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1. Introduction

We consider the Cauchy problem for n × n system of conservation laws in one
space dimension:

ut + f(u)x = 0, (1.1)

u(0, x) = ū(x). (1.2)

As in the classical paper of Lax [L], we assume here that the system is strictly
hyperbolic with each characteristic field either linearly degenerate or genuinely
nonlinear. In this setting, the recent progress in the field has shown that within the
class of initial data ū ∈ L1 ∩ BV (R,Rn) having the total variation suitably small,
the problem (1.1) (1.2) is well posed in L1(R,Rn). Namely, as proved in [BC1]
[BCP] [BLY], the entropy solutions of (1.1) (1.2) constitute a semigroup which
is Lipschitz continuous with respect to time and initial data. A major question
which remains open is whether the uniqueness of solutions also holds for arbitrarily
large initial data. We observe that, because of the finite propagation speed, this
is essentially a local problem. Moreover, given any BV function ū : R −→ Rn,
for each point x0 ∈ R one can find left and right neighbourhoods [x0 − δ, x0) and
(x0, x0 + δ] on which ū has arbitrarily small variation.

By the previous remarks the problem is thus reduced to proving the well posed-
ness of the Cauchy problem (1.1) (1.2) with the initial data ū being a small pertur-
bation of a fixed Riemann problem (u−

0 , u+
0 ). The solution of the latter consists of

m (large) waves of different characteristic families.
1
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In this paper we study the case where the Riemann problem is solved by two
large shocks, travelling with the speeds Λi and Λj . The more general case of m
shocks, 2 < m ≤ n will be addressed in the forthcoming work [Le1].
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Figure 1.1

The following questions arise naturally:

A. Do we have the (global) existence of an ’admissible’ solution u to (1.1) (1.2)
when ū stays ’close’ to the Riemann data (u−

0 , u+
0 )?

B. In case the answer to A is positive, is the solution u stable under small per-
turbations of its initial data?

Several authors have given contribution to a better understanding of the above
issues in various contexts. In particular, we mention here two papers which are
closely related to our work. Schochet was the first to introduce in [Scho] the so-called
finiteness condition, giving a positive answer to question A for general n×n systems.
In [BC2] Bressan and Colombo consider the general Riemann problem for systems
of two equations and assuming a stronger stability condition, answer question B
positively. In particular, they establish the existence of a Lipschitz semigroup of
solutions, defined on a domain containing all suitably small BV perturbations of
Riemann data (u−

0 , u+
0 ). They also construct an example whose aim is to show that

with the stability condition being violated, the system (1.1) in general does not
generate a Lipschitz continuous flow of entropy solutions.

The goal of this article is to discuss both questions A and B, for a general n× n
system of conservation laws. We formulate a Finiteness Condition and a new Sta-
bility Condition. We show that the Finiteness Condition guarantees the positive
answer to question A (Theorem A); while the Stability Condition is essential in
giving positive answer to question B (Theorem B), yielding the existence of a Lip-
schitz semigroup of entropy solutions. Different finiteness and stability conditions
appearing in the literature are discussed in the paper [Le2].

The paper is organized as follows. In Section 2 we discuss the setting of the
problem, introduce our Finiteness and Stability Conditions and state the main
theorems, that will be proved in Section 6. In Section 3 we describe the wave
front tracking algorithm, working in the presence of large shocks, and list the main
features of the piecewise constant approximate solutions, produced by the algorithm
(Theorem 3.5). In particular, we explain the role of the Finiteness Condition for the
stability of the algorithm. The limiting process, applied to the wave front tracking
approximations, yields a weak ’admissible solution’ to the Cauchy problem (1.1)
(1.2), as shown in Theorem A. Section 4 contains the definition of the entropy
functional and the basic L1 stability estimates (4.10) – (4.13) for the wave front
tracking approximations, that we prove in Section 5.
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2. Preliminaries and main results

Let Ω be an open subset of Rn and f : Ω → Rn a smooth flux function in (1.1).
We assume that the system (1.1) is strictly hyperbolic and that every characteristic
field is either linearly degenerate or genuinely nonlinear. For u ∈ Ω, the eigenvalues
of the matrix Df(u) are denoted: λ1(u) < . . . < λn(u) while the dual bases of the
corresponding right and left eigenvectors {rk(u)}n

k=1 and {lk(u)}n
k=1 of Df(u) are

normalized as follows:

〈rk(u), ls(u)〉 = δk,s, |rk(u)| = 1 for k, s = 1 . . . n.

Besides the strict hyperbolicity of (1.1), we assume the stronger condition:

λk(u) < λs(v), ∀k < s, ∀u, v ∈ Ω. (2.1)

Note that if Ω is a small neighbourhood of a point, then (2.1) is a consequence of
the strict hyperbolicity. By continuity, on every compact set K ⊂ Ω, the differences
of the characteristic speeds in different families are bounded away from 0:

|λk(u) − λs(v)| ≥ c, ∀k 6= s, ∀u, v ∈ K, (2.2)

for some positive number c depending on K.
Let ul

0, u
r
0 be two different states in Ω. We consider the Cauchy problem for (1.1)

with initial data of the Riemann type:

u(t, x) =

{
ul

0 x > Λit,

ur
0 x < Λit.

(2.3)
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Figure 2.1

The admissibility of (2.3) is defined by the following two conditions:

(i) f(ul
0) − f(ur

0) = Λi(ul
0 − ur

0),
(ii) λi(u

l
0) > Λi > λi(u

r
0).

(2.4)

The first condition is the well-known Rankine-Hugoniot condition, stating that (2.3)
is a distributional solution of (1.1), while the second condition says that the shock
(ul

0, u
r
0), traveling with speed Λi is a compressible Lax shock of the family i.

If Ω is convex, then for given u, u′ ∈ Ω one defines the averaged matrix

A(u, u′) =

∫ 1

0

A(θu + (1 − θ)u′)dθ.

Assuming that for every u, u′ ∈ Ω, A(u, u′) is strictly hyperbolic (which certainly is
the case, if |u−u′| is small enough) and denoting its corresponding bases of right and
left eigenvectors: {rk(u, u′)}n

k=1 and{lk(u, u′)}n
k=1, we see by the Rankine-Hugoniot
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equations that u, u′ are joined by a shock of the i-characteristic family if and only
if

〈lk(u, u′), u − u′〉 = 0 ∀k 6= i.

In particular, for n = 2 and i = 1 the above n − 1 equations reduce to the scalar
condition:

Φ(u, u′) = 〈l2(u, u′), u − u′〉 = 0, (2.5)

The following definition was used in [BC2]. The 1-shock joining the states ul
0, u

r
0 is

said to be stable if
〈

∂

∂u
Φ(ul

0, u
r
0), r2(u

r
0)

〉
6= 0. (2.6)

Extending this idea, we introduce the following hypothesis:

There exist Ωl, Ωr ⊂ Rn neighbourhoods of ’basic’ states ul
0 and ur

0

respectively, and a smooth function Ψi : Ωl×Ωr −→ Rn−1 such that:

(i) Ψi(ul, ur) = 0 iff the states ul and ur can be connected by a
(large) shock of the i-th characteristic family, with the speed
Λi(ul, ur). The Rankine-Hugoniot condition holds: f(ul) −
f(ur) = Λi(ul, ur)(ul − ur). In particular Ψi(ul

0, u
r
0) = 0 and

Λi(ul
0, u

r
0) = Λi.

(ii)

rank
∂Ψi

∂ul
(ul

0, u
r
0) = rank

∂Ψi

∂ur
(ul

0, u
r
0) = n − 1.

(iii) The n − 1 vectors:
{ ∂Ψi

∂ul
(ul

0, u
r
0) · rk(ul

0)
}i−1

k=1
∪
{ ∂Ψi

∂ur
(ul

0, u
r
0) · rk(ur

0)
}n

k=i+1

are linearly independent.




(2.7)

The above conditions require only that the function f is defined in a small
neighbourhood of the basic states ul

0, u
r
0 (in particular the set Ω does not need to

be connected). A more detailed discussion of (2.7) can be found in [Le2].
Another remark is that if the basic shock (ul

0, u
r
0) is weak enough then the

existence of Ψi (for any i = 1 . . . n) is ensured by the fundamental theorem of
Lax [L]. Moreover, the well known proof of this result via the implicit function
theorem allows us to introduce the C2 functions Ψk : Ω× I → Ω, k = 1 . . . n, (here
I is a small open interval containing zero) which, for fixed u ∈ Ω, coincide with the
rarefaction curves for the positive part of I and for ǫ ∈ I negative follow the shock
curves S. These shock curves constitute the Hugoniot locus of the neighbourhood
states, which can be connected with u to the left by a k-admissible shock [L].
We parameterize the curves Ψk(u, ·) by arc-length, equal to the strength of the
discontinuity (left state, right state). In this case,

∂

∂ǫ
Ψk(u, 0) = rk(u).

We denote by Ψ̃k : Ω × I → Ω the C2 functions for which

Ψk(ul, ǫ) = u+ iff Ψ̃k(u+,−ǫ) = ul.
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As previously we have that

∂

∂ǫ
Ψ̃k(u, 0) = rk(u).

Proposition 2.1. Let the conditions (2.7) and the regularity assumptions (2.1)
(2.4) hold. Then ( possibly replacing the sets Ωl and Ωr with suitably small neigh-
bourhoods of ul

0 and ur
0 respectively), the following statements are true:

(i) Every Riemann problem (ul, ur) ∈ Ωl × Ωr has a unique ’admissible’ self-
similar solution, composed of n shock or rarefaction waves, connecting the
states ul = u0, u1, . . . , ui−1 ∈ Ωl and ui, ui+1, . . . , un = ur ∈ Ωr, as in Figure
2.2.

(ii) The ‘admissibility’ of this solution is understood in the following sense:

uk = Ψk(uk−1, ǫk),

for every k 6= i and some small parameter ǫk, which will be called the strength
of the k-wave (uk−1, uk), and

Ψi(ui−1, ui) = 0.

(iii) The wave (ui−1, ui) is a compressive Lax shock, that is:

λi(ui−1) > Λi(ui−1, ui) > λi(ui).

The speed Λi(ui−1, ui) depends in a C2 way on (ul, ur).

