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Abstract. In this paper we study a number of algebraic conditions connected with
the stability of strictly hyperbolic n × n systems of conservation laws in one space
dimension

ut + f(u)x = 0.

Such conditions yield existence and continuity of the flow of solutions in the vicinity
of the reference solution. Our main concern is a single rarefaction wave having
arbitrarily large strength.

1. Introduction

In this paper we study a number of algebraic conditions connected with the
stability of strictly hyperbolic n × n systems of conservation laws in one space
dimension:

ut + f(u)x = 0.(1.1)

The well-posedness of (1.1) has been the subject of vast research in recent years; for
an overview see [B, D, HR]. While most of the analysis ([BLY] and more recently
[BiB]) has been carried out in the setting of initial data

u(0, x) = ū(x)(1.2)

having small total variation, at the same time examples in [BC, J] point out that
for the stability of patterns containing large waves, extra assumptions are required,
also when the large reference waves do not interact among themselves [BC, Scho,
Le1, Le3]. These BV and L1 stability conditions, in essence, aim at providing an
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estimate on the distance between a reference solution u0 and another solution to
(1.1) which is viewed as an infinitesimal perturbation of u0. They refer to the
existence of weights with respect to which the flow of the first order perturbation
v generated by the linearized system

vt + Df(u0)vx + [D2f(u0) · v] · (u0)x = 0

becomes a contraction with respect to the BV or the L1 norm, respectively. at states
attained by u0. Under these assumptions the existence of global solutions and their
continuous dependence on initial data has been proven in the vicinity of patterns
containing only noninteracting shocks [Le1] or being a single rarefaction wave [Le3].
The BV stability of general patterns containing shocks, contact discontinuities and
rarefaction waves was established in [Scho].

The objective of this paper is a more detailed study of the stability conditions
arising when u0 contains rarefactions. With respect to the case with only shocks
present [BC, Le2], the main difficulty here stems from the change of weights along
rarefaction curves. This accounts for the change of location of perturbation waves
of different characteristic families as they pass through each rarefaction fan. Hence
we mainly focus on the case when u0 is a single rarefaction wave of arbitrarily large
strength. The stability conditions related to patterns with multiple (noninteracting)
shocks and rarefaction waves are presented in section 8

We now introduce the main hypothesis and set the notation.




The system (1.1) is strictly hyperbolic in a domain Ω ⊂ Rn to be spec-
ified later. More precisely, for each u ∈ Ω the Jacobian matrix Df(u)
of the smooth flux f : Ω −→ Rn has n distinct and real eigenvalues:
λ1(u) < . . . < λn(u).

(H1)

Let {ri(u)}n

i=1 be the basis of right eigenvectors of Df having unit length:

Df(u)ri(u) = λi(u)ri(u), ||ri(u)|| = 1.

Call {li(u)}n
i=1 the dual basis of left eigenvectors so that 〈ri(u), lj(u)〉 = δij for all

i, j : 1 . . . n and all u ∈ Ω.

Fix k : 1 . . . n and consider an integral curve Rk of the vector field rk:

d

dθ
Rk(θ) = rk(Rk(θ)),

ul = Rk(0), ur = Rk(Θ), Θ > 0.
(1.3)

Rk is called the rarefaction curve joining the left and right states ul, ur ∈ Ω. For a
small ǫ > 0 we define the domain:

Ω = Ωǫ = {u ∈ Rn : ||u −Rk(θ)|| < ǫ for some θ ∈ [0, Θ]} .(1.4)

We further assume that:
[

In Ω, each characteristic field i : 1 . . . n is either linearly degenerate:
〈Dλi, ri〉 ≡ 0, or it is genuinely nonlinear which means that 〈Dλi, ri〉 > 0.
The k-th characteristic field is assumed to be genuinely nonlinear.

(H2)
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The piecewise smooth, self-similar function, called the centered rarefaction wave
is given by:

u0(t, x) =





ul if x < tλk(ul)
Rk(θ) if x = tλk(Rk(θ)), θ ∈ [0, Θ]

ur if x > tλk(ur)
(1.5)

and provides an entropy admissible solution of (1.1) [Sm, D].

The paper is constructed as follows. In section 2 we present the BV stability
condition conditions (BV) and the L1 stability condition (L1). We also introduce
a weaker condition which is sufficient for the solvability of Riemann problems in
Ω. In section 3 we prove that our conditions are one stronger than the other, while
sections 4, 5 and 6 gather their various properties. In particular, in section 5 we
display an interesting connection between the weighted stability conditions and the
Riccati equation in case n = 3. Section 7 contains examples complementing our
work. In section 8 we restate some results of sections 2 and 3, in the context of a
general pattern u0 containing several strong shocks and rarefaction waves.

To appreciate the role of the studied conditions, we end this section by recalling
the precise statements of the stability recults.

Theorem 1.1. [Le3] Assume that (H1), (H2) and the BV stability condition (BV)
hold. For c, δ > 0 let Ec,δ denote the set of all continuous functions ū satisfying:

(i) ū(x) ∈ Ωc for all x ∈ R,
(ii) limx→−∞ ū(x) = ul and limx→∞ ū(x) = ur,
(iii) |TV (ū) − |Rk|| < δ, where |Rk| is the arc-length of the rarefaction curve

Rk(θ), θ ∈ [0, Θ].

There exists c, δ > 0 such that for every ū ∈ cl Ec,δ, where cl denotes the closure
in L1

loc, the Cauchy problem (1.1) (1.2) has a global entropy admissible solution
u(t, x).

Theorem 1.2. [Le3] Assume that (H1), (H2) and the L1 stability condition (L1)
are satisfied. Then there exists a closed domain D ⊂ L1

loc(R, Ω), containing all
continuous functions ū satisfyling (i), (ii), (iii) in Theorem 1.1, for some c, δ > 0,
and there exists a semigroup S : D × [0,∞) −→ D such that:

(i) ||S(ū, t) − S(v̄, s)||L1 ≤ L · (|t − s| + ||ū − v̄||L1) for all ū, v̄ ∈ D, all t, s ≥ 0
and a uniform constant L, depending only on the system (1.1),

(ii) for all ū ∈ D, the trajectory t 7→ S(ū, t) is the solution to (1.1) (1.2) given in
Theorem 1.1.
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2. Stability conditions for strong rarefactions

Define the square (n − 1)-dimensional production matrix function:

P(θ) = [pij(θ)]i,j:1...n,
i,j 6=k

for θ ∈ [0, Θ],

pij(θ) =

{
|〈lj , [ri, rk]〉(Rk(θ))| if i 6= j,

sgn(k − i) · 〈li, [ri, rk]〉(Rk(θ)) if i = j,
(2.1)

where [ri, rk] = Dri · rk − Drk · ri stands for the Lie bracket of the vector fields ri

and rk. We have the following:




BV Stability Condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0, Θ] → R+ such that

P(θ) ·




w1(θ)
...

wk−1(θ)
wk+1(θ)

...
wn(θ)




<




w′
1(θ)
...

w′
k−1(θ)

−w′
k+1(θ)
...

−w′
n(θ)




for every θ ∈ (0, Θ).

Here w′
i = dwi/dθ and the above vector inequality holds component-

wise.

(BV)

Define the mass production matrix function:

M(θ) = [mij(θ)]i,j:1...n,
i,j 6=k

for θ ∈ [0, Θ],

mij(θ) =





pij(θ) ·
|λj − λk|
|λi − λk|

(Rk(θ)) if i 6= j,

pij(θ) +
Dλi · rk

|λi − λk|
(Rk(θ)) if i = j.

(2.2)

Then, we have:

[
L1 Stability Condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0, Θ] → R+ such that the inequality in (BV)
is satisfied with M(θ) replacing the matrix P(θ).

