ECON 2001 Exam 2 16 August 2013

This is a closed book exam. Please read the entire exam before starting. You have 60 minutes to answer all FOUR questions. Start each question on a new page.

Question 1

Let X be a compact metric space and let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of X. Show that there exists some real number $\varepsilon > 0$ such that any closed ball in X of radius ε is entirely contained in at least one set U_{λ} .

Hints: by contradiction (be careful how to state this); use a sequence of balls of radii 1, 1/2, 1/3, ... and the fact that X is compact.

Question 2

Let X and Y be two non-empty sets and $\Psi: X \to Y$ a correspondence. We say that Ψ is

injective if
$$\Psi(x) \cap \Psi(x') = \emptyset$$
 for any distinct $x, x' \in X$

surjective if
$$\Psi(X) = Y$$

where the image of a set is defined by $\Psi(S) = \bigcup \{\Psi(x) : x \in S\}$. Prove that Ψ is injective and surjective if and only if $\Psi = f^{-1}$ for some function $f: Y \to X$.

Question 3

Prove that if A is a symmetric matrix such that $A^3 = I$ then A = I.

Question 4

Let T and S be a linear transformations from V to itself, where V is a finite dimensional vector space. Prove that $T \circ S$ is invertible if and only if both T and S are invertible. HINT: remember that a linear transformation R is invertible if and only if $\ker R = \{0\}$.