Λi
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u
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u i
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t

x

i

r
u = un

Figure 2.2

Before we give the proof of Proposition 2.1, we proceed towards the main point
of our work. Fix three distinct states u−

0 , um
0 , u+

0 ∈ Ω. Assume that the states
u−

0 , um
0 are connected by a large Lax compressive stable shock of the i-th charac-

teristic family, that is (2.4) (2.7) hold with the superindices l, r replaced by −, m
respectively. The states um

0 , u+
0 are assumed to be connected by a large shock of

the j-th family (j > i), travelling with the speed Λj > Λi and also having the
properties (2.4) (2.7), with l, r, i replaced by m, +, j respectively.

Consider a small wave of a family k ≤ i, hitting the large initial i-shock (u−
0 , um

0 )
from the right (Figure 2.3). Let ǫin

k be the strength of the k-small wave and λin
k its

speed. By Proposition 2.1 the Riemann problem (u−
0 , um) is solved uniquely by an

(n − 1)-dimensional wave vector (ǫout
1 , . . . , ǫout

i−1, ǫ
out
i+1, . . . , ǫout

n ). The corresponding
speeds of the small solution waves are denoted by λout

s , s ∈ {1 . . . n}\{i}. For these
indices s, define numbers

mi
sk =

∂ǫout
s

∂ǫin
k |ǫin

k
=0

.
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Similarily, consider a wave pattern, where a small k-wave with k ≥ j ap-
proaches from the left the large initial j-shock (um

0 , u+
0 ) (Figure 2.4). Solving
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the Riemann problem (um, u+
0 ) yields, as before, the unique (n − 1)-wave vector

(ǫout
1 , . . . , ǫout

j−1, ǫ
out
j+1, . . . , ǫout

n ). For s ∈ {1 . . . n} \ {j}, let

mj
sk =

∂ǫout
s

∂ǫin
k |ǫin

k
=0

.

Now, we are ready to state the finiteness and stability conditions:

Finiteness Condition

There exist positive weights w1, . . . , wn and a number θ ∈ (0, 1) such that

∀k ≤ i
n∑

s=j

ws

wk
· |mi

sk| < θ, (2.8)

∀k ≥ j

i∑

s=1

ws

wk
· |mj

sk| < θ. (2.9)
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Stability Condition

There exist positive weights w̃1, . . . , w̃n and a number Θ ∈ (0, 1) such that

∀k ≤ i

n∑

s=j

w̃s

w̃k
· |mi

sk| ·

∣∣∣∣
λs(u

m
0 ) − Λi

λk(um
0 ) − Λi

∣∣∣∣ < Θ. (2.10)

∀k ≥ j

i∑

s=1

w̃s

w̃k
· |mj

sk| ·

∣∣∣∣
λs(u

m
0 ) − Λj

λk(um
0 ) − Λj

∣∣∣∣ < Θ. (2.11)

It can be shown (see [Le2]) that the above Stability Condition implies the Finiteness
Condition. We also remark, that since the weights wi+1, . . . , wj−1 (as w̃i+1, . . . , w̃j−1)
do not appear in the inequalities (2.8) – (2.11) they may be fixed to 1.

Following [BC2], we define for a given δ0 > 0 the domain:

D̃δ0 = cl

{
u : R −→ Rn; there exist two points xi < xj in R

such that calling ũ(x) =






u−
0 x < xi

um
0 xi < x < xj

u+
0 x > xj

we have:

u − ũ ∈ L1(R,Rn) and T.V.(u − ũ) ≤ δ0

}
,

(2.12)

where the closure is taken in L1
loc(R,Rn).

Our first result concerns question A, posed in the Introduction.

Theorem A Assume (2.1) together with (2.4) and (2.7) for both shocks (u−
0 , um

0 )
and (um

0 , u+
0 ). If the Finiteness Condition is satisfied then there exists δ0 > 0 such

that for every ū ∈ D̃δ0 there exists a weak solution to (1.1) (1.2) (defined for all
times t ≥ 0).

Since, as shown in [Le2], our Finiteness Condition is equivalent to the corre-
sponding condition in [Scho], Theorem A can be seen as a special case of the
general result of Schochet [Scho]. Its proof, using the wave front tracking algorithm
and the BV stability estimates derived in its course are, nevertheless, important for
later purposes of the proof of the L1 stability result.

The main theorem of our paper is the following.

Theorem B Assume (2.1) together with (2.4) and (2.7) for both shocks (u−
0 , um

0 )
and (um

0 , u+
0 ). If the Stability Condition is satisfied then there exists δ0 > 0, L > 0,

a closed domain Dδ0 ⊂ L1
loc(R,Rn) containing D̃δ0 , and a continuous semigroup

S : [0,∞) ×Dδ0 −→ Dδ0 such that:

(i) S(0, ū) = ū,
S(t + s, ū) = S(t, S(s, ū)) ∀t, s ≥ 0 ∀ū ∈ Dδ0 .

(ii) ‖ S(t, ū) − S(s, w̄) ‖L1≤ L(|t − s|+ ‖ ū − w̄ ‖L1) ∀t, s ≥ 0 ∀ū, w̄ ∈ Dδ0 .
(iii) Each trajectory t 7→ S(t, ū) is a weak solution of (1.1) (1.2).
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Note that, by its closedness, the domain Dδ0 must contain all the initial data
that are small BV perturbations of the ’basic’ Riemann problem (u−

0 , u+
0 ).

The trajectories of the semigroup S will be obtained as the limits of the wave
front tracking approximations, described in Section 3. In particular, if ū ∈ Dδ0 is
piecewise constant then for t > 0 sufficiently small, the function u(t, ·) = S(t, ū)
coincides with the solution of (1.1) (1.2) obtained by piecing together the standard
self-similar solutions of the corresponding Riemann problems.

We now give the omitted:

Proof. of Proposition 2.1. Define the C2 function F : Ωl × Ωr × In−1 → Rn−1

F (ul, ur, ǫ1, . . . , ǫi−1, ǫi, . . . , ǫn) =

Ψi

(
Ψi−1(. . . Ψ2(Ψ1(u

l, ǫ1), ǫ2) . . . ǫi−1),

Ψ̃i+1(. . . Ψ̃n−1(Ψ̃n(ur,−ǫn),−ǫn−1) . . . − ǫi+1

)
.

To prove (i), (ii) we proceed by the implicit function theorem. We have that

F (ul
0, u

r
0, 0) = Ψi(ul

0, u
r
0) = 0

and

∂

∂(ǫ1, . . . , ǫi−1, ǫi, . . . , ǫn)
F (ul

0, u
r
0, 0) =

∂Ψi

∂(ul, ur)
(ul

0, u
r
0) · A · B,

where:

• A is a 2n × (n − 1) matrix, whose first i − 1 columns are the vectors:

[rk(ul
0)

T , 0 . . .0]T ∈ R2n k : 1 . . . i − 1,

and the last n − i columns are the vectors:

[0 . . . 0, rk(ur
0)

T ]T ∈ R2n k : i + 1 . . . n.

• The first i − 1 columns of the (n − 1) × (n − 1) matrix B constitute an
(n − 1) × (i − 1) matrix:

[
∂Ψi

∂ur
(ul

0, u
r
0) ·
[
r1(u

l
0), . . . , ri−1(u

l
0)
]]

,

The last n − i columns of B compose an (n − 1) × (n − i) matrix:
[

∂Ψi

∂ul
(ul

0, u
r
0) ·
[
ri+1(u

r
0), . . . , rn(ur

0)
]]

.

The matrix B is invertible by the assumption (2.7)(iii). Therefore, for the given
pair of states (ul, ur) ∈ Ωl × Ωr, there exists exactly one (n − 1)-dimensional wave
vector (ǫ1, . . . , ǫi−1, ǫi+1, . . . , ǫn) (that depends in a C2 way on (ul, ur)) such that

F (ul, ur, ǫ1, . . . , ǫi−1, ǫi+1, . . . , ǫn) = 0.
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The states {uk}n
k=0 are defined as follows:





u0 = ul

uk = Ψk(. . . Ψ2(Ψ1(u
l, ǫ1), ǫ2) . . . , ǫk) for k = 1 . . . i − 1

uk = Ψ̃k+1(. . . Ψ̃n−1(Ψ̃n(ur,−ǫn),−ǫn−1) . . . ,−ǫk+1) k = i . . . n − 1

un = u+.

To prove (iii), note that

Λi(ui−1, ui) =
〈f(ui−1) − f(ui), ui−1 − ui〉

|ui−1 − ui|2
. (2.13)

Thus, by the continuity of λi and the condition (2.4)(ii) we actually get the stronger
condition (implying (ii)):

There exists c > 0 such that if (ul, ur), (ul
1, u

r
i ) ∈ Ωl×Ωr and Ψi(ul, ur) =

0, then:
λi(u

l
1) − Λi(ul, ur) ≥ c,

Λi(ul, ur) − λi(u
r
1) ≥ c.

(2.14)

Remark 2.2. From now on, we will tacitly assume that the open sets Ωl, Ωr where
ul

0 and ur
0 belong respectively, are small enough for all the useful properties such

as (2.14) (2.2) to hold. In particular, Ωl, Ωr are disjoint and |ul − ur| ≥ c for all
(ul, ur) ∈ Ωl × Ωr, with c denoting, as usual, a small positive constant.

Remark 2.3. Consider the function F̄ : Ωl × Ωr × In−1 → Rn−1, defined exactly
as F in the proof of Proposition 2.1 with the functions Ψk being replaced by Sk(u, ·)
the shock curves through the appropriate states u.

Since Sk and Ψk are second order tangent,

∂

∂(ǫ1, . . . , ǫi−1, ǫi+1, . . . , ǫn)
F (ul

0, u
r
0, 0) =

∂

∂(ǫ1, . . . , ǫi−1, ǫi+1, . . . , ǫn)
F̄ (ul

0, u
r
0, 0),

and as before the implicit function theorem gives us the unique solution to any
Riemann problem (ul, ur) ∈ Ωl × Ωr, with its middle states changing along the
shock curves. This solution is not in general entropy admissible, however, since
it approximates well the ‘real‘ solution (constructed in Proposition 2.1), if Ωl, Ωr

are small sets , we will often make use of it, each time stating clearly whether our
solution follows the shocks Sk or the mixed curves Ψk.

Consider now the Riemann problem given by the states u−
0 and u+

0 . Its solution
is provided by gluing together two large shocks, with um

0 as middle state, see Figure
1.1.

