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Lecture 9 Outline

1 Linear Functions
2 Linear Representation of Matrices
3 Analytic Geometry in Rn : Lines and Hyperplanes
4 Separating Hyperplane Theorems

Back to vector spaces so that we can illustrate the formal connection between
linear functions and matrices.

This matters for a lot calculus since derivatives are linear functions.

Then some useful geometry in Rn .

Announcements:
- Test 2 will be tomorrow at 3pm, in WWPH 4716, and there will be recitation at
1pm. The exam will last an hour.



Linear Transformations

Definition
Let X and Y be two vector spaces. We say T : X → Y is a linear transformation if

T (α1x1 + α2x2) = α1T (x1) + α2T (x2) ∀x1, x2 ∈ X , α1, α2 ∈ R
Let L(X ,Y ) denote the set of all linear transformations from X to Y .

L(X ,Y ) is a vector space.

Example
The function T : Rn −→ Rm defined by T (x) = Ax, with A

m×n
is linear:

T (ax+ by) = A(ax+ by) = aAx+ bAy = aT (x) + bT (y)



Linear Functions

An equivalent characterization of linearity
l : Rn −→ Rm is linear if and only if

1 for all x and y in Rn ,
l(x+ y) = l(x) + l(y)

and
2 for all scalars λ,

l(λx) = λl(x)

Linear functions are additive and exhibit constant returns to scale (econ
jargon).

If l is linear, then l(0) = 0 and, more generally, l(x) = −l(−x).



Compositions of Linear Transformations

The compositions of two linear functions is a linear function
Given R ∈ L(X ,Y ) and S ∈ L(Y ,Z ), define S ◦ R : X → Z .

(S ◦ R)(αx1 + βx2) = S(R(αx1 + βx2))

= S(αR(x1) + βR(x2))

= αS(R(x1)) + βS(R(x2))

= α(S ◦ R)(x1) + β(S ◦ R)(x2)
so S ◦ R ∈ L(X ,Z ).

Think about statement and proof for the equivalent characterization of
linearity.



Kernel and Rank
Definition
Let T ∈ L(X ,Y ).

The image of T is ImT = T (X ) = {y ∈ Y : y = T (x) for some x ∈ X}
The kernel of T is kerT = {x ∈ X : T (x) = 0}
The rank of T is RankT = dim(ImT )

dimX , is the cardinality of any basis of X .

The kernel is the set of solutions to T (x) = 0

The image is the set of vectors in Y for which T (x) = y has at least one
solution.

Exercise: prove that T ∈ L(X ,Y ) is one-to-one if and only if kerT = {0}.

Theorem (The Rank-Nullity Theorem)
Let X be a finite-dimensional vector space, T ∈ L(X ,Y ). Then ImT and kerT
are vector subspaces of Y and X respectively, and

dimX = dim kerT + RankT



Invertible Linear Functions

Definition
T ∈ L(X ,Y ) is invertible if there exists a function S : Y → X such that

S (T (x)) = x ∀x ∈ X
T (S (y)) = y ∀y ∈ Y

Denote S by T−1.

In other words, T is invertible if and only if it is one-to-one and onto.

This is the usual condition for the existence of an inverse function.

The linearity of the inverse function follows from the linearity of T .

Theorem
If T ∈ L(X ,Y ) is invertible, then T−1 ∈ L(Y ,X ); that is, T−1 is linear.

Proof.
Problem Set 9.



From Linear Functions to Matrices

l : Rn −→ Rm is linear if and only if (i) l(x+ y) = l(x) + l(y) and
l(λx) = λl(x).

Any linear function is described by a matrix.

Compute l(ei ), where ei is the ith component of the standard basis in Rn .
For each ei , l(ei ) is a vector in Rm , call it ai .
Form A as the square matrix with ith column equal to ai .
By construction, A has n columns and m rows and therefore f (x) = Ax for all
x.

Next, apply this procedure to any linear basis of a vector space.

Using this observation, we derive a conection between composition of linear
functions and multiplication of matrices.



Linear Transformations and Bases

If X and Y are vector spaces, to define a linear transformation T from X to Y , it
is suffi cient to define T for every element of a basis for X .

Why?

Let V be a basis for X . Then every vector x ∈ X has a unique representation
as a linear combination of a finite number of elements of V .

