Lecture 13

Econ 2001

2015 August 26

Lecture 13 Outline

- Implicit Function Theorem (General)
- Envelope Theorem
- Lebesgue Measure Zero
- Sard and Transversality Theorems

These are some of the most important tools in economics, and they are conceptually pretty hard.

This is also the slimmest handout.

Announcements:

- The last exam will be Friday at 10:30am (usual class time), in WWPH 4716.
- Tomorrow's lecture will start at 11:30.

Reminder

Theorem (Inverse Function Theorem)

Suppose $X \subset \mathbf{R}^n$ is open, $f: X \to \mathbf{R}^n$ is C^1 on X, and $\mathbf{x}_0 \in X$. If $\det Df(\mathbf{x}_0) \neq 0$, then there are open neighborhoods U of \mathbf{x}_0 and V of $f(\mathbf{x}_0)$ such that

$$f:U o V$$
 is one-to-one and onto $f^{-1}:V o U$ is C^1 $Df^{-1}(f(\mathbf{x}_0))=[Df(\mathbf{x}_0)]^{-1}$

If, in addition, $f \in C^k$, then $f^{-1} \in C^k$.

Theorem (Simple IFT)

Suppose $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is C^1 and write $f(\mathbf{x}, \mathbf{a})$ where $\mathbf{a} \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$. Assume $\left|\begin{array}{cc} \partial f^1 & \partial f^1 \end{array}\right|$

$$f(\mathbf{x}_0,a_0)=\mathbf{0} \quad \text{and} \quad \det(D_{\mathbf{x}}f(\mathbf{x}_0,a_0))=\begin{vmatrix} \frac{\partial f^1}{\partial x_1} & \dots & \frac{\partial f^1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f^n}{\partial x_1} & \dots & \frac{\partial f^n}{\partial x_n} \end{vmatrix} \neq 0.$$
 Then, there exists a neighborhood of (\mathbf{x}_0,a_0) and a function $g:\mathbb{R}\to\mathbb{R}^n$ defined on the neighborhood of a_0 , such that $\mathbf{x}=g(a)$ uniquely solves $f(\mathbf{x},a)=\mathbf{0}$ on this

neighborhood. Furthermore the derivatives of g are given by $Dg(a_0) = -[D_{\mathbf{x}}f(\mathbf{x}_0, a_0)]^{-1}D_af(\mathbf{x}_0, a_0)$

Implicit Function Theorem

ullet This generalizes the previous theorem to the case of p exogenous parameters.

Theorem (Implicit Function Theorem)

Let $X \subset \mathbf{R}^n$ and $A \subset \mathbf{R}^p$ be open and $f: X \times A \to \mathbf{R}^n$ is C^1 . Assume

$$f(\mathbf{x}_0, \mathbf{a}_0) = \mathbf{0}_n$$
 and $\det(D_{\mathbf{x}} f(\mathbf{x}_0, \mathbf{a}_0)) = \begin{vmatrix} \frac{\partial f^1}{\partial x_1} & \cdots & \frac{\partial f^1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f^n}{\partial x_1} & \cdots & \frac{\partial f^n}{\partial x_n} \end{vmatrix} \neq 0$

Then, there are open neighborhoods $U \subset X$ of \mathbf{x}_0 and $W \subset A$ of \mathbf{a}_0 such that

$$\forall \mathbf{a} \in W \quad \exists ! \mathbf{x} \in U \quad such that \quad f(\mathbf{x}, \mathbf{a}) = \mathbf{0}_n$$

For each $\mathbf{a} \in W$, let $g(\mathbf{a})$ be that unique \mathbf{x} . Then $g: W \to X$ is C^1 and

$$Dg(\mathbf{a}_0) = -[D_{\mathbf{x}}f(\mathbf{x}_0, \mathbf{a}_0)]^{-1}[D_{\mathbf{a}}f(\mathbf{x}_0, \mathbf{a}_0)]$$

$$\underset{n \times p}{\overset{}{\sim}} n$$

If, in addition, $f \in C^k$, then $g \in C^k$.

• The determinant condition says that \mathbf{x}_0 is a regular point of $f(\cdot, \mathbf{a}_0)$.