Proposition 2.4. Let the Finiteness Condition be satisfied. Then, in the above
setting, every Riemann problem (u−, u+) ∈ Ω− × Ω+ has a unique self similar
solution composed of n shocks or rarefaction waves, connecting the states u− =
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u0, . . . , ui−1 ∈ Ω−, ui, . . . , uj−1 ∈ Ωm and uj+1, . . . , un = u+ ∈ Ω+, as in Figure
2.5. For every k /∈ {i, j}, and for some small strength ǫk, uk = Ψk(uk−1, ǫk) with

Ψi(ui−1, ui) = 0, Ψj(uj−1, uj) = 0

and
λi(ui−1) > Λi(ui−1, ui) > λi(ui)

λj(uj−1) > Λj(uj−1, uj) > λj(uj).

The speeds Λi(ui−1, ui) and Λj(uj−1, uj) depend in a C2 way on (u−, u+).

The above proposition follows from the discussion in [Le2]. Note that, differently
from the case of a single large shock, trested in Proposition 2.1, one needs an
additional condition (implied by the Finiteness Condition, used to state Proposition
2.4) to guarantee the solvability of Riemann problems (u−, u+).

3. Wave front tracking approximations

Given a Cauchy problem (1.1) (1.2), one of the main strategies [BJ] [BC1] [D]
to obtain the existence of its (global in time) solution is the following:

(i) Approximate the initial data ū by piecewise constant data ūǫ.
(ii) Give a recipe for construction an ’approximate solution’ uǫ to (1.1) with

uǫ(0, ·) = ūǫ. The approximating function uǫ should have relatively simple
structure, e.g. be piecewise constant, with finitely many jumps occuring along
straight discontinuity lines.

(iii) Show that for some parameter sequence ǫn → 0, the sequence uǫn
has a limit

in L1
loc, and that this limit is a solution to (1.1) (1.2).

This approach will be used to prove Theorem A, in Section 6. In this Section our
goal is to realize (ii) by means of so-called wave front tracking algorithm [B1] [BJ]
[R], that we carefully adjust to work in the presence of large shocks.

Also, as a preparation for (iii) we state and prove different regularity properties
of the approximate solutions. As the basic tool we introduce the Glimm’s func-
tional, equivalent to the T.V. of the perturbation added to our initial Riemann
data (u−

0 , u+
0 ), and prove that it decreases at every time when an interaction of two

waves takes place. The main features of the approximate solutions are collected in
Theorem 3.5.
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Riemann solvers

The ’fundamental block’ for building the approximate solutions uǫ, as announced
above is provided by the suitable piecewise constant approximation of the self-
similar solution to an arbitrary Riemann problem (ul, ur). If both states ul, ur

are in the same set Ω−, Ωm or Ω+, then the problem (ul, ur) is approximately
solved by the already standard Accurate or Simplified Riemann Solvers [BJ]. Their
constructions depend on two positive parameters: δ which bounds the strength of
the wave fronts in every rarefaction fan approximating centered rarefaction wave in

the real solution, and λ̂ (strictly larger than all characteristic speeds of (1.1)) that
is the speed of non-physical waves, generated whenever the simplified method is
used. Below we present the corresponding solvers for the ’large’ Riemann problems
(u−, um) ∈ Ω− × Ωm. The case (um, u+) ∈ Ωm × Ω+ is treated analogously.

Accurate Riemann Solver

Acurate Riemann Solver is the self-similar solution described in Proposition 2.1,
with every rarefaction wave (w,Rk(w)(ǫ)) replaced by a piecewise constant rarefac-
tion fan:

u(t, x) = Rk(w)(sǫ̃) for
x

t
∈
(
λk(Rk(w)(sǫ̃)), λk(Rk(w)((s + 1)ǫ̃))

)

∀s : 0 . . .N − 1

where N = [ǫ/δ] + 1, ǫ̃ = ǫ/N.

Simplified Riemann Solver

Case 1. Let k > i be the family of a small (physical) wave of strength ǫin
k , impinging

from the left a large shock of the i-th family, as in Figure 3.1.

u
0

u1
εin

k

u+

λ̂
u

3

u2

i

i
ε

k

Figure 3.1

We solve the Riemann problem (u0, u
+) in the following way:





u0 for x/t < Λi(u0, u2)

u2 for x/t ∈ (Λi(u0, u2), λk(u2, u3))

u3 = Ψk(u2, ǫ) for x/t ∈ (λk(u2, u3), λ̂)

u+ for x/t > λ̂.
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Here the outgoing strength

ǫ = ǫin
k ·

∂ǫout
k

∂ǫin
k |ǫin

k
=0

in the solution given in Proposition 2.1, and

λk(u2, u3) =




λk(u2) if ǫ > 0 and k-field is genuinely nonlinear
〈f(u2) − f(u3), u2 − u3〉

|u2 − u3|2
otherwise

is the Rankine-Hugoniot speed of the shock (or contact discontinuity) joining the
states u2, u3 ∈ Ωm if the wave ǫ was a shock or contact discontinuity itself, or
a single discontinuity approximation of the rarefaction wave between the states
(u2, u3) if the original wave ǫ is an approximated rarefaction.

The middle state u2 is defined as follows. By (2.7)(ii), after possibly permuting
the coordinates in Rn, the matrix

∂Ψi

∂((um)1, . . . , (um)n−1)
(u−

0 , um
0 )

is invertible (here {(um)s}n
s=1 are the components of the point um ∈ Rn), so by im-

plicit function theorem there exists a smooth function ϕi : Ω−×(a, b) −→ Rn−1 such
that ϕi(u−

0 , (um
0 )1) =

(
(um

0 )2, . . . , (um
0 )n

)
and Ψi(u−, ((um)1, ϕ

i(u−, (um)1))) = 0.

Set u2 = ((u+)1, ϕ
i(u0, (u

+)1). Then Ψi(u0, u2) = 0.

If the small k-wave hits the large i-shock from the right (k < i), we construct
the approximate solver in the analogous way, letting the k-wave pass through the i-
wave changing its strength by an appropriate factor, and create a new non-physical

wave travelling with speed λ̂.

Case 2. A big i-shock is hit by a small wave of the same family or by a non-physical
discontinuity. This case is treated entirely the same as in [BJ].

Define the strength of a non-physical wave as the distance between its right and
left states. We will also adopt the notation that the non-physical waves belong to
a (n + 1)th characteristic family. Moreover:

define the strength of any large wave of i-th or j-th charac-
teristic family to be equal to some fixed number B ≤ 1 (bigger
than all strengths of small waves).

(3.1)

Proposition 3.1. (Interaction estimates)

(i) Let the Riemann problem (u−, um) ∈ Ω− × Ωm be given. The sum of the
strengths of small waves generated by the Accurate Riemann Solver is esti-
mated:

∑

k:1...n,k 6=i

|ǫout
k | = O(1) · (|u−

0 − u−| + |um
0 − um|).
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(ii) Assume the large i-wave interacts with a small (possibly non-physical) wave
having strength ǫin. Then all the outgoing small waves generated by Accurate
or Simplified Riemann Solvers have their strengths estimated:

∑

k:1...n+1,k 6=i

|ǫout
k | = O(1) · |ǫin|.

Here and in the sequel, with the Landau symbol O(1) we denote a quantity
whose absolute value is uniformly bounded quantity, depending only on the system
(1.1) or the a-priori bounds on the initial data such as diameters of sets Ω−, Ωm

or the constant δ0 appearing in (2.12). The proof of Proposition 3.1 follows using
Taylor expansions.

Glimm’s functionals

Once the steps of the algorithm have been defined (as they are entirely the
same as in [BJ], we omit the details), one needs to prove that it generates an
approximate solution, defined globally in time. To this end, we will derive suitable
a priori bounds on the Total Variation of approximate profiles, bounds on the global
number of wave fronts and the total strength of all non-physical waves. As in the
case of only weak shocks present [B1] [BJ] [R], this will be done by introducing a
suitable wave interaction potential [G].

Let u(t, x) be a piecewise constant approximate solution, generated by the wave
front tracking algorithm. At a fixed time t ≥ 0, u(t, ·) is piecewise constant and its
jump points are located at the intersections of the wave fronts in u with the line
{(t, x); x ∈ R}. If t > 0 then precisely two jumps are large: the first belonging to
the i-th, second to the j-th characteristic family.

Definition 3.2. (Approaching waves)

(i) We say that two small (possibly non-physical) fronts α and β, located at points
xα < xβ and belonging to the characteristic families kα, kβ ∈ {1 . . . n + 1}
respectively, approach each other iff the following two conditions hold simul-
taneously:

– xα and xβ both lay in one of the three intervals (two of them unbounded)
into which R is partitioned by the locations of large i and j-shocks. In
other words: the states joined by the fronts under consideration both be-
long to the same set Ω−, Ωm or Ω+.

– Either kα < kβ or else kα = kβ and at least one of the waves is a genuinely
nonlinear shock.

In this case we write: (α, β) ∈ A.
(ii) We say that a small wave α of the characteristic family kα ∈ {1, . . . , n + 1}

located at xα is approaching a large shock of family kβ ∈ {i, j}, located at a
point xβ iff either kα ≤ kβ and xα > xβ or kα ≥ kβ and xα < xβ . We then
write: α ∈ Akβ

.

We adopt the following notation. Assume that we are given three sets of pos-
itive numbers {w−

k }n+1
k=1 , {wm

k }n+1
k=1 and {w+

k }n+1
k=1 . For a small wave of family k ∈

{1, . . . , n + 1} and strength ǫk, that connects two states u1 and u2 we define its
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weighted strength as:

bk =





w−
k · ǫk if u1, u2 ∈ Ω−

wm
k · ǫk if u1, u2 ∈ Ωm

w+
k · ǫk if u1, u2 ∈ Ω+.

(3.2)

bk can be interpreted as strength of the wave under consideration, computed along
the reparametrized curve Ψk(u1, ·). The reparametrization ratio is equal to the
weight w−

k in Ω−, wm
k in Ωm, w−

k if u1 ∈ Ω+.

Let xα, α : 1 . . .N be the locations of the fronts in u(t, ·). By ǫα (bα) we denote
the strength (weighted strength) of the wave front at xα.