(L1)

A version of (L1), where all weights wi are linear functions of the parameter θ, was
introduced in [BM]. Condition (L1) is more general, as can be seen from Example
7.3, compare also Remark 7.4. On the other hand, (L1) holds if and only if it
is satisfied with constant and equal weights, for some rescaling of the coordinate
system {ri}n

i=1 (see Corollary 4.2).

In section 3 we will prove that (L1) is stronger than the condition (BV). Below
we introduce a third stability condition, guaranteing the existence result of the type
of Theorem 1.1, in the context of the Riemann initial data.
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Define the n×n transport matrix function T(θ) to be the solution of the following
ODE system:





d

dθ
T(θ) = Drk(Rk(θ)) · T(θ), θ ∈ [0, Θ],

T(0) = Idn.
(2.3)

Also, for any θ1, θ2 ∈ [0, Θ] with θ1 ≤ θ2, let F (θ1, θ2) be the n × n matrix whose
columns ci(θ1, θ2) ∈ Rn, i : 1 . . . n are given by:

ci(θ1, θ2) = T(θ2) ·T(θ1)
−1 · ri(Rk(θ1)) for i : 1 . . . k − 1,

ci(θ1, θ2) = ri(Rk(θ2)) for i : k . . . n.
(2.4)

We may now set:

[
Finiteness Condition: For every θ1, θ2 ∈ [0, Θ] with θ1 ≤ θ2, the
matrix F (θ1, θ2) is invertible.

(F)

Theorem 2.1. Assume (H1), (H2) and let the Finiteness Condition (F) hold.
There exist ǫ, δ > 0 such that for every u−, u+ ∈ Ωǫ with λk(u+) − λk(u−) > −δ,
the Riemann problem (1.1) (1.2) with:

ū = u(0, x) =

{
u− x < 0,
u+ x > 0,

(2.5)

has the unique self-similar solution, attaining states insinde Ωǫ. The solution is
composed of n−1 weak waves of families 1 . . . k−1, k+1 . . . n, and a k-th rarefaction
wave or a weak k-th shock.

Proof. By a standard argument the assumptions (H1) and (H2) imply the assertion
for u−, u+ ∈ Ωǫ such that |λk(u+) − λk(u−)| < δ, if only δ and ǫ are small [L, B].
We will prove that the invertibility of F (0, Θ) is sufficient for the solvability of
(1.1) (2.5) whenever ||u− − ul|| < δ and ||u+ − ur|| < δ with a small δ > 0. By a
compactness argument, the proof will be then complete.

For each i : 1 . . . n and u ∈ Ω, call σ 7→ Si(u, σ) and σ 7→ Ri(u, σ) the i-th
shock and the i-th rarefaction curves through the point u [L, Sm]. In particular,
by (1.3), we have Rk(ul, θ) = Rk(θ). Both curves are defined at least locally, that
is for σ ∈ (−ǫ, ǫ) and have second order contact at σ = 0. The i-th wave curve
σ 7→ Wi(u, σ) is obtained by taking the positive part of Ri (σ ≥ 0) and the negative
part of Si (σ < 0).

Define an auxiliary C2 function G(u−, u+, σ1 . . . σn) ∈ Rn, whose arguments stay
close to ul, ur, σi = 0 for i 6= k and σk = Θ, respectively:

G(u−, u+, σ1 . . . σn) = Wn(σn) . . . ◦Wk+1(σk+1) ◦ Rk(σk)

◦Wk−1(σk−1) . . . ◦W1(u
−, σ1) − u+.

Notice that by (1.3) the function Rk(u, σ) is defined on Ωǫ × (−ǫ, Θ+ ǫ) for a small
ǫ > 0. We clearly have:

∂G

∂(σ1 . . . σn)
(ul, ur, σi = 0 for i 6= k and σk = Θ) = F (0, Θ),

as d/dσWi(u, 0) = ri(u) and d/dσRk(u, 0) = rk(u) for every u ∈ Ω. Since F (0, Θ)
is invertible, by implicit function theorem we conclude the result.



6 MARTA LEWICKA

Remark 2.2. We have used the following property of the matrix T(θ):

T(θ) · ri(ul) = lim
ǫ→0

Rk(ul + ǫri(ul), θ) −Rk(θ)

ǫ
(2.6)

For i < k, the left hand side of (2.6) is equal to ci(0, θ). Thus the first k − 1
columns of the finiteness matrix F (θ1, θ2) are equal to the eigenvectors at Rk(θ1)
corresponding to characteristic families i < k (slow modes), transported by the
flow of the ODE (1.3) to the point Rk(θ2). The condition (F) simply says that
this set of vectors can be completed by the remaining right eigenvectors at Rk(θ2)
(that is, the eigenvectors corresponding to the fast modes i ≥ k) to form a basis
of Rn. Obviously, the k-th column ck in (2.4) can be computed by any of the two
formulae because the flow of (1.3) preserves the k-th eigenvector: T(θ2) ·T(θ1)

−1 ·
rk(Rk(θ1)) = rk(Rk(θ2)).

We have shown that the invertibility of F (0, Θ) implies the solvability of any
Riemann problem (1.1) (2.5) close to the initial data (u− = ul, u

+ = ur). This
condition is strictly weaker than (F), as shown by the Example 7.1. Also, it follows
from Example 7.1 that (F) is a nontrivial condition.

3. A proof of (L1) ⇒ (BV) ⇒ (F)

In this section we prove the basic relation among the three stability conditions
from section 2. We first establish an abstract lemma on matrix analysis.

Lemma 3.1. Let P̃(θ) = [p̃ij(θ)]i,j:1...n be a continuous n × n matrix function,
defined on an interval [0, Θ]. Fix k : 1 . . . n and define an associated matrix function

P̂(θ) = [p̂ij(θ)]i,j:1...n by:

p̂ij(θ) =

{
|p̃ij(θ)| if i 6= j,

(sgn (i − k)) · p̃ii(θ) if i = j.

Assume that there exist positive smooth functions w1 . . . wn : [0, Θ] → R+ such that
the following vector inequality is satisfied componentwise:

P̂(θ) ·




w1(θ)
...

wn(θ)


 <




w′
1(θ)
...

w′
k−1(θ)

−w′
k(θ)
...

−w′
n(θ)




for every θ ∈ (0, Θ).(3.1)

Then we have:

(i) Let b : [0, Θ] −→ Rn, b(θ) = (b1(θ) . . . bn(θ)) satisfy:

d

dθ
b(θ) = b(θ)t · P̃(θ) for θ ∈ [0, Θ],(3.2)

n∑

i=1

|bi(0)| > 0.(3.3)

The above implies that:
∑

i<k

(
|bi(Θ)|wi(Θ) − |bi(0)|wi(0)

)
>
∑

i≥k

(
|bi(Θ)|wi(Θ) − |bi(0)|wi(0)

)
.(3.4)
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(ii) Calling B the solution of the matrix differential equation:




d

dθ
B(θ) = P̃(θ) · B(θ), θ ∈ [0, Θ],

B(0) = Idn,
(3.5)

the (k − 1) × (k − 1) principal minor of B(Θ) is invertible.

Proof. (i). Using (3.2), (3.3) and (3.1) we obtain:
∑

i<k

(sgn bi) · (bi · wi)
′ −
∑

i≥k

(sgn bi) · (bi · wi)
′

>

n∑

i=1


(sgn bi) · (sgn (k − i)) · wi ·

n∑

j=1

bj p̃ji


+

n∑

i=1


|bi| ·

n∑

j=1

wj p̂ij




=



∑

i6=j

|bi|wj p̂ij + (sgn bj)(sgn (k − j)) · biwj p̃ij




+

[
n∑

i=1

|bi|wip̂ii + (sgn (k − i)) · |bi|wip̃ii

]

≥



∑

i6=j

|biwj p̂ij | − |biwj p̃ij |


+

[
n∑

i=1

|bi|wi(p̂ii + (sgn (k − i)) · p̃ii)

]
.