Implicit Function Theorem: Practical Comments

1 The formula for $Dg(\cdot)$ comes from the Chain rule:

$$f(\mathbf{x}_0, \mathbf{a}_0) = 0 \Rightarrow Df(g(\mathbf{a}), \mathbf{a})(\mathbf{a}_0) = D_{\mathbf{x}}f(\mathbf{x}_0, \mathbf{a}_0)Dg(\mathbf{a}_0) + D_{\mathbf{a}}f(\mathbf{x}_0, \mathbf{a}_0) = \mathbf{0}$$
 hence

$$Dg(\mathbf{a}_0) = -[D_{\mathbf{x}}f(\mathbf{x}_0, \mathbf{a}_0)]^{-1}D_{\mathbf{a}}f(\mathbf{x}_0, \mathbf{a}_0)$$

- Make sure you keep track of the dimensions of the various matrices.
 - \odot remember you usually need n variables to solve n equations.
 - **②** therefore, the domain of $f(\cdot)$ has p extra dimensions; typically you have p parameters and the solution function goes from \mathbb{R}^p into \mathbb{R}^n .
- The implicit function theorem proves that a system of equations has a solution if you already know that a solution exists at a point.
 - 1 If you can solve the system once, then you can solve it locally.
 - 2 The theorem does not guarantee existence of a solution.
- IFT provides an explicit formula for the derivatives of the implicit function. One computes the derivatives of the implicit function by "implicitly differentiating" the system of equations.

Implicit Differentiation

- The technique of "implicit differentiation" is fully general.
- In the examples we saw yesterday, p = n = 1 so there is one equation and one derivative to find.
- In general, there is an identity in n + p variables and n equations.
 - Differentiating one of the n equations with respect to one of the p parameters, you get 1 linear equation for the derivative.
 - Repeat this p times for each of the p parameters (p linear equations for the derivative).
 - Repeat this n times for each of the n implicit functions ($n \times p$ linear equations for the derivative).
- The system has a solution if the invertibility condition in the theorem holds.

Implicit Function Theorem: A Corollary

Corollary

Suppose $X \subset \mathbb{R}^n$ and $A \subset \mathbb{R}^p$ are open and $f: X \times A \to \mathbb{R}^n$ is C^1 . If $\mathbf{0}$ is a regular value of $f(\cdot, \mathbf{a}_0)$, then the correspondence

$$\mathbf{a} \mapsto \{\mathbf{x} \in X : f(\mathbf{x}, \mathbf{a}) = \mathbf{0}_n\}$$

is lower hemicontinuous at **a**₀.

Proof.

Assume $\mathbf{0}_n$ is a regular value of $f(\cdot, \mathbf{a}_0)$; then, given any

$$\mathbf{x}_0 \in {\mathbf{x} \in X : f(\mathbf{x}, \mathbf{a}_0) = \mathbf{0}_n}$$
 we can find a local implicit function g ;

- in other words, if **a** is sufficiently close to \mathbf{a}_0 , then there exist a function g such that $g(\mathbf{a}) \in \{\mathbf{x} \in X : f(\mathbf{x}, \mathbf{a}) = \mathbf{0}\}$;
- IFT says that g is continuous, hence it proves that the correspondence $\{x \in X : f(x, a) = 0\}$ is lower hemicontinuous at a_0 .
- This will come handy in micro... where $f(\mathbf{x}, \mathbf{a}) = \mathbf{0}$ will be given by the first order conditions of the utility maximization problem, and \mathbf{a} will represent prices and/or income.

Envelope Theorem: Motivation

Given a function $f: X \times A$, where $X \subset \mathbf{R}^n$ and $A \subset \mathbf{R}$, assume we have solved

$$\max_{\mathbf{x}\in X} f(\mathbf{x},a)$$

We want to know how changes in a affect the maximizer

$$\mathbf{x}^* = \arg\max_{\mathbf{x} \in X} f(\mathbf{x}, a)$$

and the maximized value

$$f(\mathbf{x}^*, \mathbf{a})$$

d by some function

If the maximizer can be described by some function g, then V(a) = f(g(a), a)

- Using the Implicit Function Theorem, we can get a sufficient condition for existence of g and g to be differentiable as well as a formula for its derivative; a by-product of IFT also gives information about V'(a).
- The main idea is to apply the implicit function theorem to the first order conditions of the maximization problem.
- These conditions yield an equality that will be the equivalent of " $f(\mathbf{x}, a) = \mathbf{0}$ " in the IFT.
 - We can add constraints to this procedure (in the fall).