Definition 3.3. Let t > 0. The total (weighted) strength of waves in u(t, ·) is
defined by:

V (t) =
∑

α

|bα|,

where the summation ranges over all small wave fronts of all families. The (weighted)
wave interaction potentials:

QA(t) =
∑

(α,β)∈A

|bαbβ|,

Qi(t) =
∑

α∈Ai

|bα|, Qj(t) =
∑

α∈Aj

|bα|,

Q(t) = κQA(t) + Qi(t) + Qj(t).

The Glimm functional:

Γ(t) = V (t) + κ̃Q(t) + |u∗(t) − um
0 |,

where κ, κ̃ > 0 are constants to be specified later. The vector u∗(t) is the right state
of the first left (i-th) large shock, at the time t.

Note that V and Q (and thus Γ) are constant between any pair of subsequent
interaction times. On the other hand, across an interaction time both Q and Γ
decrease, as shown in the next Proposition.

Proposition 3.4. Assume that the Finiteness Condition holds. There exist weights
{w−

k }, {wm
k }, {w+

k } in (3.2), constants κ, κ̃ > 0 and δ > 0 such that the following
holds. Let u(0, ·) : R −→ Rn be such that:

• limx→−∞ u(0, x) = u−
0 , limx→∞ u(0, x) = u+

0 ,
• there exist points xi < xj in R such that

u(0, x) ∈





Ω− for x < xi

Ωm for xi < x < xj

Ω+ for x > xj .

(3.3)

If T.V.(u(0, ·)− ũ) < δ (for some ũ as in (2.12)), then for any t > 0 when two wave
fronts of families α and β interact we have:
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(i)

∆Q(t) = Q(t+) − Q(t−)

≤

{
−c|bα · bβ| if both waves are small

−c|bα| if α wave is small and β is a large shock.

(ii) The same estimate as in (i) above holds for ∆Γ(t) = Γ(t+) − Γ(t−).

The number c is some small positive, uniform constant.

Proof. For k : 1 . . . n set wm
k = wk from the Finiteness Condition. Let t > 0 be a

fixed time of interaction of two waves (one of them possibly large or non-physical).
By standard estimates in [Sm] and Proposition (3.1)(ii) we receive the following
estimates on the change in Q across the time t, in terms of the strengths ǫα, ǫβ of
interacting waves:

∆QA ≤ ∆Qi ≤ ∆Qj ≤
case I:

ǫα small
ǫβ small

−|bαbβ|+
O(1)V (t−)|bαbβ|

O(1)|bαbβ | O(1)|bαbβ|

case II:
β = i

ǫα small
ǫβ large

O(1)V (t−)|bα| −|bα|





∑
k:j...n

|bout
k | if ARS

|bout
n+1| if SRS

case III:
β = j

ǫα small
ǫβ large

O(1)V (t−)|bα|






∑
k:1...i

|bout
k | if ARS

0 if SRS
−|bα|

Here {bout
k } are, as usual, the reparametrised strengths of the outgoing waves, in

the interaction under consideration. For clarity, denote the biggest of the uniform
constants playing role in the above estimates by C.

Then, if V (t−) ≤ 1/2C and κ ≥ 6C, one sees that (i) in case I is satisfied with
c = C. To treat cases II and III note that if we set w−

k for k ≥ i and w+
k for k ≤ j to

be big enough (relatively to the other weights) then in view of Proposition 3.1(ii)
we get (i) with c = 1/4 in the following two cases:

• Case II when a small α wave interacts with the large i shock from the left.
• Case III when a small α wave interacts with the large j shock from the right.

provided that V (t−) ≤ 1/2κC.
To treat the remaining cases, the Finiteness Condition must be used. Fix wm

n+1

so small that (2.9) holds with k = n + 1 and wk = wm
n+1. This is possible by

Proposition 3.1(ii). Let θ be as in Finiteness Condition (2.8) (2.9). By (2.8) and
(2.9), if

V (t−) ≤
1 − θ

2κC
,

then (i) is satisfied with the constant c = (1 − θ)/2 > 0. Also, note that

∆V (t) = V (t+) − V (t−) ≤

{
C|bαbβ| in case I

C|bα| in cases II and III,

by [B1] and Proposition 3.1(ii).
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Let us now estimate the third summand in the definition of Γ(t). Obviously, in
cases I and III u∗(t−) = u∗(t+), so the component |u∗(t) − um

0 | does not change
across the interaction time t. In case II |u∗(t+)−u∗(t−)| = O(1)|bα| by Proposition
3.1(ii). Thus, if κ̃ is big enough, we get both estimates (i) and (ii), provided that

V (t−) ≤ δ̃ = min

{
1

2C
,

1

2κC
,
1 − θ

2κC

}
.

Note now that:

V (t−) ≤ Γ(t−) ≤ Γ(0+) = V (0+) + κ̃Q(0+) + |u∗(0+) − um
0 |

≤ C1 · T.V.(u(0+, ·) − ũ) + κ̃
{
κC1 · [T.V.(u(0+, ·) − ũ)]2

+ 2C1 · T.V.(u(0+, ·)− ũ)
}
,

(3.4)

where C1 is a uniform positive constant depending on the curvature of {Ψk(u, ·}n
k=1

as well as on their parametrisation, given by the weights {w−
k , wm

k , w+
k }n

k=1. By
Proposition 3.1(i) T.V.(u(0+, ·)− ũ) = O(1)·T.V.(u(0, ·)− ũ) thus in view of (3.4), if

the constant δ is small enough, the inequality T.V.(u(0, ·)−ũ) < δ implies V (t−) < δ̃
and the result follows.

As in the case without the presence of large waves [BJ], Proposition 3.4 results in
the following assertions. If u(0, ·) satisfies the assumptions of Proposition 3.4, then
our wave front tracking algorithm generates a piecewise constant approximate solu-
tion (that has finitely many discontinuity lines) u(t, ·) for all t ∈ [0,∞). Moreover,
the functional Γ computed for u(t, ·) is nonincreasing in time, and in particular (by
(3.4)) we get:

Γ(t) ≤ Γ(0+),

T.V.(u(t, ·) − û) = O(1) · Γ(t) = O(1) · T.V.(u(t, ·) − ũ)
(3.5)

for some û as ũ in (2.12).
The total strength of all non-physical waves occuring at any fixed time t > 0 is

of the order O(1)(ρ + δ).

Following [BLY] below we gather all the main properties of the wave front track-
ing approximate solutions.

Theorem 3.5. Assume that a piecewise constant function u(0, ·) satisfies the as-
sumptions of Proposition 3.4. Fix ǫ > 0. Then for some parameters ρ, δ > 0 the
corresponding wave front tracking algorithm produces the function u : [0,∞)×R −→
Rn, such that:

(i) u is piecewise constant function, with discontinuities occuring along finitely
many lines in the t − x plane. Only finitely many interactions take place,
each involving exactly two incoming fronts. Jumps can be of four types: small
shocks (or contact discontinuities), rarefactions, non-physical waves and large
shocks, denoted as J = S ∪ R ∪NP ∪ LS.

(ii) Along each shock (or contact discontinuity) x = xα, α ∈ S, its left and right
states satisfy u(t, xα+) = Ψkα

(u(t, xα−), ǫα) for some kα : 1 . . . n and the
corresponding wave strength ǫα. If the kα characteristic family is genuinely
nonlinear, then ǫα < 0. Moreover, the speed of the shock satisfies:

|ẋα − λkα
(u(t, xα−), u(t, xα+))| ≤ ǫ. (3.6)
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(iii) Along each rarefaction front x = xα, α ∈ R, one has u(t, xα+) = Ψkα
(u(t, xα−), ǫα)

for some genuinely nonlinear family kα and the corresponding wave strength
ǫα ∈ (0, ǫ). Moreover:

|ẋα − λkα
(u(t, xα+)| ≤ ǫ. (3.7)

(iv) Every non-physical front x = xα, α ∈ NP, has the same speed ẋα = λ̂, where

λ̂ is a fixed constant strictly greater than all characterictic speeds. The total
strength of all non-physical waves in u(t, ·) remains uniformly small:

∑

α∈NP

|u(t, xα−) − u(t, xα+)| ≤ ǫ ∀t ≥ 0. (3.8)

(v) The two large shocks, x = xα, α ∈ LS, belonging to the families i and j
satisfy Ψkα(u(t, xα−), u(t, xα+)) = 0, kα ∈ {i, j} and travel with the exact
speed ẋα = Λkα(u(t, xα−), u(t, xα+)).

The function u as above will be called an ǫ-approximate solution of (1.1).

4. The Lyapunov functional

As announced in Sections 1 and 2, the trajectories of the semigroup S of solutions
to (1.1) will be constructed by means of the wave front tracking algorithm described
in Section 3, and a usual limiting process, to be described in Section 6. To give some
more insight in the actual behaviour of the limiting process (in particular, it is going
to appear that any sequence of approximate wave front tracking solutions uǫ(·, ·)
converges to a weak solution of the original Cauchy problem (1.1) (1.2), when uǫ(0, ·)
converges to ū), and show that S is continuous (thus giving the positive answer to
question B on Section 1), we follow the approach of [BLY] [LY1] [LY2] based on
the construction of a suitable Lyapunov functional with the following properties:

1

C
· ‖ u(t, ·) − v(t, ·) ‖L1≤ Φ(u(t, ·), v(t, ·)) ≤ C· ‖ u(t, ·) − v(t, ·) ‖L1 , (4.1)

Φ(u(t, ·), v(t, ·)) − Φ(u(s, ·), v(s, ·)) = O(1) · ǫ · (t − s) ∀t > s ≥ 0, (4.2)

satisfied for any two ǫ-approximate solutions u and v.
The formula (4.1) claims that Φ is equivalent to the L1 distance within the

set of piecewise constant functions with (3.3). The formula (4.2) says that Φ is
’almost decreasing’ in time. These two formulas imply in particular that the flow
of piecewise constant ǫ-approximate solutions is ’almost Lipschitz’ and the error is
of the order ǫ. As we will see in Section 6, this guarantees that the exact flow S is
Lipschitz continuous, as announced in Theorem B.

