Problem Set 3

- 1. Which of the following functions from $\mathbb{R} \times \mathbb{R}$ is a metric on \mathbb{R} ?
 - (a) $d(x,y) = (x-y)^2$
 - (b) d(x,y) = |x 2y|
- 2. Show that if d is the metric associated with a norm on the normed vector space V then for any $x, y, z \in V$ and $k \in \mathbb{R}$

$$d(x+z, y+z) = d(x, y)$$

and

$$d(kx, ky) = kd(x, y)$$

Why do we need V to be a vector space?

3. Prove the Cauchy-Schwarz Inequality: if $v, w \in \mathbf{R}^n$, then

$$\left(\sum_{i=1}^n v_i w_i\right)^2 \le \left(\sum_{i=1}^n v_i^2\right) \left(\sum_{i=1}^n w_i^2\right)$$

- 4. Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{R}^n$; define $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n x_i y_i$ (the inner product), and $\|\mathbf{x}\| = (\mathbf{x} \cdot \mathbf{x})^{\frac{1}{2}} = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$ (standard norm). Show that
 - (a) $\|\mathbf{x}\| \ge 0$.
 - (b) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$.
 - (c) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$.
 - $(\mathrm{d}) \ \|\mathbf{x} \cdot \mathbf{y}\| \le \|\mathbf{x}\| \, \|\mathbf{y}\|.$
 - (e) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
 - $(f) \ \|\mathbf{x} \mathbf{z}\| \le \|\mathbf{x} \mathbf{y}\| + \|\mathbf{y} \mathbf{z}\|.$
- 5. Let $\{a_n\}$ and $\{b_n\}$ be sequences such that

$$\lim_{n \to \infty} a_n = a \quad \text{and} \quad \lim_{n \to \infty} b_n = b,$$

Show that

- (a) $\lim_{n\to\infty} (a_n + b_n) = a + b$
- (b) $\lim_{n\to\infty} ca_n = ca$, where $c \in \mathbb{R}$
- (c) $\lim_{n\to\infty} a_n b_n = ab$
- (d) $\lim_{n\to\infty} (a_n)^k = a^k$
- (e) $\lim_{n\to\infty} \frac{1}{a_n} = \frac{1}{a}$ provided $a_n \neq 0$ (n = 1, 2, 3, ...), and $a \neq 0$

- (f) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ provided $b_n \neq 0$ $(n=1,2,3,\ldots)$, and $b\neq 0$
- 6. Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers such that $a_n \leq b_n \leq c_n$, for all $n \in \mathbb{N}$, and assume that $a_n \to a$, and $c_n \to a$. Show that $b_n \to a$.
- 7. Show that if $0 \le a_n \le b_n$ for $n \ge N$, where N is some fixed number, and if $b_n \to 0$, then $a_n \to 0$.
- 8. Prove the Rising Sun Lemma

Extra Practice Problems

- 1. Show that C([0,1]), i.e. set of continuous functions from [0,1] to \mathbb{R} is
 - (a) a vector space
 - (b) a normed space with norm $||f|| = \max_{t \in [0,1]} |f(t)|$
 - (c) Is this normed space complete?
 - (d) Is the set of all polynomials open in this space? closed? (Hint: this fact may be useful: for any bounded continuous function f from [0,1] to \mathbb{R} , and every positive ϵ , there is a polynomial p such that $||f-p|| < \epsilon$.
 - (e) Is the set of continuous functions x(t) for which |x(t)| < 1 for every t is closed or open in this space?
- 2. Let $\{x_n\}$ be a sequence of real numbers. Show that $x = \lim_{n \to \infty} x_n$ if and only if

$$x = x_1 + \sum_{s=1}^{\infty} (x_{s+1} - x_s).$$

- 3. Let $x_1 = 1.5$ and $x_{n+1} = \sqrt{1 + x_n}$ for $n \in \mathbb{N}$.
 - (a) Prove that $x_n < 2$ for $n \in \mathbb{N}$.
 - (b) Prove that the sequence $\{x_n\}$ is increasing.
 - (c) Prove that $\{x_n\}$ is convergent and compute its limit.
- 4. Construct a sequence of real numbers that
 - (a) does not have any cluster points
 - (b) is unbounded and has at least one cluster point
 - (c) has every real number as a cluster point (Hint: use fact that rational numbers are dense in \mathbb{R} i.e. for every $x \in \mathbb{R}$, and every positive ϵ , there exists $m, n \in \mathbb{Q}$ such that $||x \frac{m}{n}|| < \epsilon$)
- 5. Show that $\limsup x_n = \infty$ if and only if given M > 0 and $n \in \mathbb{N}, \ \exists k \geq n$ with $x_k > M$.
- 6. Show that

 $\limsup x_n + \liminf y_n \le \limsup \sup (x_n + y_n) \le \limsup x_n + \limsup y_n,$ provided the right and the left sides are not of the form $\infty - \infty$.