(3.6)

Since p̂ii = −(sgn (k − i))p̃ii for every i : 1 . . . n, and |p̃ij | = |p̂ij | for i 6= j, we
conclude that the right hand side of (3.6) is nonnegative, and thus:

∀ θ ∈ [0, Θ]
∑

i<k

(sgn bi)(θ) · (bi · wi)
′(θ) >

∑

i≥k

(sgn bi)(θ) · (bi · wi)
′(θ).(3.7)

Applying
∫ Θ

0 dθ to both sides of (3.7) we now arrive at (3.4).

(ii). We fix k > 1 and argue by contradiction. If the (k − 1) × (k − 1) principal
minor of B(Θ) was singular, then there would exist b : [0, Θ] −→ Rn satisfying
(3.2), (3.3) together with:

∀ i ≥ k bi(0) = 0 and ∀ i < k bi(Θ) = 0.(3.8)

In view of (3.4), the condition (3.8) now implies

−
∑

i<k

|bi(0)|wi(0) >
∑

i≥k

|bi(Θ)|wi(Θ),

which is clearly a contradiction, as the weights {wi} are all positive functions.

Theorem 3.2. (BV) ⇒ (F).

Proof. It suffices to show that the existence of positive weights in (BV) implies the
invertibility of the matrix F (0, Θ).

For θ ∈ [0, Θ], let R(θ) denote the n × n matrix whose columns are the right
eigenvectors of the matrix Df(Rk(θ)). Obviously R(θ) is non-singular and the rows
of its inverse R(θ)−1 provide the basis of left eigenvectors {li(Rk(θ))}. It is easily
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seen that the invertibility of F (0, Θ) is equivalent to the invertibility of the product
R(Θ)−1 · F (0, Θ), which is in turn equivalent to the following condition:

The (k−1)×(k−1) principal minor of R(Θ)−1 ·T(Θ)·R(0) is invertible.(3.9)

Recall that the transport matrix function T is defined in (2.3).

Let P̃(θ) = [p̃ij(θ)]i,j:1...n be the n×n matrix function, with its coefficients given
by:

p̃ij(θ) = 〈lj, [rk, ri]〉 (Rk(θ)), θ ∈ [0, Θ].

Let

B(θ) = R(θ)−1 · T(θ) · R(0).(3.10)

We will show that B satisfies (3.5) on [0, Θ]. Indeed, one has:

B(0) = R(0)−1 ·T(0) · R(0) = R(0)−1 · R(0) = Idn.

Using (3.10) and (2.3) we calculate:

d

dθ
B(θ) =

{
d

dθ

[
R(θ)−1

]
·T(θ) + R(θ)−1 · d

dθ
T(θ)

}
· R(0)

=

{
−R(θ)−1 · d

dθ
[R(θ)] · R(θ)−1 · T(θ) + R(θ)−1 · Drk(θ) · T(θ)

}
· R(0)

=

{
−R(θ)−1 · d

dθ
[R(θ)] + R(θ)−1 · Drk(θ) · R(θ)

}
· R(θ)−1 ·T(θ) · R(0).

(3.11)

Since clearly :

P̃(θ) = R(θ)−1 ·
[
Drk(θ) · R(θ) − d

dθ
R(θ)

]
,

we conclude in view of (3.11) and (3.10) that B satisfies the differential equation
in (3.5).

On account of (3.9), it remains thus to prove that the condition (BV) implies:

The (k − 1) × (k − 1) principal minor of B(Θ) is invertible.(3.12)

Let P̂(θ) = [p̂ij(θ)]i,j:1...n be given by the formula in (2.1), for every θ ∈ [0, Θ].

Note that the k-th row of P̂(θ) contains only zero elements. It is then easy to see
that the condition (BV) is equivalent to the existence of positive smooth weights
w1 . . . wn : [0, Θ] −→ R+ such that (3.1) holds. Indeed, one implication is trivial,
and the converse one is obtained by taking

wk(θ) = ǫ · (Θ + 1 − θ),

with ǫ > 0 small enough. Now (3.1) implies (3.12) by Lemma 3.1 and our proof is
complete.

Remark 3.3. The implication (F) ⇒ (BV) is not true, as shown by Example 7.5.

We end this section by an easy observation.

Theorem 3.4. (L1) ⇒ (BV).
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Proof. Assume that (L1) holds. For i 6= k define

w̃i(θ) = |λi(θ) − λk(θ)| · wi(θ), θ ∈ [0, Θ].(3.13)

We claim that (BV) is satisfied with weights {w̃i}i6=k as in (3.13). Indeed, for every
i 6= k we have:



∑

j 6=k

pijw̃j


− (sgn (k − i)) · w̃′

i

=



∑

j 6=i,k

pij · |λj − λk| · w̃j


+ pii · |λi − λk| · w̃i

−
(
〈Dλk, rk〉wi − 〈Dλi, rk〉wi + (λk − λi)w

′
i

)

= |λi − λk| ·








∑

j 6=i,k

pij ·
|λj − λk|
|λi − λk|

· w̃j


+ piiwi +

〈Dλi, rk〉
|λi − λk|

· wi






− 〈Dλk, rk〉wi

= |λi − λk| ·








∑

j 6=i,k

mijwj



+ miiwi − (sgn (k − i)) · w′
i





− 〈Dλk, rk〉wi,

(3.14)

the last equality being a consequence of (2.2). The right hand side of (3.14) is clearly
negative, in view of (L1) and the genuine nonlinearity of the k-th characteristic field.
This proves the theorem.

4. Miscellaneous properties of (BV) and (L1)

In this section we gather several useful properties of the BV and L1 stability
conditions. We mainly focus on (BV) because (L1) has the same structure, and
consequently results on (BV) can be easily translated for (L1) (see Theorem 4.6).

The next theorem states that the condition (BV) is independent of the scaling
of eigenvectors {ri}n

i=1 in Ω.

Theorem 4.1. For every i : 1 . . . n and u ∈ Ω, define

r̃i(u) = αi(u) · ri(u),

where each rescaling function αi : Ω −→ R+ is positive and smooth. Call {l̃i}n
i=1

the dual basis to {r̃i}n
i=1 and let R̃k be the corresponding reparametrisation of Rk:

d

ds
R̃k(s) = r̃k(R̃k(s)),

ul = R̃k(0), ur = R̃k(S), S > 0.

Then (BV) holds if and only there exists smooth positive weights {w̃i(s)}i6=k, defined
along the reparametrised rarefaction; s ∈ [0, S], such that the appropriate vector
inequality as in (BV) holds.
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Proof. Fix s ∈ [0, S] and let θ ∈ [0, Θ] be such that Rk(θ) = R̃k(s). For every
i, j 6= k we have:

〈l̃j , [r̃i, r̃i]〉(R̃k(s)) =

〈
1

αj

lj , αiαk · Dri · rk + αk · 〈Dαi, rk〉 · ri

− αiαk · Drk · ri − αi · 〈Dαk, ri〉 · rk

〉
(Rk(θ))

=

{
αi

αj

αk · 〈lj , [ri, ri]〉 + δij

αk

αj

· 〈Dαi, rk〉
}

(Rk(θ)).

