : 0 . . .N − 1,

∣

∣

∣

∣

∣

∣

∣

∣

uα+1 − uα

||uα+1 − uα|| − rk(uα)

∣

∣

∣

∣

∣

∣

∣

∣

< c

}

,

B′ =

{

α : 0 . . .N − 1,

∣

∣

∣

∣

∣

∣

∣

∣

uα+1 − uα

||uα+1 − uα|| + rk(uα)

∣

∣

∣

∣

∣

∣

∣

∣

< c

}

,

B = {0 . . .N − 1} \ (G ∪B′).

It follows that for all α ∈ G:
∣

∣

∣

∣

γk
α

||uα+1 − uα|| − 1

∣

∣

∣

∣

+
∑

i6=k

∣

∣

∣

∣

γi
α

||uα+1 − uα||

∣

∣

∣

∣

= O(1)c.

Thus
∣

∣

∣

∣

∣

∑

α∈G

(γk
α)+ −

∑

α∈G

||uα+1 − uα||
∣

∣

∣

∣

∣

+
∑

α∈G



(γk
α)− +

∑

i6=k

|γi
α|



 = O(1) · c|Rk|.(9.2)

On the other hand, for all α ∈ B ∪B′:
∣

∣

∣

∣

γk
α

||uα+1 − uα|| − 1

∣

∣

∣

∣

+
∑

i6=k

∣

∣

∣

∣

γi
α

||uα+1 − uα||

∣

∣

∣

∣

= O(1).(9.3)

3. Let P : Ωδ −→ Rk be the orthogonal projection of Ωδ onto Rk. Note that if
u = Rk(θ) for some θ ∈ [0,Θ], then DP(u) · v = 〈v, rk(u)〉 · rk(u). We have:

||uα+1 − uα|| − ||P(uα+1) − P(uα)|| ≥ O(1)δ · ||uα+1 − uα||.(9.4)

Also, for each α ∈ B, the cosine of the angle between the vectors uα+1 − uα and
rk(uα) satisfies:

∣

∣cos∠
(

uα+1 − uα, rk(uα)
)∣

∣ ≤ 1 − c2/2.

Thus, for α ∈ B we have:

||P(uα+1) − P(uα)|| ≤ |〈uα+1 − uα, rk(uα)〉| + O(1) · δ||uα+1 − uα||

≤
(

1 − c2

2
+ O(1)δ

)

· ||uα+1 − uα||,

and consequently:

||uα+1 − uα|| − ||P(uα+1) − P(uα)|| ≥
[

c2

2
+ O(1)δ

]

· ||uα+1 − uα||.(9.5)
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By (9.4) and (9.5) we receive:

N−1
∑

α=0

(

||uα+1 − uα|| − ||P(uα+1) − P(uα)||
)

≥ c2

2

∑

α∈B

||uα+1 − uα|| + O(1) · δ
N−1
∑

α

||uα+1 − uα||.
(9.6)

4. On the other hand, with c << 1 we have that ||P(uα+1) − P(uα)|| ≥ 1/2 ·
||uα+1 − uα|| for all α ∈ G ∪B′. Hence:

N−1
∑

α=0

||uα+1 − uα|| −
N−1
∑

α=0

||P(uα+1) − P(uα)||

≤ |Rk| + δ −
(

|Rk| + O(1)δ − 2 ·
∑

α∈B′

||P(uα+1) − P(uα)||
)

≤ O(1)δ −
∑

α∈B′

||uα+1 − uα||.

In view of (9.6) we thus obtain:

c2 ·
∑

α∈B

||uα+1 − uα|| = O(1)δ.(9.7)

The estimates (9.2) (9.3) and (9.7) yield:
∣

∣

∣

∣

∣

(

N−1
∑

α=0

(γk
α)+

)

− |Rk|
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(

∑

α∈G

(γk
α)+

)

−
(

∑

α∈G

||uα+1 − uα||
)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

∑

α∈B

(γk
α)+

)

−
(

∑

α∈B

||uα+1 − uα||
)∣

∣

∣

∣

∣

+ O(1)δ

≤O(1)c+ O(1)
∑

α∈B

||uα+1 − uα|| + O(1)δ

=O(1) · (c+ δ/c2 + δ).

Taking c2 =
√
δ, we receive the first estimate in (9.1) with ǫ0 = O(1)δ1/4. The

second estimate follows in the same manner.
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