Let u, v : [0,∞)×R −→ Rn be two ǫ-approximate solutions, with the properties
given in Theorem 3.5. Fix a time t > 0 and consider a space point x ∈ R, which is
not a discontinuity point of the functions u = u(t, ·), v = v(t, ·). We define the scalar
quantities {qk(x)}n

k=1, as the weighted strengths of the corresponding shock waves
in the jump (u(x), v(x)). More precisely, we consider the Riemann data (z−, z+),
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where:

(z−, z+) =




(u(x), v(x)) if (u(x), v(x)) ∈ (Ω− × Ω−) ∪ (Ω− × Ωm) ∪ (Ω− × Ω+)

∪ (Ωm × Ωm) ∪ (Ωm × Ω+) ∪ (Ω+ × Ω+)

(v(x), u(x)) if (u(x), v(x)) ∈ (Ωm × Ω−) ∪ (Ω+ × Ω−) ∪ (Ω+ × Ωm).

(4.3)

By Proposition 2.1, Proposition 2.4 and Remark 2.3 the above Riemann prob-
lem (z−, z+) has a unique self-similar solution, following the shock curves Sk. The
weighted strengths of the waves in this solution are to be called qk(x). They are
defined as in formula (3.2), with weights {w̃k} given in Stability Condition, re-
placing weights {wk} from Finiteness Condition. In particular, if for example
(u(x), v(x)) ∈ (Ω− × Ω−), then for every k : 1 . . . n we have qk(x) = w̃−

k · ǫk(x)
where the strengths {ǫk(x)}n

k=1 are implicitely defined by:

v(x) = Sn(. . . ,S1(u(x), ǫ1(x)), . . . , ǫn(x)).

Note that due to (4.3), the locations of large shocks in u and v divide R into
five intervals (two of them unbounded) where the distance between u(x) and v(x)
is computed along shocks in possibly different ’directions’: either from u(x) to
v(x) or from v(x) to u(x) (see Figure 4.1). In Figure 4.1 we depict all possible
configurations of the positions of large shocks in u and v and give names to their
distinct ’types’. This notation is going to be used in Section 5, where we treat
different cases to receive bounds on the ’local’ increase of Φ, as we describe below.

u

u u
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We define the functional:

Φ(u, v) :=

n∑

k=1

∫ ∞

−∞

|qk(x)|Wk(x)dx, (4.4)

where the weights are given by:

Wk(x) := 1 + κ1Ak(x) + κ2[Q(u) + Q(v)]. (4.5)

The constants κ1, κ2 are to be defined later. Q is our Glimm’s interaction potential,
introduced in Definition 3.3. The amount of waves in u and v, which approach the
wave ǫk(x) is defined in the following way (for x that is not a location of a jump in
u or v):

Ak(x) = Bk(x) + (4.6)





Ck(x) if k-field is genuinely nonlinear and k-wave qk(x) is small

Fk(x) if k = i and k-wave is large qk(x) = B

Gk(x) if k = j and k-wave is large qk(x) = B

0 otherwise

Here the notions ’small’ or ’large’ describe waves that connect states in the same
or in distinct domains Ω−, Ωm, Ω+, respectively.

The summands in (4.6) are the following:

Bk(x) =




∑

α∈J ,

xα<x, k<kα≤n

+
∑

α∈J ,

xα>x, 1≤kα<k



 |ǫα|,

Ck(x) =









∑

α∈J (u)\LS,

xα<x, kα=k

+
∑

α∈J (v)\LS,

xα>x, kα=k


 |ǫα| if qk(x) < 0




∑

α∈J (v)\LS,

xα<x, kα=k

+
∑

α∈J (u)\LS,

xα>x, kα=k


 |ǫα| if qk(x) > 0

+

{
2B if k ∈ {i, j}

0 otherwise,

Fk(x) =




∑

α∈J\LS, xα<x, kα=i,

both states joined by α
are located in Ω−

+
∑

α∈J\LS, xα>x, kα=i,

both states joined by α
are located in Ωm


 |ǫα|,

Gk(x) =




∑

α∈J\LS, xα<x, kα=j,

both states joined by α
are located in Ωm

+
∑

α∈J\LS, xα>x, kα=j,

both states joined by α
are located in Ω+


 |ǫα|.

Here ǫα stands for the (nonweighted) strength of the wave α ∈ J , located at
point xα and belonging to the characteristic family kα. J = J (u) ∪ J (v), LS =
LS(u) ∪ LS(v) stand for the set of all waves (in u and v) and the set of all large
shocks (in u and v) respectively, as introduced in Theorem 3.5.
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We comment briefly on the formula (4.6). The presence of the first summand
simply says that any wave of a faster family, located to the left of x and any wave of
a slower family, located to the right of x, approaches the wave under consideration.
Only physical waves are involved, no matter if they are large or small.

The first term of the summand C is identical to the one in the corresponding
definition of Ak(x) in [BLY] and it accounts for waves in u and v of the same k-th
family. Only small physical waves are considered. The second term (containing 2B
or 0) mirrors the convention that a small i (j) wave is always approached by any
large i (j) wave in u or v, no matter where it is located. This convention is justified
by assumed Lax stability of large shocks ((2.2) (2.4) and Proposition 2.1(iii)).

The last two summands in F and G are also connected with the Lax stability
of large shocks and say that a large k shock is approached by small k waves in
J (u) ∪ J (v) if they have bigger speed and are located to the left of x or have
smaller speed and are located to the right of x.

We now examine how the functional Φ evolves in time. For k : 1 . . . n call λk(x)
the speed of the k-wave ǫk(x) in the solution of the Riemann problem (4.3) (along
the shock waves). At a time t which is not the interaction time of the waves in
u(t, ·) = u(t) or v(t, ·) = v(t) a direct computation yields:

d

dt
Φ(u(t), v(t))

=
∑

α∈J

n∑

k=1

{|qk(xα−)|Wk(xα−) − |qk(xα+)|Wk(xα+)} · ẋα

=
∑

α∈J

n∑

k=1

{|qk(xα+)|Wk(xα+)(λk(xα+) − ẋα) −

|qk(xα−)|Wk(xα−)(λk(xα−) − ẋα)} · ẋα,

(4.7)

where ẋα is the speed of the discontinuity at the α ∈ J wave. We introduce the
notation:

Eα,k = |qα+
k |Wα+

k (λα+
k − ẋα) − |qα−

k |Wα−
k (λα−

k − ẋα), (4.8)

where qα+
k = qk(xα+), λα+

k = λk(xα+) and so on. Then (4.7) becomes:

d

dt
Φ(u(t), v(t)) =

∑

α∈J

n∑

k=1

Eα,k. (4.9)

Our main goal will be to establish the bounds:

n∑

k=1

Eα,k = O(1) · |ǫα| ∀α ∈ C, (4.10)

n∑

k=1

Eα,k ≤ 0 ∀α ∈ LS, (4.11)

n∑

k=1

Eα,k = O(1) · ǫ |ǫα| ∀α ∈ R∪ S, (4.12)
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If t is an interaction time of two fronts in u or v then all weights
Wk(x) decrease across time t.

(4.13)

We remark that the quantities denoted by the Landau symbol O(1) are also inde-
pendent of the constants κ1, κ2.

From (4.10) (4.11) (4.12), recalling (3.8) and the uniform bound on the total
strenghs of waves (3.5) we get:

d

dt
Φ(u(t), v(t)) = O(1) · ǫ.

Integrating the above formula in t and combining it with (4.13) (that in turn yields
the decrease of Φ across the interaction times) we prove (4.2).

In the remaining part of this Section we briefly discuss the easy to obtain esti-
mates (4.1) and (4.13). To prove (4.1) note that once κ1 and κ2 are set, the weights
Wk(x) satisfy the bounds:

1 ≤ Wk(x) ≤ W, (4.14)

for some uniform constant W. Since one can also assume that:

1

W
|v(x) − u(x)| ≤

n∑

k=1

|qk(x)| ≤ W |v(x) − u(x)|,

by (4.4), (4.1) becomes obvious. For completeness, let us state at this point that
no matter how big κ1 and κ2 are, we can always assume that

1 + κ1Ak(x) + κ2(Q(u) + Q(v)) ≤ 2 (4.15)

by shrinking the sets Ω−, Ωm, Ω+ and uniformly adjusting the weights wk.
To get (4.13) it is enough to recall Proposition 3.4(i) and Proposition 3.1(ii).

One sees that the result holds if κ2 >> κ1 in (4.5).

5. Stability of approximate solutions

The goal of this Section is to prove the estimates (4.10) (4.11) and (4.12). We
will treat them separately. Since always a particular, α-wave is under consideration,
no ambiguity arises if we drop α in the subscripts and superscripts of the formulae
(4.8) – (4.11). Recall that by qk we denote the weighted strengths of k-family waves,
while ǫk stands for their corresponding unweighted strengths, qk = w̃k · ǫk.

Case of non-physical waves
– the estimate (4.10)

This estimate is obtained exactly as the corresponding one in [BLY]. Since the
weighted wave vector (q1, . . . , qn), solving the Riemann discontinuity (z−, z+), as
described in Section 4, depends Lipschitz continuously on both z− and z+, using
the notation of Section 4 we get:

q+
k − q−k = O(1) · |ǫα|,

λ+
k − λ−

k = O(1) · |ǫα|.
(5.1)
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By the finite propagation speed of the system, (4.14) and (5.1), we see that:

n∑

k=1

Ek =

n∑

k=1

[
W+

k (|q+
k | − |q−k |)(λ+

k − ẋα) +

(W+
k − W−

k )|q−k |(λ+
k − ẋα) + W−

k |q−k |(λ+
k − λ−

k )
]

= O(1) · |ǫα| + O(1) · (W+
k − W−

k )|q−k |.

(5.2)

Note that if q+
k q−k > 0 (case q+

k = q−k = B included) then by definition (4.6)

W+
k = W−

k . On the other hand if q+
k q−k ≤ 0 then by (5.1) |q−k | = O(1)|ǫα|. In both

cases (5.2) implies (4.10).

Case of large shocks
– the estimate (4.11)

Before presenting the appropriate computations, we collect below some straight-
forward estimates that will be used in the sequel.

Lemma 5.1. Consider the wave pattern as in Figure 5.2 b). Then

(i) |v−−Si−1(ǫ
+
i−1 . . . (S1(ǫ

+
1 , v−) . . . )| + |v+−S̃i+1(−ǫ+i+1 . . . (S̃n(−ǫ+n , v+) . . . )| =

O(1) ·
∑

k≥i |ǫ
−
k |.

(ii) |λ+
i − ẋα| = O(1) ·

∑
k≥i |ǫ

−
k |.