(4.1)

Define

w̃i(s) = αi(Rk(θ)) · wi(θ).(4.2)

Since dθ/ds = αk(R̃k(s)), by (4.1), (4.2) and (2.1) it follows for every i 6= k:



∑

j 6=i,k

w̃j(s) · |〈l̃j , [r̃i, r̃k]〉(R̃k(s))|





+ w̃i(s) · (sgn (k − i)) · 〈l̃i, [r̃i, r̃k]〉(R̃k(s)) − (sgn (k − i)) · w̃′
i(s)

=



∑

j 6=i,k

wj(θ) · |αiαk · 〈lj , [ri, rk]〉|(Rk(θ))




+ wi(θ) · (sgn (k − i)) · (αiαk〈lj , [ri, rk]〉) (Rk(θ))

+ wi(θ) · (sgn (k − i)) · (αk〈Dαi, rk〉) (Rk(θ))

− (sgn (k − i)) ·
{

w′
i(θ) · (αiαk)(Rk(θ)) + wi(θ) · (αk〈Dαi, rk〉)(Rk(θ))

}

= (αiαk)(Rk(θ)) ·








∑

j 6=k

pij(θ)wj(θ)


− (sgn (k − i)) · w′

i(θ)




 .

(4.3)

Recalling that all the rescalings αi are positive, we obtain that the negativity of
the left hand side in (4.3) is equivalent to the inequality in (BV). This finishes the
proof.

Corollary 4.2. The condition (BV) is equivalent to the following one. There exist
smooth rescaling of eigenvectors {ri}i6=k along Rk, given by functions γi : [0, Θ] −→
R+ such that calling

r̃i(Rk(θ)) = γi(θ) · ri(Rk(θ)) for i 6= k and r̃k = rk,

one has for every i 6= k and every θ ∈ [0, Θ]:



∑

j 6=k,i

|〈l̃j , [r̃i, r̃k]〉(Rk(θ))|



+ (sgn (k − i)) · 〈l̃i, [r̃i, r̃k]〉(Rk(θ)) < 0.(4.4)

Above, the vectors {l̃i(Rk(θ))}n
i=1 are the dual basis to {r̃i(Rk(θ))}n

i=1.

Proof. If (BV) holds, then one may take

γi(θ) =
1

wi(θ)
for i 6= k, θ ∈ [0, Θ].
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On the other hand, if the functions γi are given, take αi : Ω −→ R+ to be any
smooth positive reparametrisation such that

αi(Rk(θ)) = γi(θ), θ ∈ [0, Θ].

Since the eigenvectors rk are not to be rescaled, both implications follow now from
Theorem 4.1.

Theorem 4.3. The stability condition (BV) is satisfied in either of the following
cases.

(i) k = 1 or n, that is when the wave in (1.5) is of the extreme characteristic
field.

(ii) Θ is sufficiently small, that is when the wave in (1.5) is weak.

Proof. (i). To fix the ideas, assume that k = n. Let Z is any constant (n−1)×(n−1)
matrix whose components are strictly bigger than those of the matrix P(θ), for all
θ ∈ [0, Θ]. Take w = (w1 . . . wk−1, wk+1 . . . wn) to be the solution of:

w′ = Z · w, wi(0) = 1 for i 6= k,(4.5)

Since the fundamental solution of (4.5) has all its components positive, each wi

must be a positive function and consequently the inequality in (BV) holds.

(ii). Define Z(θ) = P(θ) + Idn−1, for θ ∈ [0, Θ]. The initial-value problem:

Z(θ) ·




w1

...
wk−1

wk+1

...
wn




(θ) =




w′
1
...

w′
k−1

−w′
k+1
...

−w′
n




(θ), wi(0) = 1 for all i 6= k,

has a local solution, remaining positive on some interval [0, ǫ], and therefore satis-
fying (BV).

Recall that the system (1.1) is said to have a coordinate system of Riemann
invariants [D, Sm, S] if there exist smooth functions v1 . . . vn : Ω −→ R such that:

〈Dvi, rj〉(u)

{
= 0 if i 6= j
6= 0 if i = j

for every u ∈ Ω.(4.6)

Using the Frobenius theorem, one can prove (see [D]) that (4.6) implies

[ri, rj ](u) ∈ span {ri, rj} for all i, j : 1 . . . n, u ∈ Ω.

Hence the matrix P(θ) is diagonal for every θ ∈ [0, Θ] and the inequality in (BV)
becomes decoupled. Notice now that for any continuous function a : [0, Θ] −→
R, the differential inequality w′(θ) ≶ a(θ)w(θ) admits a positive solution w(θ) =

exp
[∫ θ

0
a(s)ds ∓ θ

]
.

We have thus proved:

Theorem 4.4. If (1.1) admits a system of Riemann invariants then (BV) is sat-
isfied, for every k : 1 . . . n.
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Remark 4.5. It is well known that every 2 × 2 hyperbolic system of conservation
laws has a coordinate system of Riemann invariants. Therefore any rarefaction wave
in such systems satisfies (BV), which is obviously also a consequence of Theorem
4.3 (i).

We now restate the results of this section in the context of condition (L1), the
detailed verification is left to the reader.

Theorem 4.6. The following assertions are true.

(i) The L1 stability condition is independent of the scaling of the eigenvectors
{ri}n

i=1 in Ω. In particular, it is equivalent to the condition formulated as in
Corollary 4.2 with the inequality (4.4) replaced by:



∑

j 6=k,i

∣∣∣(λj − λk) · 〈l̃j , [r̃i, r̃k]〉
∣∣∣(Rk(θ))




+
(
(λk − λi) · 〈l̃i, [r̃i, r̃k]〉

)
(Rk(θ)) + 〈Dλi, rk〉(Rk(θ)) < 0.

(ii) Any extreme field (k = 1 or n) rarefation, or a weak (Θ small) rarefaction
satisfies (L1).

(iii) If (1.1) has a coordinate system of Riemann invariants then (L1) holds for
every k : 1 . . . n.

In [Le3], the proof of Theorem 1.2 used the form of the mass production coeffi-
cients as in (2.2). They may be simplified as follows:

Lemma 4.7. For all θ ∈ [0, Θ] and all i 6= j distinct from k there holds:

mij(θ) = |〈lj , Dri · rk〉(Rk(θ))|,(4.7)

mii(θ) = sgn (k − i) · 〈li, Dri · rk〉(Rk(θ)).(4.8)

Proof. Recall the following useful identity ([D], pg 126):

∀j, k 〈Dλj , rk〉 · rj − 〈Dλk, rj〉 · rk = Df · [rj , rk] − λjDrj · rk + λkDrk · rj .

(4.9)

Multiplying (4.9) by a left eigenvector li we obtain:

∀i 6∈ {j, k} (λi − λj) · 〈li, Drj · rk〉 = (λi − λk) · 〈li, Drk · rj〉,(4.10)

∀j 6= k 〈Dλj , rk〉 = (λk − λj) · 〈lj , Drk · rj〉,(4.11)

Now (4.7) follows directly from (4.10) and (4.8) is a consequence of (4.11).

5. Discussion of the case n = 3, k = 2

In view of Theorem 4.3 (i) every rarefaction wave (1.3) in a solution to a 2 × 2
system (1.1) as well as both the slowest and the fastest waves in any n× n system,
is BV (and L1) stable. In this section we focus on intermediate field rarefactions
in 3 × 3 systems. In particular, we show the natural correspondence between the
conditions in section 2 and the solvability of certain associated Riccati equations.
Using this approach we derive several sufficient conditions for (BV) (or (L1)).

Our study relies on a number of abstract matrix analysis results.
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Lemma 5.1. Let a, b, c, d : [0, Θ] −→ R be continuous functions, b and c nonneg-
ative. Then the vector inequality:

[
a(θ) b(θ)
c(θ) d(θ)

]
·
[

w1(θ)
w2(θ)

]
<

[
w′

1(θ)
−w′

2(θ)

]
, θ ∈ (0, Θ)(5.1)

has a positive solution w1, w2 : [0, Θ] −→ R+ iff the Riccati equation:

v′(θ) = b(θ) + [a(θ) + d(θ)] · v(θ) + c(θ) · v(θ)2, θ ∈ (0, Θ)(5.2)

has a positive solution v : [0, Θ] −→ R+.