Envelope Theorem: Motivation

- Assume the solution to $\max_{\mathbf{x} \in X} f(\mathbf{x}, a)$ is characterized by the first order conditions, then the maximum is given by the solution to a system equations (first derivative equal to $\mathbf{0}$); thus, we can apply the implicit function theorem to this system.
- In other words, if

$$\mathbf{x}^* = \arg \max_{\mathbf{x} \in X} f(\mathbf{x}, a)$$
 if and only if $D_{\mathbf{x}} f(\mathbf{x}^*, a) = \mathbf{0}$

 \mathbf{x}^* is implicitly determined as the solution to $D_{\mathbf{x}}f(\mathbf{x},a)=\mathbf{0}$ (a system of n equations).

Now define

$$V(a) = f(\mathbf{x}^*, a) = f(g(a), a)$$

where $\mathbf{x}^* = g(a)$.

• Using the chain rule:
$$V'(a) = D_{\mathbf{x}} f(g(a), a) Dg(a) + D_{\mathbf{a}} f(g(a), a)$$

and since $D_{\mathbf{x}}f(\mathbf{x}^*,a)=\mathbf{0}$ at any optimum:

$$V'(a) = D_a f(\mathbf{x}^*, a)$$

- Envelope theorem: the value function V(a) is tangent to a family of functions $f(\mathbf{x}, a)$ when $\mathbf{x} = g(a)$. On the other hand, $V(a) \ge f(\mathbf{x}, a)$ for all a, so the V curve looks like an "upper envelope" to the f curves.
- Assumption needed: the derivative of $D_x f(x^*, a)$ is non-singular. (why?)

Envelope Theorem and Comparative Statics

Let $u: X \times A \to \mathbb{R}$, with $\mathbf{x} \in X \subset \mathbb{R}^n$ and $\mathbf{a} \in A \subset \mathbb{R}^p$ (as usual, think of \mathbf{x} as endogenous while \mathbf{a} is exogenous). The optimization problem is $\max_{\mathbf{x} \in X} u(\mathbf{x}, \mathbf{a})$ and suppose the first order conditions define the maximizer: $D_{\mathbf{x}}u(\mathbf{x}^*, \mathbf{a}) = \mathbf{0}$

• Given some $\mathbf{a}_0 \in A$, let \mathbf{x}_0^* be the corresponding solution, and assume $\det(D_{\mathbf{x}\mathbf{x}}u(\mathbf{x}_0^*,\mathbf{a}_0)) \neq 0$.

Invoke the Implicit Function Theorem

There exist a function describing the relationship between \mathbf{x}^* and \mathbf{a} close to \mathbf{a}_0 ; furthermore, the maximizer's derivative with respect to \mathbf{a} is given by the theorem.

How does it work?

- The function $f(\mathbf{x}, \mathbf{a}) = \mathbf{0}$ in IFT here is $D_x u(\mathbf{x}^*, \mathbf{a}) = \mathbf{0}$.
- The function $g(\mathbf{a})$ in IFT here is $\mathbf{x}^* : A \to X$:

$$\mathbf{x}^*(\mathbf{a}) = \arg \max_{\mathbf{x} \in X} u(\mathbf{x}, \mathbf{a})$$

gives the maximizer depending on the parameters.

Envelope Theorem

Suppose $u: X \times A \to \mathbb{R}$, with $\mathbf{x} \in X \subset \mathbb{R}^n$ and $\mathbf{a} \in A \subset \mathbb{R}^p$, is C^2 . Consider the maximization problem $\mathbf{x}^*(\mathbf{a}) = \arg\max_{x \in X} u(\mathbf{x}, \mathbf{a})$;

Assume: $D_{\mathbf{x}}u(\mathbf{x},\mathbf{a}) = \mathbf{0}$ defines $\mathbf{x}^*(\cdot)$, \mathbf{x}_0^* , \mathbf{a}_0 is a solution, and det $D_{\mathbf{x}\mathbf{x}}u(\mathbf{x}_0^*,\mathbf{a}_0) \neq 0$.