Theorem
Let X and Y be two vector spaces, and let V = {vλ : λ ∈ Λ} be a basis for X .
Then a linear function T ∈ L(X ,Y ) is completely determined by its values on V ,
that is:

1 Given any set {yλ : λ ∈ Λ} ⊂ Y , ∃T ∈ L(X ,Y ) such that

T (vλ) = yλ ∀λ ∈ Λ

2 If S ,T ∈ L(X ,Y ) and S(vλ) = T (vλ) for all λ ∈ Λ, then S = T.



Linear Transformations and Bases

Proof.
Proof of 1. If x ∈ X , x has a unique representation of the form

x =
n∑
i=1

αivλi αi 6= 0 i = 1, . . . , n

Define T (x) =
∑n

i=1 αiyλi
Then T (x) ∈ Y and you will show that T is linear as an exercise.

Proof of 2. Suppose S(vλ) = T (vλ) for all λ ∈ Λ. We need to show that S = T .

Given x ∈ X ,

S(x) = S

(
n∑
i=1

αivλi

)
=

n∑
i=1

αiS (vλi ) =
n∑
i=1

αiT (vλi ) = T

(
n∑
i=1

αivλi

)
= T (x)

so S = T .



Isomorphisms

Definitions
Two vector spaces X and Y are isomorphic if there is an invertible T ∈ L(X ,Y )
T is then called an isomorphism.

Isomorphic vector spaces are essentially indistinguishable
If T is an isomorphism it is one-to-one and onto:

∀x1, x2 ∈ X , there exist unique y1, y2 ∈ Y s.t. y1 = T (x1) and y2 = T (x2)
∀y1, y2 ∈ Y , there exist unique x1, x2 ∈ X s.t. x1 = T−1(y1) and
x2 = T−1(y2)
moreover, by linearity

T (αx1 + βx2) = αy1 + βy2 and T−1(αy1 + βy2) = αx1 + βx2

Theorem
Two vector spaces X and Y are isomorphic if and only if dimX = dimY .



Coordinate Representation of Vectors
By the previous theorem, any vector space of dimension n is isomorphic to Rn .
What’s the isomorphism?

Let X be a finite-dimensional vector space over R with dimX = n.

Fix a basis V = {v1, . . . , vn} of X , then any x ∈ X has a unique
representation x =

∑n
j=1 βjvj (so the βj are unique real numbers).

Define the coordinate representation of x with respect to the basis V as

crdV (x) =

 β1
...
βn

 ∈ Rn
By construction

crdV (v1) =


1
0
...
0
0

 crdV (v2) =


0
1
...
0
0

 ... crdV (vn) =


0
0
...
0
1


crdV is an isomorphism from X to Rn (verify this).



Matrix Representation

Suppose T ∈ L(X ,Y ), where X and Y have dimension n and m respecively.

Fix bases V = {v1, . . . , vn} of X and W = {w1, . . . ,wm} of Y .

Since T (vj ) ∈ Y , we can write

T (vj ) =
m∑
i=1

αijwi

Define

MtxW ,V (T ) =

 α11 · · · α1n
...

. . .
...

αm1 · · · αmn


Each column is given by crdW (T (vj )), the coordinates of T (vj ) with respect to
W .

Thus any linear transformation from X to Y is equivalent to a matrix once
one fixes the two bases.



Matrix Representation

Example
X = Y = R2, V = {(1, 0), (0, 1)}, W = {(1, 1), (−1, 1)};

Let T be the identity: T (x) = x for each x.

Notice that MtxW ,V (T ) 6=
(
1 0
0 1

)
. MtxW ,V (T ) is the matrix that

changes basis from V to W .

How do we compute it?

v1 = (1, 0) = α11(1, 1) + α21(−1, 1)
α11 − α21 = 1 and α11 + α21 = 0
2α11 = 1, α11 = 1

2 hence α21 = − 12
v2 = (0, 1) = α12(1, 1) + α22(−1, 1)

α12 − α22 = 0 and α12 + α22 = 1
2α12 = 1, α12 = 1

2 hence α22 = 1
2

So MtxW ,V (id) =

(
1/2 1/2
−1/2 1/2

)



Matrices and Vectors
Given T ∈ L(X ,Y ), where dimX = n and dimY = m, and V = {v1, . . . , vn}
and W = {w1, . . . ,wm} are bases of X and Y respectively.

