ECON 2001 Exam 1 10 August 2012

This is a closed book exam. Please read the entire exam before starting. You have 60 minutes to answer all FOUR questions. Start each question on a new page please.

Question 1

Consider $a, b \in \mathbb{R}$ and prove the following: if for all $\varepsilon > 0$, $a \le \varepsilon$, then $a \le 0$.

Question 2

Let A and B be non-empty subsets of \mathbb{R} . Prove that $\sup(A \cup B) = \sup\{\sup(A), \sup(B)\}$. HINT: One can show that x = y by proving that $x \leq y$ and $x \geq y$.

Question 3

Show that the following function $\rho: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}_+$ is a metric on \mathbf{R}^n (suppose that $n \geq 3$).

$$\rho(x,y) = \min\{d(x,y), 1\},\$$

where $d(\cdot): \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ is a valid metric on \mathbf{R}^n .

HINT: A metric is a function $d: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}_+$ that satisfies three properties. What are they?

Question 4

Given a function $u: \mathbf{R} \to \mathbf{R}$ and two real numbers w and l such that $u(w) \neq u(w-l)$, let c be defined implicitly by the following equality

$$u(c) = pu(w - l) + (1 - p)u(w).$$

where $p \in (0,1)$. Show that if u is continuous the c defined above always exist and that if, in addition, u is strictly increasing then this c is unique (a function $f: \mathbf{R} \to \mathbf{R}$ is strictly increasing if $y > x \Rightarrow f(y) > f(x)$).