- By the implicit function theorem (with $D_{\mathbf{x}}u(\mathbf{x},\mathbf{a})$ as $f(\mathbf{x},\mathbf{a})$), close to $\mathbf{x}_0^*,\mathbf{a}_0$:
 - $\mathbf{x}^*(\mathbf{a})$ is continuously differentiable (like $g(\mathbf{a})$ in IFT). • IFT gives $\mathbf{x}^*(\mathbf{a})$'s derivative $(Dg(\mathbf{a}_0) = [D_{\mathbf{x}}f(\mathbf{x}_0, \mathbf{a}_0)]^{-1}D_{\mathbf{a}}f(\mathbf{x}_0, \mathbf{a}_0))$.
 - Thus: $D_{\mathbf{a}}\mathbf{x}^*(\mathbf{a}_0) = -[D_{\mathbf{x}}[D_{\mathbf{x}}u(\mathbf{x}^*(\mathbf{a}_0), \mathbf{a}_0)]]^{-1}[D_{\mathbf{a}}[D_{\mathbf{x}}u(\mathbf{x}^*(\mathbf{a}_0), \mathbf{a}_0)]]$ $= -[D_{\mathbf{x}\mathbf{x}}u(\mathbf{x}^*(\mathbf{a}_0), \mathbf{a}_0)]^{-1}D_{\mathbf{a}\mathbf{x}}u(\mathbf{x}^*(\mathbf{a}_0), \mathbf{a}_0)$
 - If **x** and **a** are scalars, $D_a \mathbf{x}^*(\mathbf{a})$ becomes $\frac{\partial \mathbf{x}^*}{\partial a} = -\frac{\frac{\partial^2 u}{\partial a \partial \mathbf{x}}}{\frac{\partial^2 u}{\partial a}}$.
- By the Chain Rule: the derivative of $u(\mathbf{x}^*(\mathbf{a}), \mathbf{a})$ with respect to \mathbf{a} is:

$$D_{\mathbf{a}}u(\mathbf{x}^{*}(\mathbf{a}_{0}), \mathbf{a}_{0}) = D_{\mathbf{a}}u(\mathbf{x}, \mathbf{a})|_{\mathbf{x}=\mathbf{x}^{*}(\mathbf{a}_{0}), \mathbf{a}=\mathbf{a}_{0}} + \overbrace{D_{\mathbf{x}}u(\mathbf{x}, \mathbf{a})|_{\mathbf{x}=\mathbf{x}^{*}(\mathbf{a}_{0}), \mathbf{a}=\mathbf{a}_{0}}}^{-0} D_{\mathbf{a}}\mathbf{x}^{*}(\mathbf{a})$$

$$= D_{\mathbf{a}}u(\mathbf{x}, \mathbf{a})|_{\mathbf{x}=\mathbf{x}^{*}(\mathbf{a}), \mathbf{a}=\mathbf{a}_{0}}$$

Close to a solution, the "second order effect" of how the maximizer x* responds to a is irrelevant because the first order conditions must hold.

Envelope Theorem for Unconstrained Optimization

Let
$$u: X \times A \to \mathbb{R}$$
, with $\mathbf{x} \in X \subset \mathbb{R}^n$ and $\mathbf{a} \in A \subset \mathbb{R}^p$, be C^2 . Define

$$\mathbf{x}^*(\mathbf{a}) \equiv \arg\max_{\mathbf{x} \in X} u(\mathbf{x}, \mathbf{a})$$
 and $V(\mathbf{a}) \equiv u(\mathbf{x}^*(\mathbf{a}), \mathbf{a})$

Assume solutions are characterized by the first order conditions alone, so that $D_{\mathbf{x}}u(\mathbf{x},\mathbf{a})=\mathbf{0}$ defines $\mathbf{x}^*(\cdot)$, and let $\mathbf{x}^*,\mathbf{a}_0$ be a solution with det $D_{\mathbf{x}\mathbf{x}}u(\mathbf{x}^*,\mathbf{a}_0)\neq 0$.

• Then: close to \mathbf{x}^* , \mathbf{a}_0 the derivative of $V(\mathbf{a})$ with respect to \mathbf{a} is:

$$D_{\mathbf{a}}u(\mathbf{x}^*(\mathbf{a}_0),\mathbf{a}_0)=\left.D_{\mathbf{a}}u(\mathbf{x},\mathbf{a})\right|_{\mathbf{x}=\mathbf{x}^*(\mathbf{a}),\mathbf{a}=\mathbf{a}_0}$$

- Close to a solution, only the "first order effect" of how **a** changes the objective function evaluated at the fixed maximizer x*(**a**) matters.
- The envelope theorem tells how to compute the derivative of the value function, even before we can solve explicitly the problem.
- We can then use this derivative to discover general properties of the solution.
- Notice that

$$V(\mathbf{a}) \equiv u(\mathbf{x}^*(\mathbf{a}), \mathbf{a}) > u(\mathbf{x}^*(\mathbf{a}_0), \mathbf{a}) \equiv G(\mathbf{a})$$

with equality at $\mathbf{a} = \mathbf{a}_0$.