We built: MtxW ,V (T ) =

 α11 · · · α1n
...

. . .
...

αm1 · · · αmn

 and crdV (v1) =


1
0
...
0

.
Clearly:  α11 · · · α1n

...
. . .

...
αm1 · · · αmn



1
0
...
0

 =

 α11
...

αm1


Thus

MtxW ,V (T ) · crdV (vj ) = crdW (T (vj ))
and more generally

MtxW ,V (T ) · crdV (x) = crdW (T (x)) ∀x ∈ X

REMARK: Multiplying a vector by a matrix does two things
1 Computes the action of the linear function T
2 Accounts for the change in basis.



Matrices and Linear Transofrmations are Isomorphic

Theorem
Let X and Y be vector spaces over R, with dimX = n, dimY = m. Then
L(X ,Y ), the space of linear transformations from X to Y , is isomorphic toMm×n ,
the vector space of m × n matrices over R.
If V = {v1, . . . , vn} is a basis for X and W = {w1, . . . ,wm} is a basis for Y , then

MtxW ,V ∈ L(L(X ,Y ),Mm×n)

and MtxW ,V is an isomorphism from L(X ,Y ) toMm×n .

This is mostly the consequence of things we already know about
dimensionality once you realize the relationship between matrices and linear
transformations.

Note that X and Y are general vector spaces, but they are isomorphic to
matrices of real numbers.



Summary and Illustration
Let T ∈ L(V ,W ), where V and W are vectors spaces over R with dimV = N and
dimW = M, and fix bases {v1, . . . , vN} of V and {w1, . . . ,wM} of W .
Any v ∈ V can be uniquely represented as v =

∑N
n=1 xnvn (the xns are unique).

Any T (v) ∈W is uniquely represented as T (v) =
∑M

m=1 ymwm (the yms are unique).

Since T (vn) ∈W for each n, T (vn) =
∑M

m=1 anmwm (where the anms are unique).
Thus:

M∑
m=1

ymwm = T (v) = T (
N∑
n=1

xnvn) =
N∑
n=1

xnT (vn) =
N∑
n=1

xn
M∑
m=1

anmwm =
M∑
m=1

(
N∑
n=1

xnamn)wm

Therefore,

ym =
N∑
n=1

xnanm for all m

Let y = (y1, .., yM ) ∈ RM , x = (x1, .., xN ) ∈ RN , and A = [amn] (the m × n matrix
with m, n entry given by the real number amn); then, we have

y = Ax
In words: the matrix of real numbers A represents the linear transformation T given
the bases {v1, . . . , vN} and {w1, . . . ,wM}.

there is one and only one linear transformation T corresponding to A.
there is one and only one matrix A corresponding to T .



Matrix Product as Composite Transformation
Suppose we have another linear transformation S ∈ L(W ,Q) where Q is a vector
space with basis {q1, . . . ,qJ}.
Let B = [bjm ] be the J ×M matrix representing S with respect to the bases
{w1, . . . ,wM} and {q1, . . . ,qJ} for W and Q, respectively.
Then, for all m, S(wm) =

∑J
j=1 bjmqj .

S ◦ T : V → Q is the linear transformation S ◦ T (v) = S(T (v)).
Using the same logic of the previous slide:

S ◦ T (vn) = S(T (vn)) = S(
M∑
m=1

anmwm)

=
M∑
m=1

anmS(wm) =
M∑
m=1

anm
J∑
j=1

bjmqj =
J∑
j=1

(
M∑
m=1

bjmamn)qj

Therefore
S ◦ T (vn) =

J∑
j=1

cjnqj

where
cjn =

M∑
m=1

bjmamn for j = 1, ..., J

Thus the J × N matrix C = [cjn] represents S ◦ T .
What is C? The product BA (check the definition of matrix product).



Analytic Geomtetry: Lines

How do we talk about points, lines, planes,... in Rn?

Definition
A line in Rn is described by a point x and a direction v . It can be represented as

{z ∈ Rn : there exists t ∈ R such that z = x+ tv}

If t ∈ [0, 1], this is the line segment connecting x to x+ v.