Proof. 1. If (5.1) holds, then the positive function v can be defined as w1/w2.
Hence:

v′ =
w′

1

w2
− v · w′

2

w2
>

a · w1 + b · w2

w2
+ v · c · w1 + d · w2

w2
= b + [a + d] · v + c · v2.

2. On the other hand, if (5.2) is satisfied for some positive function v, then the
inequality

w′(θ) > ǫ + b(θ) + [a(θ) + d(θ)] · w(θ) + c(θ) · w(θ)2

also has a positive solution w : [0, Θ] −→ R+ if ǫ > 0 is small enough. Define:

w2(θ) = exp

(
−
∫ θ

0

ǫ

w(s)
+ d(s) + c(s)w(s)ds

)
,

w1(θ) = w(θ) · w2(θ).

It follows that:

w′
1 − aw1 − bw2 = w′w2 + ww′

2 − aww2 − bw2

= w2 · (w′ + w · (ln w2)
′ − aw − b)

= w2 · (w′ − w · (ǫ/w + d + cw) − aw − b)

= w2 ·
(
w′ − ǫ − b − (a + d) · w − cw2

)
> 0

and

w′
2 + cw1 + dw2 = w2 · ((lnw2)

′ + cw + d) = −w2 · ǫ/w < 0.

Therefore, (5.1) holds.

Remark 5.2. In the setting of Lemma 5.1, one can see that v : [0, Θ] −→ R

satisfies (5.2) iff the function w : [0, Θ] −→ R defined by:

w(θ) = v(θ) · exp

(
−
∫ θ

0

(a + d)(s)ds

)

is a solution of the Riccati equation:

w′(θ) =b(θ) · exp

(
−
∫ θ

0

(a + d)(s)ds

)

+ c(θ) · exp

(∫ θ

0

(a + d)(s)ds

)
· w(θ)2.

(5.3)

Thus conditions in Lemma 5.1 are both equivalent to the following one: The initial
value problem (5.3) with w(0) = 0 has the solution defined on [0, Θ].
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Lemma 5.3. Let b, c : [0, Θ] −→ R+ be continuous nonnegative functions. Assume
that

∫ Θ

0

c(θ)

∫ θ

0

b(s)dsdθ < 1.(5.4)

Then the initial value problem:
{

w′(θ) = b(θ) + c(θ) · w(θ)2,
w(0) = 0

(5.5)

has the solution w defined on the entire interval [0, Θ].

Proof. As in the proof of Lemma 5.1, it is easy to see that the solvability of (5.5)
is equivalent to the existence of positive solutions w1, w2 : [0, Θ] −→ R+ of the
following system of two ODEs:

{
w′

1 = bw2,
w′

2 = −cw1.
(5.6)

Indeed, take z to be a positive solution of the equation in (5.5) and define w2(θ) =∫ θ

0
c(s)z(s)ds, w1(θ) = z(θ)w2(θ). On the other hand, given w1 and w2, the function

z = w1/w2 clearly satisfies the ODE in (5.5).
We will prove that assuming (5.4), the solution to (5.6) with initial data:

w1(0) = 1, w2(0) = C,(5.7)

satisfies w2(θ) > 0 for all θ ∈ [0, Θ] if only C > 0 is large enough. Since consequently
w1 > 0, the proof will be complete. We have:

w2(θ) = C −
∫ θ

0

c(s)w1(s)ds = C −
∫ θ

0

c(s)

[
1 +

∫ s

0

b(τ)w2(τ)dτ

]
ds

= C −
∫ θ

0

c(s)ds −
∫ θ

0

c(s)

∫ s

0

b(τ)w2(τ)dτds.

(5.8)

Take ǫ ∈ (0, 1) and C > 0 such that

∫ Θ

0

c(θ)

∫ θ

0

b(s) ds dθ ≤ ǫ and C −
∫ Θ

0

c(θ)dθ > ǫC.

To obtain a contradiction, suppose that

min
[0,Θ]

w2 ≤ 0.(5.9)

Then, by (5.8):

max
[0,Θ]

w2 = w2(θmax) ≤ C −
∫ θmax

0

c(s)ds

−
(

min
[0,Θ]

w2

)
·
∫ θmax

0

c(s)

∫ s

0

b(τ)dτds

≤ C − ǫ · min
[0,Θ]

w2,

(5.10)
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min
[0,Θ]

w2 = w2(θmin) ≥ C −
∫ θmin

0

c(s)ds

−
(

max
[0,Θ]

w2

)
·
∫ θmin

0

c(s)

∫ s

0

b(τ)dτds

> ǫC − ǫ · max
[0,Θ]

w2.

(5.11)

Combining (5.10) and (5.11) we arrive at:

max
[0,Θ]

w2 < C − ǫ ·
(

ǫC − ǫ · max
[0,Θ]

w2

)
,

which is equivalent to:

max
[0,Θ]

w2 < C.

This contradicts (5.7) and thus we see that (5.9) cannot hold. The proof is done.

By Lemma 5.1, Remark 5.2 and Lemma 5.3, we obtain:

Theorem 5.4. When n = 3 and k = 2, then:

(i) The stability condition (BV) is equivalent to the existence of a positive solution
v : [0, Θ] −→ R+ of the Riccati equation:

v′(θ) = p13(θ) + (p11(θ) + p33(θ)) · v(θ) + p31(θ) · v(θ)2.(5.12)

(ii) In particular, (BV) is satisfied, if:
∫ Θ

0

∫ θ

0

e
R

θ

s
p11+p33 · p13(s) · p31(θ)dsdθ < 1.(5.13)

Remark 5.5. Condition (5.13) is certainly satisfied if p13 or p31 are equal to 0.
We also see that in this case (5.12) becomes the Bernoulli or the linear equation,
respectively. On the other hand, in general (5.13) is strictly weaker than the condi-
tion postulated in Theorem 5.4 (i). Indeed, when p11 = p33 = 0 and p13(θ) = b > 0,
p31(θ) = c > 0 are constant functions, then the solution to (5.12) takes the form:

v(θ) =
√

b/c · tg
(√

bcθ + arctg
(
v(0)/

√
b/c
))

.

Therefore the condition in (i) is here equivalent to: Θ
√

bc < π/2, while (5.13)
reduces to: Θ2 · bc/2 < 1. The former inequality is obviously less restrictive than
the latter one.

In view of the above analysis, determining the BV stability of intermediate
rarefactions in 3×3 systems of conservation laws reduces to evaluating the position
of the blow-up time of the solution to (5.5). In particular the inequality (5.4)
provides a sufficient condition for the blow-up to occur after the time Θ. Another
proof of this result has been communicated to me by professor Ray Redheffer [R2].

Using the analysis in [R1] one can find other interesting sufficient and necessary
conditions in this line. For example [R2], if c′(0) = 0 then

bc +
1

2

(
c′

c

)′

− 1

4

(
c′

c

)2

<
π2

4
on [0, 1](5.14)
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implies that the corresponding solution exists on [0, 1]. On the other hand, if (5.14)
holds with a converse inequality then the blow-up occurs at some point θ ≤ Θ = 1.
It can be checked that the conditions (5.14) and (5.13) are independent.

As remerked in section 4, the respective results concerning the L1 stability con-
dition can be easily recovered. In particular, we have:

Theorem 5.6. When n = 3 and k = 2, both assertions of Theorem 5.4 remain
valid also for the condition (L1), if we replace the coefficients pij in (5.12) and
(5.13) by the mass production matrix coefficients mij given in (2.2).

