Problem Set 14

- 1. Which of the following functions are concave or convex (on \mathbb{R}^n)?
 - (a) $f(x) = 3e^x + 5x^4 \ln x$,
 - (b) $f(x,y) = -3x^2 + 2xy y^2 + 3x 4y + 1$,
 - (c) $f(x, y, z) = 3e^x + 5y^4 \ln z$, and
 - (d) $f(x, y, z) = Ax^a y^b z^c$, for a, b, c > 0.
- 2. For each of the following functions defined on \mathbb{R}^2 , find the critical points and classify them as local maxima, local minima, or else. Also determine if any of the local maxima/minima are global maxima/minima.
 - (a) $xy^2 + x^3y xy,$
 - (b) $x^2 6xy + 2y^2 + 10x + 2y 5$,
 - (c) $x^4 + x^2 6xy + 3y^2$, and
 - (d) $3x^4 + 3x^2y y^3$.
- 3. Consider the function $f(x,y) = e^{ax^{\frac{1}{2}}-y}$, where $x \ge 0$, and $y \in \mathbf{R}$. Determine, for each value of the parameter a whether f is quasiconcave, quasiconvex, or both.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be any increasing function. Then f is both quasiconcave and quasiconvex.
- 5. Prove the following:
 - (a) f is a (strictly) convex function if and only if -f is a (strictly) concave function.
 - (b) f is a (strictly) quasi-convex function if and only if -f is a (strictly) quasi-concave function.
- 6. Suppose $f: X \longrightarrow \mathbb{R}$ attains a maximum on $X \subset \mathbb{R}^n$. Prove the following.
 - (a) If f is quasi-concave, then the set of maximizers is convex.
 - (b) If f is strictly quasi-concave, then the maximizer of f is unique.
- 7. Do all the proofs missing from today's slides.