REMARK
Even in Rn two points still determine a line: the line connecting x to y is the line
containing x in the direction v.

Check that this is the same as the line through y in the direction v.



Analytic Geomtetry: Hyperplanes

Definition
A hyperplane is a set described by a point x0 ∈ Rn and a normal direction of the
plane p ∈ Rn , p 6= 0. It can be represented as

{z ∈ Rn : p · (z− x0) = 0}.

A hyperplane consists of all the z such that the direction z− x0 is orthogonal
to p.
Hyperplanes can equivalently be written as p · z = p · x0 (and if x0 = 0 this is
p · z = 0)

In R2 lines are also hyperplanes. In R3 hyperplanes are “ordinary”planes.

REMARK
Lines and hyperplanes are two kinds of “flat” subsets of Rn .

Lines are subsets of dimension one.

Hyperplanes are subsets of dimension n − 1 or co-dimension one.
One can have flat subsets of any dimension less than n.



Linear Manifolds

Lines and hyperplanes are not subspaces because they do not contain the
origin. (what is a subspace anyhow?)

They are obtained by “translating”a subspace: adding the same constant to
all of its elements.

Definition
A linear manifold of Rn is a set S such that there is a subspace V on Rn and
x0 ∈ Rn with

S = V + {x0} ≡ {y : y = v + x0 for some v ∈ V }

Lines and hyperplanes are linear manifolds (not linear subspaces).



Lines

Here is another way to describe a line.

Given two points x and y in Rn , the line that passes through these points is:
{z ∈ Rn : z = x+ t(y − x) for some t}.

This is called “parametric” representation (it defines n equations).

Example
Given y, x ∈ R2, we find a line through them by solving:

z1 = x1 + t(y1 − x1) and z2 = x2 + t(y2 − x2).
Solve the first equation for t and substite out:

z2 = x2 +
(y2 − x2) (z1 − x1)

y1 − x1
or z2 − x2 =

y2 − x2
y1 − x1

(z1 − x1) .

This is the standard way to represent the equation of a line (in the plane) through
(x1, x2) with slope (y2 − x2)(y1 − x1).



Lines

Given two points x and y in Rn , the line that passes through these points is:
{z ∈ Rn : z = x+ t(y − x) for some t}.

This is called “parametric” representation (it defines n equations).

The parametric representation is almost equivalent to the standard
representation in R2.
Why almost? It is more general since it allows for lines parallel to the axes.

One needs two pieces of information to describe a line:

Point and direction, or
Two points (you get the direction by subtracting the points).



Hyperplanes

How does one describe an hyperplane?

One way is to use a point and a (normal) direction

{z ∈ Rn : p · (z− x0) = 0}

Another way is to use n points in Rn , provided these are in “general position.”
You can go from points to the normal solving a linear system of equations.



How to Find an Hyperplane when n=3

In R3 an hyperplane is a ‘plane’and one can describe it using three points.

Example
Given (1, 2,−3), (0, 1, 1), (2, 1, 1) find A,B,C ,D such that

Ax1 + Bx2 + Cx3 = D

Solve the following system of equations:

 A + 2B − 3C = D
B + C = D

2A + B + C = D

This yields (A,B,C ,D) = (0, .8D, .2D,D).

Hence, if we find one set of coeffi cients, any non-zero multiple will also work.

Hence an equation for the plane is: 4x2 + x3 = 5 (check that the three points
actually satisfy this equation).



Describing Hyperplanes with Normals
Given some points, look for a normal direction.

A normal direction is a direction that is orthogonal to all directions in the plane.
A direction in the plane is a direction of a line in the plane.

Hence, we can get such a direction by subtracting any two points in the plane.

Given (1, 2,−3), (0, 1, 1), (2, 1, 1) find a two dimensional hyperplane
It has two independent directions.

One direction comes from the difference between the first two points:
(1, 2,−3)− (0, 1, 1) = (1, 1,−4).

The other can come from the difference between the second and third points
(0, 1, 1)− (2, 1, 1) = (−2, 0, 0).

We can now find a normal to both of them.

That is, a p such that p 6= 0 and

p · (1, 1,−4) = p · (−2, 0, 0) = 0

any multiple of (0, 4, 1) solves this system of two equations and three
unknowns.