6. A remark for the case n > 3

When n = 3, the numbers p11, p33, p13 and p31(θ) playing role in various condi-
tions derived in the previous section, can be seen (in view of (2.1) and standard
Taylor estimates [Sm]) as transmission and reflection coefficients, in the interac-
tions of small perturbation of families 1 and 3 with parts of the rarefaction wave
Rk (located at θ). In this section we present a generalisation of Theorem 5.4 (ii)
to a particular case of n× n systems (1.1) in which both transmission matrices are
zero.

Lemma 6.1. Let k, n be natural numbers and 1 < k < n. Let B(θ) and C(θ) be
two continuous matrix functions defined on [0, Θ], with all its entries nonnegative,
and of dimensions (n−k)× (k−1) and (k−1)× (n−k), respectively. Assume that

∣∣∣∣∣

∣∣∣∣∣

∫ Θ

0

∫ θ

0

Bt(s) · Ct(θ)dsdθ

∣∣∣∣∣

∣∣∣∣∣
1

< 1,(6.1)

where the norm of a m × m matrix X = [xij ]i,j:1...m is defined by

‖ X ‖1= max
j:1...m

m∑

i=1

|xij |.

Then there exist positive functions w1 . . . wk−1, wk+1 . . . wn : [0, Θ] −→ R+ such
that

B(θ) ·




wk+1

...
wn


 (θ) <




w′
1
...

w′
k−1


 (θ)(6.2)

C(θ) ·




w1

...
wk−1


 (θ) < −




w′
k+1
...

w′
n


 (θ),(6.3)

componentwise, for all θ ∈ (0, Θ).

Proof. We will prove that under the condition (6.1), the system of ODEs obtained
by replacing the inequalities signs in (6.2) (6.3) by equalities has a positive solution
w1 . . . wk−1, wk+1 . . . wn on [0, Θ]. This will clearly complete the proof, since the
inequality in (6.1) is strict.

Let wi(0) = 1 for all i < k, and wi(0) = C for all i > k and some constant
C > 0. Notice that the positivity of w1 . . . wk−1 is now implied by the positivity of
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wk+1 . . . wn. We have, for every θ ∈ [0, Θ]:



wk+1

...
wn


 (θ) =




wk+1

...
wn


 (0) −

∫ θ

0

C(s) ·




w1

...
wk−1


 (s)ds

=




wk+1

...
wn


 (0) −

∫ θ

0

C(s)ds ·




w1

...
wk−1


 (0)

−
∫ θ

0

C(s)

∫ s

0

B(τ) ·




wk+1

...
wn


 (τ)dτds.

(6.4)

To prove that wk+1 . . . wn remain positive we argue by contradiction. Assume there
exists θ0 ∈ [0, Θ] such that:

∀θ ∈ [0, θ0) ∀i > k wi(θ) > 0 and ∃s > k ws(θ0) = 0.(6.5)

Then, for every θ ∈ [0, θ0) and every i < k there holds wi(θ) > 0. Hence:

∀θ ∈ [0, θ0] ∀i > k wi(θ) ≤ wi(0) = C.

Consequently by (6.4):

0 = ws(θ0) ≥ C −
∫ Θ

0

k−1∑

j=1

Cij(s)ds − C ·
∫ θ0

0

∫ s

0

k−1∑

j=1

(C(s) · B(τ))ij dτds

≥ C −
∣∣∣∣∣

∣∣∣∣∣

∫ Θ

0

Ct(s)ds

∣∣∣∣∣

∣∣∣∣∣
1

− C ·
∣∣∣∣∣

∣∣∣∣∣

∫ Θ

0

∫ θ

0

Bt(s) · Ct(θ)dsdθ

∣∣∣∣∣

∣∣∣∣∣
1

.

(6.6)

The right hand side of (6.6) is strictly positive for a large constant C, by (6.1). This
contradiction proves that θ0 in (6.5) does not exist and the lemma follows.

Recall now the definition (2.1) and take

A = [pij ]i,j:1...k−1, B = [pij ]i:1...k−1,
j:k+1...n

C = [pij ]i:k+1...n,
j:1...k−1

D = [pij ]i,j:k+1...n.

We see that if A and D are zero matrices then the condition (6.1) clearly implies
(BV). Both this condition and (5.13) were postulated in [Scho] to be sufficient for
the existence result as in Theorem 1.1. Using Lemma 6.1 to appropriate blocks
of the mass production matrix M, it is also not difficult to find the respective
condition implying the L1 stability,

In the general case, when A and D are not necessarily zero, one expects the
following condition to be sufficient for (BV) to hold:

∣∣∣∣∣

∣∣∣∣∣

∫ Θ

0

∫ θ

0

[
XD(θ) · C(θ) ·

(
X−A(θ)

)−1 · X−A(s) · B(s) ·
(
XD(s)

)−1
]t

dsdθ

∣∣∣∣∣

∣∣∣∣∣
1

< 1,

(6.7)



18 MARTA LEWICKA

where X−A and XD are the fundamental solutions of the ODEs:
{ (

X−A
)′

= −X−A · A,
X−A(0) = Idk−1

{ (
XD

)′
= XD · D,

XD(0) = Idn−k.

By a change of variables, (6.7) becomes (6.1) (now with different matrices C and
B) and Lemma 6.1 can be used to recover (BV) under additional assumptions.
Namely, the integrand matrix in (6.7) should have nonnegative components and

the fundamental matrix
(
XD(θ)

)−1
should have positive diagonal and non-negative

off-diagonal components, for each θ. This is the case when, for example, the trans-
mission matrices A and D are diagonal.

7. Examples

In this section we present a number of examples complementing the analysis in
sections 2–6. We will usually define a strictly hyperbolic matrix A(u), for u in a
neighbourhood of Rk given by the equation (1.3). We set Θ = 1. The right and
left eigenvetors {ri}n

i=1, {li}n
i=1 of A(u) will be used to compute the coefficients in

P(θ) or T(θ). We will not necessarily have A(u) = Df(u) for some smooth flux f .

Example 7.1. F (0, Θ) is invertible but F (θ1, θ2) is not, for some 0 < θ1 < θ2 < Θ.
Thus, in particular, the condition (F) is not satisfied.

Let n = 3, k = 2. Set A to be any strictly hyperbolic 3 × 3 matrix with the
eigenvectors given by:

r1(x, y, z) = [cos 2y, 0, sin 2y]t, r2(x, y, z) = [0, −1, 0]t,

r3(x, y, z) = [− sin y, 0, cos y]t.

Take R2(θ) = (0, 1 − θ, 0). Obviously T = Id3. Therefore the matrix F (0, 1) =
[r1(0, 1, 0), r2, r3(0, 0, 0)] is invertible, but F (1 − π/4, 1) is not as r1(0, π/4, 0) =
r3(0, 0, 0) = [0, 0, 1]t.

Remark 7.2. In Example 7.1 take r2(x, y, z) = [0, 1, 0]t. Consider the rarefaction
R2(θ) = (0, θ, 0) defined on [0, 1] and joining the same states as before, but in the
reverse order. Using the analysis in section 5 one can prove that the condition (BV)
is now equivalent to the existence of the non-negative solution to the problem:





v′(y) =
2

cos y
− 3(tan y)v(y) +

1

cos y
v(y)2, y ∈ [0, 1],

v(0) = 0.

The author used Maple to check that the solution exists on the whole interval
[0, 1]. Thus, in particular, (F) is satisfied along the “inverse rarefaction curve”
(with respect to Example 7.1) R2(θ).

Example 7.3. The condition (BV) is satisfied but the weights {wi}n
i=1 cannot be

taken to be linear.