(iii)
∑

k<i |ǫ
−
k | = O(1) ·

[∑
k<i |ǫ

+
k | +

∑
k≥i |ǫ

−
k |
]
.

(iv)
∑

k>i |ǫ
+
k | = O(1) ·

∑
k≥i |ǫ

−
k |.

Proof. The analysis performed for the definition of the Simplified Riemann Solver
(Case 1) in Section 3 has proved that the ’basic’ shock stability condition (2.7)
implies that for a fixed left state u− ∈ Ω− there exists a smooth curve BSi(·, u

−)
in Ωm of the right states that can be connected to u− by an admissible big i-shock.

Using the notation as in Figure 5.2 b), define the mapping:

G(u−, ǫ−1 , . . . , ǫ−n , ǫ) = Sn(ǫ−n , . . .S1(ǫ
−
1 , u−) . . . ) − Si−1(ǫ

+
i−1, . . .S1(ǫ

−
1 , u−) . . . )

= v− − Si−1(ǫ
+
i−1 . . .S1(ǫ

+
1 , v−) . . . ),

where (ǫ+1 . . . ǫ+i−1, ǫ
+
i+1 . . . ǫ+n ) constitute the usual wave vector solving the Riemann

data (u−,BSi(ǫ, v
−), as in Proposition 2.1. Obviously

G(u−, ǫ−1 , . . . , ǫ−i−1, 0 . . . 0, ǫ) = 0

and thus, by Lipschitz continuity of G we get |v−−Si−1(ǫ
+
i−1 . . . (S1(ǫ

+
1 , v−) . . . )| =

O(1) ·
∑

k≥i |ǫ
−
k |. The estimate |v+ − S̃i+1(−ǫ+i+1 . . . (S̃n(−ǫ+n , v+) . . . )| = O(1) ·∑

k≥i |ǫ
−
k | is proved in the same way.

The estimate (ii) is an immediate consequence of (i) and Proposition 2.1(iii).
(iii) and (iv) are proved exactly the same as (i).

Remark 5.2. Obviously, the analogous estimates hold with the wave pattern as
in Figures 5.4 b), 5.6 b) and 5.8 b).

Lemma 5.3. Consider the wave scheme as in Figure 5.10 b). Then:
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(i) |Si−1(ǫ
−
i−1, . . . (S1(ǫ

−
1 , u−) . . . ) − Si−1(ǫ

+
i−1, . . . (S1(ǫ

+
1 , u+) . . . )| +

|S̃i+1(−ǫ−i+1, . . . (S̃n(−ǫ−n , v−) . . . ) − S̃i+1(−ǫ+i+1, . . . (S̃j−1(−ǫ+j−1, w) . . . )| +

|v− − w| + |v+ − S̃j+1(−ǫ+j+1, . . . (S̃n(−ǫ+n , v+) . . . )| =

O(1) ·
∑

k≥j |ǫ
−
k |.

(ii) |λ−
i − λ+

i | + |λ+
j − ẋα| = O(1) ·

∑
k≥j |ǫ

−
k |.

Proof. The statement (i) is proved exactly as (i) in Lemma 5.1. (ii) follows from
(i) and Proposition 2.4.

Remark 5.4. The analogous estimates hold for Figure 5.11 b).

The next lemma is a consequence of stability conditions (2.10) and (2.11).

Lemma 5.5. (i) Consider the wave scheme as in Figure 5.6 b). There exists a
constant γ ∈ (0, 1) such that:

∑

k≥j

|q+
k ||λ+

k − ẋα| ≤
∑

k≥j

|q−k ||λ−
k − ẋα| + γ ·

∑

k≤i

|q+
k ||λ+

k − ẋα|.

(ii) In the situation as in Figure 5.8 b), there exists a constant γ ∈ (0, 1) such
that:

∑

k≤i

|q−k ||λ−
k − ẋα| ≤

∑

k≤i

|q+
k ||λ+

k − ẋα| + γ ·
∑

k≥j

|q−k ||λ−
k − ẋα|.

Proof. We prove only the statement (i), the other one being entirely similar.
We prove that

∑

k≥j

|q−k (λ−
k − ẋα) − q+

k (λ+
k − ẋα)| ≤ γ ·

∑

k≤i

|q+
k ||λ+

k − ẋα| (5.3)

that in turn implies (i). We first show how to obtain the inequality (5.3) in case
when q+

k = 0 for every k 6= s, for any fixed index s ≤ i. By (2.2) (2.4) the formula
(5.3) is then equivalent to:

∑

k≥j

1

|q+
s |

·

∣∣∣∣q
−
k

(λ−
k − ẋα)

(λ+
k − ẋα)

∣∣∣∣ ≤ γ (5.4)

(compare Figure 5.1).

u-

Ω- Ωm

i
B

{q  }-
k

s q  +

Figure 5.1

Following the notation of the proof of Lemma 5.1, we define the C2 mapping

(u−, ǫ, q+
s ) 7→

{
q−k ·

(λ−
k − ẋα)

(λ+
k − ẋα)

}

k=j...n

,
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where the quantities q−k (λ−
k ) stand for the weighted strengths (and corresponding

speeds) of the usual wave vector solving the Riemann data

(u−,Ss(q
+
s /w̃m

s ,BSi(ǫ, u
−)))

as in Proposition 2.1. ẋα is the speed of the big shock joining u− and BSi(ǫ, u
−).

We have:

∑

k≥j

1

|q+
s |

·

∣∣∣∣q
−
k

(λ−
k − ẋα)

(λ+
k − ẋα)

∣∣∣∣

=
∑

k≥j

1

|q+
s |

·

∣∣∣∣∣

∫ q+
s

0

∂

∂q+
s |(u−, ǫ, θ)

q−k
(λ−

k − ẋα)

(λ+
k − ẋα)

dθ

∣∣∣∣∣

≤
∑

k≥j

[ ∣∣∣∣∣
∂

∂q+
s |(u−

0 , 0, 0)
q−k

(λ−
k − ẋα)

(λ+
k − ẋα)

∣∣∣∣∣+ O(1) · ǫ · |q+
s |

]
≤ γ,

for any γ ∈ (Θ, 1), if only ǫ and |q+
s | are small enough. The last inequality follows

from (2.10) and (2.14) (2.2).
Having (5.4) established, we turn now to prove (5.3). Consider the C2 mapping

G(u−, ǫ, q+
1 . . . q+

n ) =
{
q−k (λ−

k − ẋα) − q+
k (λ+

k − ẋα)
}

k=j...n
,

defined by Figure 5.6 b) (ǫ is such that u+ = BSi(ǫ, u
−)). Note that G(u−, ǫ, 0 . . .0) =

0 and
∂G

∂q+
s

(u−, ǫ, 0 . . .0) = 0

for every s > i. Fix s ≤ i. We get by (5.4):

∑

k≥j

∣∣∣∣
∂Gk

∂q+
s

(u−, ǫ, 0 . . . 0)

∣∣∣∣ = lim
b+s →0

∑

k≥j

∣∣∣∣
q−k (λ−

k − ẋα)

q+
s

∣∣∣∣

≤ γ · lim
b+s →0

|λ+
s − ẋα| = γ · |λs(u

+) − ẋα|.

(5.5)

Using the Taylor expansion, in view of (5.5) we get:
∑

k≥j

∣∣Gk(u−, ǫ, q+
1 , . . . , q+

n )
∣∣

=
∑

k≥j

∣∣∣∣∣∣

∑

s≤i

∂Gk

∂q+
s

(u−, ǫ, 0 . . .0) · q+
s + O(1) ·

(
n∑

r=1

|q+
r |

)2
∣∣∣∣∣∣

≤ γ ·
∑

s≤i

|λs(u
+) − ẋα||q

+
s | + O(1) ·

(
n∑

r=1

|q+
r |

)2

.

(5.6)

Obviously, increasing γ a little bit, (5.6) implies (i), if only Ωm is small enough.

Referring to Figure 4.1, we are going to consider separately different configu-
rations of the positions of the large i and j shocks in the profiles of u(t, ·) and
v(t, ·).

Case 1. – Figure 5.2



ON THE L1 WELL POSEDNESS ... 25

u

v

i

i

i j

j

xα

a)

Ω- Ωm--

-

b)

B
i

v
v

u

+
{q  }

{q  }
k

k

-

+

Figure 5.2

By Lemma (5.1)(ii) (2.14) and Definition 4.6, the following estimate holds:

Ei = B · W+
i (λ+

i − ẋα) − |q−i | W−
i (λ−

i − ẋα)

≤ O(1) · B
∑

k≥i

|q−k | − 2Bκ1|q
−
i | · |λ−

i − ẋα|.
(5.7)

By (2.14) (2.2), definitions (4.6) and (4.15), if δ0 from Theorems A and B is small
enough (which implies that the sum of strengths of the small waves is small) we
get:

∑

k<i

Ek =
∑

k<i

[
|q+

k |(λ+
k − ẋα)(W+

k − W−
k )

+ W−
k

(
|q+

k |(λ+
k − ẋα) − |q−k |(λ−

k − ẋα)
)]

≤
∑

k<i

[
−

1

2
|q+

k ||λ+
k − ẋα|(W

+
k − W−

k )

−
1

2
|q+

k | c(W+
k − W−

k ) + W−
k |q−k | · |λ−

k − ẋα|
]

≤
∑

k<i

[
−

1

2
|q+

k ||λ+
k − ẋα| · κ1B + O(1) · |q−k | · |λ−

k − ẋα|
]
,

(5.8)

∑

k>i

Ek =
∑

k>i

[
|q−k |(λ−

k − ẋα)(W+
k − W−

k )

+ W+
k

(
|q+

k |(λ+
k − ẋα) − |q−k |(λ−

k − ẋα)
)]

≤
∑

k>i

[
−

1

2
|q−k ||λ−

k − ẋα|(W
−
k − W+

k )

−
1

2
|q−k | c(W+

k − W−
k ) + W+

k |q+
k | · |λ+

k − ẋα|
]

≤
∑

k>i

[
−

1

2
|q−k ||λ−

k − ẋα| · κ1B + (O(1) + 3κ1B) · |q+
k | · |λ+

k − ẋα|
]
,

(5.9)
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Summing (5.7) (5.8) (5.9) and using Lemma 5.1(iii) we get:

n∑

k=1

Ek ≤ −
κ1B

4

[
∑

k<i

|q+
k | · |λ+

k − ẋα| +
∑

k≥i

|q−k | · |λ−
k − ẋα|

]

+ O(1) · κ1B
∑

k>i

|q+
k | · |λ+

k − ẋα|

≤ −κ1B c

n∑

k=1

|q−k | · |λ−
k − ẋα| + O(1) · κ1B

∑

k>i

|q+
k | · |λ+

k − ẋα|,

(5.10)

without loss of generality if c is small and κ1 big enough.
Clearly, in view of Lemma 5.1(iv), the formula (5.10) implies (4.11) provided

that the weights w̃−
k for k ≥ i are big enough (relatively to other weights).