Hence, the equation for the hyperplane is

(0, 4, 1) · (x1 − 1, x2 − 2, x3 + 3) = 0



Separating Hyperplanes and Convexity

Consider two sets X and Y in Rn which do not interserct.
A hyperplane in Rn is expressed as p · x = c where x ∈ Rn , p 6= 0 is in Rn ,
and c ∈ R.

Under what conditions can we find an hyperplane that divides the space in
two, each side containing only one of those sets?

Draw a few pictures.

The following is a minimal condition sets have to satisfy to make separation
possible.

Definition
X ⊂ Rn is convex if ∀ x, y ∈ X and ∀α ∈ [0, 1] we have

αx+ (1− α)y ∈ X



Separating Hyperplane Theorem

Start with the simpler case of separate a point from a set.

Theorem (Separating Hyperplane)
Given a nonempty, closed, convex set X ⊂ Rn and x ∈ Rn , with x /∈ X, There
exists a p ∈ Rn ,p 6= 0, and a c ∈ R such that

X ⊂ {y ∈ Rn : p · y ≥ c}
and

p · x < c

That is,
p · y = c

defines a separating hyperplane for X : it leaves all of X on one side and x on
the other.

Without loss of generality, one can normalize the normal to the separating
hyperplane.

That is, we can assume that ‖p‖ = 1.



Proof of the separating hyperplane theorem in 9(+1 for you) steps
Consider the problem of minimizing the distance between x and X . That is: find a
vector that solves miny∈X ‖x− y‖.

1 X is nonempty, so we can find some element z ∈ X . While X is not
necessarily bounded, without loss of generality we can replace X by
{y ∈ X : ‖y − x‖ ≤ ‖z− x‖}. This set is compact because X is closed.

2 The norm is a continuous function. Hence there is a solution y∗.
3 Let p = y∗ − x. Since x /∈ X , p 6= 0.
4 Let c = p · y∗. Since c − p · x = p · (y∗ − x) = ‖p‖2, therefore c > p · x.
5 We need to show if y ∈ X , then p · y ≥ c .
6 Notice how this inequality is equivalent to

(y∗ − x) · (y − y∗) ≥ 0.
7 Since X is convex and y∗ solves the minimzation problem, it must be that

‖ty + (1− t)y∗ − x‖2

is minimized when t = 0.
8 Since the derivative of ‖ty + (1− t)y∗ − x‖2 is non-negative at t = 0, the
first order condition will do it.

9 Check that differentiating ‖ty + (1− t)y∗ − x‖2 (as a function of t) and
simplifying yields the desired inequality.



Extensions

If x is in the boundary of X , then you can approximate x by a sequence xk
such that each xk /∈ X .

This yields a sequence of pk , which can be taken to be unit vectors, that satisfy
the conclusion of the theorem.
A subsequence of the pk must converge.
The limit point p∗ will satisfy the conclusion of the theorem (except we can
only guarantee that c ≥ p∗ · x rather than the strict equality).

The closure of any convex set is convex.

Given a convex set X and a point x not in the interior of the set, we can
separate x from the closure of X .

Putting these things together...



A Stronger Separating Hyperplane Theorem
Theorem (Supporting Hyperplane)
Given a convex set X ⊂ Rn and x ∈ Rn , x. If x is not in the interior of X , then
there exists p ∈ Rn ,p 6= 0, and c ∈ R such that

X ⊂ {y ∈ Rn | p · y ≥ c}
and

p · x ≤ c

Other general versions separate two convex sets. The easiest case is when the
sets do not have any point in common, and the slightly harder is the one in
which no point of one set is in the interior of the other set.

Let A,B ⊆ Rn be nonempty, disjoint convex sets. Then there exists a nonzero
vector p ∈ Rn such that

p · a ≤ p · b ∀a ∈ A, b ∈ B

The separating hyperplane theorem can be used to provide intuition for the
way we solve constrained optimization problems.
In the typical economic application, the separating hyperplane’s normal is a
price vector, and the separation property states that a particular vector costs
more than vectors in a consumption set.



Tomorrow

Calculus

1 Level Sets
2 Derivatives and Partial Derivatives
3 Differentiability
4 Tangents to Level Sets