Indeed, if we requested the weights {wi}i6=k in (BV) to be linear, then the condi-
tion would no longer be invariant under rescalings of the eigenvector basis (compare
Theorem 4.1). Let n = 2, k = 2. Take A(u) to be any smooth strictly hyperbolic
2 × 2 matrix whose right eigenvectors r1, r2 satisfy:

r1(θ, 0) = [
√

1 − exp(2θ − 4), exp(θ − 2)]t, r2(θ, 0) = [1 , 0]t.
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By Theorem 4.3 (i), the condition (BV) must be satisfied for any rarefaction in this
system. Take R2(θ) = (θ, 0) and calculate:

p11(θ) = 〈Dr1(θ, 0) · r2(θ, 0), l1(θ, 0)〉

=
[
d
√

1 − exp(2θ − 4)/dθ, exp(θ − 2)
]
·
[

0
exp(2 − θ)

]
= 1.

If w1 > 0 in (BV) could be taken linear, we would then have:

p11 · (w1(0) + w′
1 · θ) < w′

1.

This inequality, however, fails to be true on the interval [1 − w1(0)/w′
1, 1).

Remark 7.4. Note that all elements of the production matrix in Example 7.3 are
nonnegative. This shows that the condition (BV) is indeed stronger that the BV
stability version of the L1 stability condition (3.44) from [BM], where all the second
order coefficients pij (including the diagonal elements pii) are taken in the absolute
value, and the existence of a linear positive solution {wi}n

i=1 to the corresponding
vector inequality is asked. On the other hand, the existence of linear weights
satisfying the inequality in (BV) with a matrix P with bigger components clearly
implies our BV stabilty condition, which thus can be seen as a generalization of
the argument in [BM].

Example 7.5. The condition (F) is satisfied but (BV) is not.

Let n = 3, k = 2. Take A(u = (x, y, z)) to be a smooth 3 × 3 strictly hyperbolic
matrix whose eigenvectors are given by:

r1(x, y, z) = [1, 0, 0]t, r2(x, y, z) = [az, 1, ax]t, r3(x, y, z) = [0, 0, 1]t,

with some a > π/2. Consider the rarefaction curve R2(θ) = (0, θ, 0). It is easy to
calculate that the producion matrix P has the form:

P(θ) =

[
0 a
a 0

]
.

By Remark 5.5, the condition (BV) is thus equivalent to |a| < π/2 and so it is not
satisfied.

We will show that (F) is however satisfied. Since

Dr2(R2(θ)) =




0 0 a
0 0 0
a 0 0


 ,

we have:

T(θ) = exp(θ · Dr2) =




cosh(aθ) 0 sinh(aθ)

0 1 0
sinh(aθ) 0 cosh(aθ)



 .

Fix 0 < θ1 < θ2 < 1. Using a version of (3.9), we see that the matrix F (θ1, θ2)
is invertible iff the first row - first column element of T(θ1)

−1 · T(θ2) is nonzero.
Noting that detT(θ) = 1, this element can be easily computed as:

cosh(aθ1) cosh(aθ2) − sinh(aθ1) sinh(aθ2) = cosh(aθ1 − aθ2) > 0.
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Example 7.6. The study of plane waves in a half space occupied by a hyperelastic
solid leads to the following 6 × 6 system of hyperbolic conservation laws [TT]:

{
Sx − ρ0Vt = 0,
Vx − G · St = 0.

(7.1)

Here S = (s1, s2, s3) and V = (v1, v2, v3) are unknown quantities whose evolution
is governed by a symmetric 3 × 3 matrix G containing appropriate derivatives
of a sufficiently regular constitutive function W (σ = s1, τ2 = s2

2 + s2
3). The

constant ρ0 is positive. The derivation of the system, its physical relevance and the
related details can be found in [TT]. We are merely interested in verifying the BV
stability condition for the rarefaction waves generated from the four intermediate
characteristic fields of (7.1). Taking

W (σ, τ2) =
α

2
σ2 +

β

6
σ3 +

δ

4
(τ2)2(7.2)

after a number of calculations [Mu] one arrives at explicit forms of the production
matrices P, corresponding to different rarefaction curves (which may be bounded
or unbounded, depending on the initial data and the parameters of the system).
Although the matrices P are 5× 5 and in general with nonconstant coefficients, by
their specific structure the inequality in (BV) can be reduced to studying different
Riccati equations of the form:

v′(θ) =
A

B ± θ
· (a + bv(θ) + cv2(θ)).(7.3)

By a change of variable (7.3) is equivalent to

v′(s) = (a + bv(s) + cv2(s)).(7.4)

Since in each case a, c > 0, b < 0 and b2 − 4ac ≥ 0, the right hand side of (7.4)
has a positive root. Thus (7.4) has a (trivial) positive solution existing for all s.
Based on this observation one obtains the BV stability of all rarefaction waves in
the model (7.1) with the constitutive function (7.2). Incorporating the term στ2 in
W may lead to a more complicated analysis [Mu].

8. Stability conditions for general patterns of non-interacting
large waves

In section 2 we have shown that for a single k-rarefaction the invertibility of
the matrix F (0, Θ) implies the assertion of Theorem 2.1 with (u−, u+) close to
the extreme states of the reference pattern u0 in (1.5). For a single k-shock the
corresponding property follows from the Majda stability condition [M]. It turns
out that in case of multiple waves an additional finiteness condition, accounting for
the mutual influence of the strong waves in u0 ir required. The analysis related to
the case with strong shocks was the contents of [Le1, Le2].

Below we study the similar problem for a general pattern u0 of M shock and
rarefaction waves of different characteristic families. We also state the respective
BV stability condition and prove a useful generalization of Theorem 3.2.

Let M + 1 (with 2 ≤ M ≤ n) distinct states {uq
0}M

q=0 in Rn be given. Assume

that the Riemann problem (u0
0, u

M
0 ) for (1.1) has a self-similar solution composed

of M (large) waves {uq−1
0 , uq

0}M
q=1. For each q : 1 . . .M , the q-th wave joining
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states (uq−1
0 , uq

0) is said to belong to iq-th characteristic family and all families
i1 < i2 < . . . < iM are genuinely nonlinear. The waves can be of two types:

(i) Stable rarefaction waves, that is:

d

dθ
Riq

(θ) = riq

(
Riq

(θ)
)
,

uq−1
0 = Riq

(0), uq
0 = Riq

(Θq), Θq > 0,
(8.1)

and the matrix Fq(0, Θq), defined as in (2.4) (2.3) with the field number iq
replacing k, is invertible.

(ii) Lax compressive, Majda stable shocks [L, M]. That is, calling Λq the speed
of the shock we have:

Λq · (uq
0 − uq−1

0 ) = f(uq
0) − f(uq−1

0 ),(8.2)

λiq−1(u
q−1
0 ) < Λq < λiq

(uq−1
0 ) and λiq

(uq
0) < Λq < λiq+1(u

q
0),(8.3)

det
[
r1(u

q−1
0 ) . . . riq−1(u

q−1
0 ), uq

0 − uq−1
0 , riq+1(u

q
0) . . . rn(uq

0)
]
6= 0(8.4)

We moreover assume that in a sufficiently small neighbourhood of the set of states in
Rn attained by u0, the system (1.1) is strictly hyperbolic, with each characteristic
family genuinely nonlinear or linearly degenerate.

For each q : 0 . . .M , let Ωq be an open neighbourhood of the state uq
0. According

to [Le2], for each shock (uq−1
0 , uq

0) conditions (8.2) (8.3) (8.4) imply (and by the
shock compressibility are essentially equivalent to) the existence of a constitutive
function Ψq : Ωq−1 × Ωq −→ Rn−1 whose zero locus is composed of pairs of states
that can be joined by a stable iq shock. Moreover the following n − 1 vectors are
linearly independent:

{
∂Ψq

∂uq−1
(uq−1

0 , uq
0) · ri(u

q−1
0 )

}iq−1

i=1

∪
{

∂Ψq

∂uq
(uq−1

0 , uq
0) · ri(u

q
0)

}n

i=iq+1

.(8.5)

In case (uq−1
0 , uq

0) is a stable rarefaction wave as in (i), the corresponding function
Ψq can be defined:

Ψq(uq−1, uq) = (σ1 . . . σk−1, σk+1 . . . σn) ,(8.6)

where {σi}n
i=1 stand for the strengths of the waves in the solution of the Riemann

problem (uq−1, uq); compare Theorem 2.1 and its proof.