Case 1’. – Figure 5.3

+u

-
v

u-

a)

v

u

i

i

xα i j

j

Ω- Ωm

b)

B

i

k{q  }+
{q  }-

k

Figure 5.3

Call
{
q̃−k
}n

k=1
the (weighted) wave vector solving the Riemann data (v−, u−). Stan-

dard computations show that:

q̃−k − q−k = O(1) ·

(
n∑

s=1

|q−s |

)2

,

λ̃−
k − λ−

k = O(1) ·
n∑

s=1

|q−s |

(where λ̃−
k is the Rankine-Hugoniot speed of the wave q̃−k ).

Since replacing q−k with q̃−k we obtain precisely the situation considered in Case
1, the above estimates provide us with (4.11) in the present Case.

Case 2. – Figure 5.4
Analogously to the treatment of Case 1, recalling Remark 5.2, we estimate the
terms in

∑n
k=1 Ek:

Ej = −B · W−
j (λ+

j − ẋα) + |q+
j | W+

j (λ+
j − ẋα)

≤ O(1) · B
∑

k≤j

|q+
k | − 2Bκ1|q

+
j | · |λ+

j − ẋα|.
(5.11)
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u-

+u

-
v

u

v
i j

j

x

j

i α

Ωm Ω+

b)

B

j

a)

{q  }-
k

k{q  }+

Figure 5.4

∑

k>j

Ek ≤
∑

k>j

[
−

1

2
|q−k ||λ−

k − ẋα| · κ1B + O(1) · |q+
k | · |λ+

k − ẋα|
]
, (5.12)

∑

k<j

Ek =
∑

k<j

[
−

1

2
|q+

k ||λ+
k − ẋα| · κ1B + (O(1) + 3κ1B) · |q−k | · |λ−

k − ẋα|
]
,

(5.13)

Summing (5.11) (5.12) (5.13) together, one sees that:

n∑

k=1

Ek ≤ −κ1B c
n∑

k=1

|q+
k | · |λ+

k − ẋα| + O(1) · κ1B
∑

k<j

|q−k | · |λ−
k − ẋα|.

As before, this implies (4.11) provided that the weights w̃+
k for k ≤ j are big enough.

Case 2’. – Figure 5.5

-
v u-

v+Ωm Ω+

b)a)

u

v
i

j

i

j

xαj

j

B

{q  }-
k

k{q  }+

Figure 5.5

This case reduces to Case 2 precisely in the way as Case 1’ reduces to Case 1.

Case 3. – Figure 5.6
With the same remarks as in Case 1, we get the following estimates:

Ei = −B · W−
i (λ−

i − ẋα) + |q+
i | W+

i (λ+
i − ẋα)

≤ O(1) · B
∑

k≤i

|q+
k | − 2Bκ1|q

+
i | · |λ+

i − ẋα|,
(5.14)
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u-

+u

-
v

α

i

x

i

ji
v

j

u

Ω- Ωm

b)

B

i

a)

{q  }-
k

k{q  }+

Figure 5.6

∑

k<i

Ek =
∑

k<i

[
|q+

k |(λ+
k − ẋα)(W+

k − W−
k )

+ W−
k

(
|q+

k |(λ+
k − ẋα) − |q−k |(λ−

k − ẋα)
)]

≤
∑

k<i

[
− Bκ1|q

+
k ||λ+

k − ẋα| + O(1) ·
(
|q+

k | + |q−k |
)

− Bκ1|q
+
k | · |λ+

k − ẋα| + Bκ1|q
−
k | · |λ−

k − ẋα|
]
,

(5.15)

∑

i<k<j

Ek =
∑

i<k<j

[
|q−k |(λ−

k − ẋα)(W+
k − W−

k )

+ W+
k

(
|q+

k |(λ+
k − ẋα) − |q−k |(λ−

k − ẋα)
)]

≤
∑

i<k<j

[
− |q−k ||λ−

k − ẋα| · κ1B + O(1) ·
(
|q−k | + |q+

k |
)]

,

(5.16)

∑

k≥j

Ek =
∑

k≥j

[
|q−k |(λ−

k − ẋα)(W+
k − W−

k )

+ W+
k

(
|q+

k |(λ+
k − ẋα) − |q−k |(λ−

k − ẋα)
)]

≤
∑

k≥j

[
− |q−k ||λ−

k − ẋα| · κ1B + O(1) ·
(
|q−k | + |q+

k |
)

+ 2Bκ1|q
+
k | · |λ+

k − ẋα| − 2Bκ1|q
−
k | · |λ−

k − ẋα|
]
.

(5.17)
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Adding (5.14) – (5.17) we get:

n∑

k=1

Ek ≤
[
−

1 − γ

2
Bκ1

∑

k≤i

|q+
k | · |λ+

k − ẋα| + O(1) · B
∑

k≤i

|q+
k |
]

+
[
− (1 − γ) Bκ1

∑

k≤i

|q+
k | · |λ+

k − ẋα|

+ Bκ1

∑

k<i

|q−k | · |λ−
k − ẋα|

]

+
[
−

1 − γ

2
Bκ1

∑

k≤i

|q+
k | · |λ+

k − ẋα| − Bκ1

∑

k>i

|q−k | · |λ−
k − ẋα|

+ O(1) ·
∑

k 6=i

(
|q−k | + |q+

k |
)]

+
[
− 2γ Bκ1

∑

k≤i

|q+
k | · |λ+

k − ẋα| + 2Bκ1

∑

k≥j

|q+
k | · |λ+

k − ẋα|

− 2Bκ1

∑

k≥j

|q−k | · |λ−
k − ẋα|

]

= I1 + I2 + I3 + I4,

(5.18)

where γ is as in Lemma 5.7. To get (4.11) we show that each term I1, I2, I3, I4 in
(5.18) is nonpositive, provided that κ1 is big enough.

I1 ≤ 0 by (2.2) and (2.14). I2 ≤ 0 follows from Remark 5.2, provided that the
weights w̃−

k for k < i are small (relatively to other weights).
To estimate I3 we use Remark 5.2 without loss of generality (c as usual stands

for a uniform arbitrary small but positive constant) get:

I3 ≤ −c Bκ1




∑

k≤i

|q+
k | +

∑

k>i

|q−k |



+ O(1) ·
∑

k 6=i

|q+
k | + O(1) ·

∑

k 6=i

|q−k |

≤ −c Bκ1




∑

k≤i

|q+
k | +

∑

k>i

|q−k |



+
[
O(1) ·

∑

k>i

|q+
k | + O(1) ·

∑

k<i

|q−k |
]

≤ −c Bκ1

n∑

k=1

|q+
k | + O(1) ·

n∑

k=1

|q+
k | ≤ 0.

I4 ≤ 0 is an obvious consequence of Lemma 5.5(i).

Case 3’. – Figure 5.7
This case reduces to Case 3 as Case 1’ reduces to Case 1.

Case 4. – Figure 5.8
We treat this case similarily to Case 3.

Ej = −B · W−
j (λ+

j − ẋα) + |q−j | W−
j (λ−

j − ẋα)

≤ O(1) · B
∑

k≥j

|q−k | − 2Bκ1|q
−
j | · |λ−

j − ẋα|,
(5.19)
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∑

k>j

Ek ≤
∑

k>j

[
− Bκ1|q

−
k ||λ−

k − ẋα| + O(1) ·
(
|q+

k | + |q−k |
)

+ Bκ1|q
+
k | · |λ+

k − ẋα| − Bκ1|q
−
k | · |λ−

k − ẋα|
]
,

(5.20)

∑

i<k<j

Ek ≤
∑

i<k<j

[
− |q+

k ||λ+
k − ẋα| · κ1B + O(1) ·

(
|q−k | + |q+

k |
)]

, (5.21)

∑

k≤i

Ek ≤
∑

k≤i

[
− |q+

k ||λ+
k − ẋα| · κ1B + O(1) ·

(
|q−k | + |q+

k |
)

− 2Bκ1|q
+
k | · |λ+

k − ẋα| + 2Bκ1|q
−
k | · |λ−

k − ẋα|
]
.

(5.22)
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Adding (5.19) – (5.22) we get:
n∑

k=1

Ek ≤
[
−

1 − γ

2
Bκ1

∑

k≥j

|q−k | · |λ−
k − ẋα| + O(1) · B

∑

k≥j

|q−k |
]

+
[
− (1 − γ) Bκ1

∑

k≥j

|q−k | · |λ−
k − ẋα|

+ Bκ1

∑

k>j

|q+
k | · |λ+

k − ẋα|
]

+
[
−

1 − γ

2
Bκ1

∑

k≥j

|q−k | · |λ−
k − ẋα| − Bκ1

∑

k<j

|q+
k | · |λ+

k − ẋα|

+ O(1) ·
∑

k 6=j

(
|q+

k | + |q−k |
)]

+
[
− 2γ Bκ1

∑

k≥j

|q−k | · |λ−
k − ẋα| − 2Bκ1

∑

k≤i

|q+
k | · |λ+

k − ẋα|

+ 2Bκ1

∑

k≤i

|q−k | · |λ−
k − ẋα|

]
,

(5.23)

where γ is as in Lemma 5.5.
Using the same arguments as in Case 3, one shows that each term in (5.23) is

nonpositive, provided that the weights w̃+
k for k > j are small (relatively to other

weights). The nonpositivity of the last term in (5.23) follows from Lemma 5.5(ii).

Case 4’. – Figure 5.9
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Figure 5.9

This case reduces to Case 4 as Case 1’ reduces to Case 1.