For each q : 1 . . .M define a (n − 1) × (n − 1) matrix Cq whose negative first
iq − 1 columns, and last n − iq columns are the vectors in (8.5). Notice that for
rarefactions Cq = Idn−1 and thus Cq is invertible for each q. Call

F left
q = −C−1

q · ∂Ψq

∂uq−1
(uq−1

0 , uq
0) ·
[
riq

(uq−1
0 ) . . . rn(uq−1

0 )
]
,

F right
q = C−1

q · ∂Ψq

∂uq
(uq−1

0 , uq
0) ·
[
r1(u

q
0) . . . riq

(uq
0)
]
.

(8.7)

By an argument as in the proof of Theorem 2.1 we see that the (n− 1)× iq matrix
F right

q expresses strengths of the weak outgoing waves in terms of strengths of

waves perturbing the right state of the Riemann problem (uq−1
0 , uq

0). Analogously,

the (n− 1)× (n− iq + 1) matrix F left
q corresponds to perturbations of uq−1

0 in the
same Riemann problem.
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Define now the square M · (n − 1) dimensional finiteness matrix F:

F =




[Θ] F right
1

F left
2 [Θ] F right

2

F left
3 [Θ] F right

3

. . .
. . .

F left
M [Θ]




,(8.8)

where [Θ] stands for the (n−1)×(n−1) zero matrix. The following is a generalisation
of Theorem 2.1.

Finiteness Condition: 1 is not an eigenvalue of the matrix F.(8.9)

Theorem 8.1. In the above setting, let the condition (8.9) hold. Then any Rie-
mann problem (u−, u+) ∈ Ω0 × ΩM for (1.1) has a unique self-similar solution
attaining n + 1 states, consequtively connected by (n − M) weak waves and M
strong waves (shocks or rarefactions) joining states in different sets Ωq.

Proof. Define an auxiliary function

G :
(
Ω0 × Ω1 × . . . × ΩM

)
×

Ii1−1 × Ii2−i1−1 × Ii3−i2−1 × . . . × IiM−iM−1−1 × In−iM −→ RM·(n−1),

G
(
(u−, u1, u2 . . . uM−1, u+),

(σ1, σ2 . . . σi1−1), (σi1+1 . . . σi2−1) . . . (σiM +1 . . . σn)
)

= Ψ1
(
Wi1−1(σi1−1) . . . ◦W1(u

−, σ1), u1
)
,

Ψ2
(
Wi2−1(σi2−1) . . . ◦Wi1+1(u

1, σi1+1), u2
)
,

. . .

ΨM
(
WiM−1(σiM−1) . . . ◦WiM−1+1(u

M−1, σiM−1+1), uM
)
,

where

u+ = Wn(σn) . . . ◦WiM +1(u
M , σiM +1),

and I denotes a small interval in R, containing 0. Call A the M · (n − 1) di-
mensional square matrix that is the derivative of G with respect to the variables
(u1 . . . uM−1), (σ1 . . . σn) at the point

(
(u0

0 . . . uM
0 ), (0 . . . 0)

)
. We will show that A

is invertible iff the condition (8.9) holds, which by implicit function theorem will
complete the proof.

Note first, that the invertibility of A is equivalent to the invertibility of the
following matrix (which without loss of generality we also call A), of the same
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dimension:

A =




A1 Br
1

Bl
1 A2 Br

2

Bl
2

. . .
. . .

AM ÃM




.(8.10)

Here

Aq =






∂Ψ1

∂u0
(u0

0, u
1
0) ·
[
r1(u

0
0) . . . ri1−1(u

0
0)
]

for q = 1

∂Ψq

∂uq−1
(uq−1

0 , uq
0) ·
[
riq−1+1(u

q−1
0 ) . . . riq−1(u

q−1
0 )

]
for q : 2 . . .M

and

ÃM =
∂ΨM

∂uM
(uM−1

0 , uM
0 ) ·

[
riM +1(u

M
0 ) . . . rn(uM

0 )
]
,

Bl
q =

∂Ψq

∂uq−1
(uq−1

0 , uq
0) ·
[
r1(u

q−1
0 ) . . . rn(uq−1

0 )
]
,

Br
q =

∂Ψq

∂uq
(uq−1

0 , uq
0) ·
[
r1(u

q−1
0 ) . . . rn(uq−1

0 )
]
.

Introducing (8.7) in (8.10) and permuting the columns of A we observe that A is
invertible iff the following matrix (which we again denote by A) is invertible:

A =




−C1 C1 · F right
1

C2 · F left
2 −C2 C2 · F right

2

. . .
. . .

CM · F left
M −CM


 .(8.11)

Multiplying A by the square block matrix:



C−1
1

C−1
2

. . .

C−1
M


 ,

we conclude that the invertibility of A in (8.11) is equivalent to the invertibility of
F− IdM·(n−1) and hence equivalent to (8.9).

Remark 8.2. Let (uq−1
0 , uq

0) be a stable iq- rarefaction wave. After neglecting the
iq-th rows of the two matrices:

F (0, Θq)
−1 ·Tq(Θq) ·

[
riq

(uq−1
0 ), riq+1(u

q−1
0 ) . . . rn(uq−1

0 )
]
,

F (0, Θq)
−1 ·

[
r1(u

q
0) . . . riq−1(u

q
0), riq

(uq
0)
]
,

(8.12)

they become respectively F left
q and F right

q .

We now formulate the following:

BV Stability Condition for the wave pattern u0(8.13)
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There exist positive continuous weights {wi(u)}n
i=1 defined on the set of

states u attained by the reference solution u0 (that is, at the isolated
endpoints of shocks and along the rarefaction curves), such that for
every q : 1 . . .M the following holds.

(i) If (uq−1
0 , uq

0) is a shock then

∣∣F left
q

∣∣t ·




w1(u
q−1
0 )
...

wiq−1(u
q−1
0 )

wiq+1(u
q
0)

...
wn(uq

0)




<




wiq
(uq−1

0 )
...

wn(uq−1
0 )




and
∣∣F right

q

∣∣t ·




w1(u
q−1
0 )
...

wiq−1(u
q−1
0 )

wiq+1(u
q
0)

...
wn(uq

0)




<




w1(u
q
0)

...
wiq

(uq
0)


 ,

where the components of a matrix |A| are ment to be absolute
values of the components of A, and the above vector inequality
is understood componentwise.

(ii) If (uq−1
0 , uq

0) is a rarefaction then the corresponding BV stabil-
ity condition (BV) is satisfied, with the production matrix Pq

defined by (2.1) along the rarefaction curve Rq.

Based on the results of [BM, Le1, Le3], we conjecture that the condition (8.13)
implies the BV stability of the pattern u0, in the sense of Theorem 1.1. Also, a
similar weighted L1 stability condition can be easily formulated and will imply the
existence of a continuous flow of solutions, as in Theorem 1.2. Our final result is:

Theorem 8.3. In the above setting, the condition (8.13) implies the solvability of
any Riemann problem in the vicinity of (u0(1, x1), u0(1, x2)), for any x1 < x2.

Proof. In view of Theorem 8.1, it is enough to show that (8.13) implies (8.9). By
Lemma 3.3 from [Le2] and Remark 8.2, this will be achieved provided we prove

the inequalities in (8.13) (i) for each rarefaction (uq−1
0 , uq

0). But this indeed follows

from Lemma 3.1 (i), applied to the matrix P̃ as in the proof of Theorem 3.2.
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