Case 5. – Figure 5.10
Note that by Lemma 5.3 and definitions (4.5) (4.6)

Ei = B(λ+
i − ẋα)(W+

i − W−
i ) + B · W−

i (λ+
i − λ−

i )

≤ −B2κ1|λ
+
i − ẋα| + O(1) · B

∑

k≥j

|q−k |

≤ −B2κ1c + O(1) · B
∑

k≥j

|q−k |.

(5.24)
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The first summand in (5.24) is a uniform negative constant. On the other hand, all
the other Ek with k 6= i contain only components that linearly depend on different
sums of |q−k |, |q+

k | small. Thus if the sum of weighted strengths of all small waves
in u and v is small enough (what is guaranteed by (3.5)), we get (4.11).

Case 6. – Figure 5.11
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As in Case 5, we note the presence of a uniform negative term in Ej :

Ej = B(λ−
j − ẋα)(W+

j − W−
j ) + B · W+

j (λ+
j − λ−

j ) ≤ −B2κ1c + O(1) · B
∑

k≤i

|q+
k |,

that yields (4.11).

This ends the discussion of (4.11). For the convenience of the reader we recall
now that the treatment of Cases 1 – 4 require the following (relative) sizes of the
weights:
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w̃−
k w̃+

k

big weight k ≥ i k ≤ j
small weight k < i k > j

(5.25)

Case of small physical waves
– the estimate (4.12)

As in the proof of the estimate (4.11), we are going to consider different cases,
according to the locations of the small physical wave α under consideration with re-
spect to the locations of the large shocks. Examining Figure 4.1 a carefull reader can
check that the discussed below four cases cover all possible configurations (without
loss of generality we assume that the jump ǫα occures in v.)

Another remark is the following. Denote by ẏα the ’real’ speed of the α wave
under consideration, that is: ẏα = λkα

(v−, v+) in case α ∈ S or ẏα = λkα
(v+) in

case α ∈ R. For k : 1 . . . n let’s estimate the difference between Ek and a similar
expression where ẏα replaces ẋα :

Ek −
[
|q+

k |W+
k (λ+

k − ẏα) − |q−k |W−
k (λ−

k − ẏα)
]

= (ẏα − ẋα)
[
|q+

k |W+
k − |q−k |W−

k

]
= O(1) · ǫ · |ǫα|,

(5.26)

by Theorem 3.5, which asserts that |ẏα − ẋα| ≤ ǫ. The term |q+
k |W+

k − |q−k |W−
k is

estimated by O(1) · |ǫα| exactly as in (5.2).
Below we will assume that ẏα = ẋα and prove that under this hypothesis

n∑

k=1

Ek ≤ 0. (5.27)

This together with (5.26) will yield (4.12).

Case A. – Figure 5.12
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By definitions (4.5) (4.6), Proposition 2.1 and formula (2.2) we have:

Ei = B ·
[
(W+

i − W−
i )(λ±

i − ẋα) + W∓
i (λ±

i − λ∓
i )
]

= B ·
[
− κ1|ǫα||λ

±
i − ẋα| + O(1) · |ǫα|

]
≤ −Bκ1c|ǫα| + O(1) · B|ǫα|.

(5.28)

(The choice of the upper or lower superindices depends on the family number kα.)



34 MARTA LEWICKA AND KONSTANTINA TRIVISA

If k /∈ {i, kα} and k-field is linearly degenerate or k-field is genuinely nonlinear
but q+

k · q−k ≥ 0 :

Ek = |q±k |(W+
k − W−

k )(λ±
k − ẋα) + W∓

k

[
|q+

k |(λ+
k − ẋα) − |q−k |(λ−

k − ẋα)
]

= −κ1|q
±
k ||ǫα||λ

±
k − ẋα|

+ W∓
k ·
[
(|q+

k | − |q−k |)(λ+
k − ẋα) + |q−k |(λ+

k − λ−
k )
]

≤
(
O(1) + 3Bκ1

)(
O(1) · |q+

k − q−k | + O(1) · |q−k ||ǫα|
)
.

(5.29)

If k /∈ {i, kα} and k-field is genuinely nonlinear with q+
k ·q−k < 0 then the estimate

is almost as above:

Ek ≤ −κ1|q
±
k ||ǫα||λ

±
k − ẋα| + O(1) · |q±k ||λ±

k − ẋα|

+ W∓
k ·
[
(|q+

k | − |q−k |)(λ+
k − ẋα) − |q−k |(λ+

k − λ−
k )
]

≤
(
O(1) + 3Bκ1

)(
O(1) · |q+

k − q−k | + O(1) · |q−k ||ǫα|
)

+ O(1) · |ǫα|,

(5.30)

because |q+
k | ≤ |q+

k | + |q−k | = |q+
k − q−k | = O(1) · |ǫα|.

If k = kα 6= i, then the above estimates (5.29) and (5.30) still hold, with the
negative term −κ1|q

±
k ||ǫα||λ

±
k − ẋα| replaced by O(1) · |ǫα|. Thus also in this case:

Ek ≤
(
O(1) + 3Bκ1

)(
O(1) · |q+

k − q−k | + O(1) · |q−k ||ǫα|
)

+ O(1) · |ǫα|, (5.31)

Summing (5.28) – (5.31), we get by (3.1):

n∑

k=1

Ek ≤ −Bκ1c|ǫα| + O(1) · |ǫα|

+ 3Bκ1O(1) ·




∑

k 6=i

|q+
k − q−k | +

∑

k 6=i

|q−k ||ǫα|





=

[
−

Bκ1c

2
|ǫα| + O(1) · |ǫα|

]

+


−Bκ1c

2
|ǫα| + 3Bκ1O(1) ·



∑

k 6=i

|q+
k − q−k | +

∑

k 6=i

|q−k ||ǫα|






(5.32)

If κ1 is big enough then the first term in the right hand side of (5.32) is negative.
The second term is also negative, if all weights wk are sufficiently small. Thus we
have proved (5.27).

Case B. – Figure 5.13
This case is treated exactly the same as Case A. The large negative term is given
by Ej .

Case C. – Figure 5.14
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We have:

Ei + Ej = B ·
[
(W+

i − W−
i )(λ±

i − ẋα) + W∓
i (λ±

i − λ∓
i )
]

+ B ·
[
(W+

j − W−
j )(λ±

j − ẋα) + W∓
j (λ±

j − λ∓
j )
]

= B ·
[
− κ1|ǫα||λ

±
i − ẋα| − κ1|ǫα||λ

±
j − ẋα|

+ (O(1) + Bκ1) · O(1) · |ǫα|
]

≤ B ·
[
− κ1c|ǫα| −

κ1c

2
|ǫα| + O(1) · |ǫα|

−
κ1c

2
|ǫα| + O(1) · Bκ1|ǫα|

]

≤ −Bκ1c|ǫα|,

(5.33)

if only κ1 is big enough and the weighted strength of large shocks B defined to be
small enough (with respect to the uniform constants O(1) of the system (1.1)).

The terms Ek for k /∈ {i, j} are estimated as in case A – it appeares that if κ1

is big and the rescalings qk/ǫk small, then the sum
∑

k/∈{i,j} Ek is overtaken by the

negative term −Bκ1c|ǫα| in (5.33). Thus (5.27) follows.

Case D. – Figure 5.15
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This case has been treated in [BLY]. If the constant B is small enough and κ1 big
(with respect to the uniform constants O(1) in all the formulae), we get (5.27) as
in [BLY].

6. Proofs of the main theorems

The results of the analysis in Section 3 have been gathered in Theorem 3.5, show-
ing the existence of a piecewise constant function that is an approximate solution
to (1.1). The error, in the sence of the estimates (3.6) (3.7) (3.8) is given by a fixed
parameter ǫ, arbitrarily small. Following the proof of consistency and compactness
of the wave front tracking algorithm in case u−

0 = u+
0 in [B1], Theorem A can be

proved. To this end, take ū ∈ D̃δ0 , for δ0 smaller than δ in Proposition 3.4. Given

ǫ > 0, fix a piecewise constant ūǫ ∈ D̃δ0 , such that

‖ ū − ūǫ ‖L1(R,Rn)< ǫ.

Let uǫ be the ǫ-approximate solution of (1.1) with uǫ(0, ·) = ūǫ, as in Theorem 3.5.
Leting ǫ → 0, one sees that it is possible to extract a sequence uǫn

converging in
L1

loc to a function u(t, x). By the inequalities in Theorem 3.5, u must be a solution
to (1.1) (1.2).
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Towards the proof of Theorem B, define

Dδ0 = cl

{
u : R −→Rn piecewise constant with:

u − ũ ∈ L1(R,Rn) and Γ(u) ≤ C · δ0

}
,

(6.1)

where cl denotes the closure in L1
loc(R,Rn), ũ is as in (2.12), C ≥ 1 is a constant

such that
1

C
· T.V.(u − ũ) ≤ Γ(u) ≤ C · T.V.(u − ũ), (6.2)

and δ0 < δ/(2C2), with δ as in Proposition 3.4. By (5.2)

D̃δ0 ⊂ Dδ0 ⊂ D̃δ/2.

Take ū ∈ Dδ0 . Let {uǫ} be any sequence of ǫ-approximate solutions of (1.1) such
that

Γ(uǫ(0, ·)) ≤ C · δ0, ‖ ū − uǫ(0, ·) ‖L1(R,Rn)< ǫ,

and ǫ → 0. Using (4.1) and (4.2) it is possible to show that the sequence {uǫ} is
Cauchy in L1

loc(R,Rn) and converges to the unique limit u.
We define S(t, ū) = u(t, ·). By Theorem A, (iii) follows immediately. By con-

struction we get (i). To prove (ii), fix ū, w̄ ∈ Dδ0 . Then for some ǫ-approximate
solutions of (1.1), given by the wave front tracking algorithm, there holds:

‖ ū − uǫ(0, ·) ‖L1< ǫ, ‖ w̄ − wǫ(0, ·) ‖L1< ǫ.

Using again (4.1) and (4.2) one gets:

‖ uǫ(t, ·) − wǫ(t, ·) ‖L1= O(1)· ‖ ūǫ(0, ·) − w̄ǫ(0, ·) ‖L1 +O(1) · t · ǫ.

Letting ǫ → 0, one gets the Lipschitz continuity of S with respect to initial data.
The Lipschitz continuity of S with respect to time follows from the corresponding
property satisfied uniformly by the ǫ-approximate solutions of (1.1)
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