• This justifies the "envelope" in the name as $V(\cdot)$ is the upper envelope of $G(\cdot)$.

Envelope Theorem: Example

Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x; a) = -x^2 + 2ax + 4a^2$$

and think of maximizing this function with respect to x.

• For a given value of a, the critical points of f are given by

$$\frac{\partial f}{\partial x} = -2x + 2a = 0 \qquad \Leftrightarrow \qquad x = a$$

- The solution yields is a local (and global) maximum (how do I know? draw f(x; a)).
- Thus, we know that $x^*(a) = a$ and the value function at the optimum is

$$V(a) = f(x^*(a); a) = -a^2 + 2a^2 + 4a^2 = 5a^2$$

• Hence, the derivative of the value function is given by

$$\frac{\partial V}{\partial a} = \frac{\partial f(x^*(a); a)}{\partial a} = \frac{\partial (5a^2)}{\partial a} = 10a$$

• We could derived this directly using the envelope theorem:

$$\left. \frac{\partial V}{\partial a} = \left. \frac{\partial f}{\partial a} \right|_{x = x^*(a)} = 2x + 8a|_{x = x^*(a)} = 2a + 8a = 10a$$

at $x^*(a) = a$ since $\frac{\partial f}{\partial a} = 2x + 8a$.

Envelope Theorem: Another Example

The problem is $\max_q \pi(p,q) = pq - \frac{1}{2}q^2$ with $q,p \in \mathbb{R}$, so define

$$q^*(p) = \arg\max_{q} \pi(p, q)$$
 and $\Pi(p) = \pi(q^*(p); p)$

 $\Pi(p)$ are the profits the firm makes at a given price after optimally choosing how much to produce at that price.

- find $\frac{d\Pi}{dp}$ without solving explicitly for the argmax $q^*(p)$:
 - · use the Envelope theorem to find

$$\frac{d\Pi}{dp} = \left. \frac{\partial \pi(q, p)}{\partial p} \right|_{q=q^*(p)} = \left. q \right|_{q=q^*(p)} = q^*(p)$$

- Notice that we can immediately conclude that $\frac{d\Pi}{d\rho} \ge 0$ (why?).
- If you solve for $q^*(p)$ explicitly (do it), you will find that $q^*(p) = p$ to confirm the result.
- By definition,

$$\Pi(p) = \pi(q^*(p); p) > \pi(q^*(\hat{p}); p) = G(p)$$

for some \hat{p} , and equality holds when $p = \hat{p}$.

• If $\hat{p}=2$, for example, $G(p)=p2-\frac{1}{2}\left(2\right)^2=2p-2$ which is always below $\frac{1}{2}p^2$, and it is equal to it at p=2. Graph this, and a few other values of \hat{p} .

Lebesgue Measure Zero

- We want to talk about sets being small in \mathbb{R}^n .
- The idea is that a set is small if one can squeeze it inside an arbitrarily small rectangle.

Definition

A rectangle is defined as

$$I_k = \times_{j=1}^n (a_j^k, b_j^k)$$

for some $a_i^k < b_i^k \in \mathbf{R}$.

Definition

The volume of a rectangle is defined as

$$\operatorname{Vol}(I_k)\prod_{i=1}^n \left|b_j^k - a_j^k\right|$$

Lebesgue Measure Zero

Definition

Suppose $A \subset \mathbb{R}^n$. A has Lebesgue measure zero if for every $\varepsilon > 0$ there is a countable collection of rectangles I_1, I_2, \ldots such that

$$\sum_{k=1}^{\infty} \operatorname{Vol}(I_k) < \varepsilon \text{ and } A \subset \bigcup_{k=1}^{\infty} I_k$$

- Sometimes these are called Null Sets.
- This defines Lebesgue measure zero without defining Lebesgue measure.
 - You will talk about measurability at the end of the Fall math class.
- Without specifying a probability measure explicitly, this expresses the idea that if $x \in \mathbb{R}^n$ is chosen at random, then the probability that $x \in A$ is zero.
- Lebesgue measure zero is a natural formulation of the notion that A is a small set in \mathbb{R}^n .

Lebesgue Measure Zero: Examples

Lebesgue Measure Zero Sets

- "Lower-dimensional" sets have Lebesgue measure zero.
 - For example, the horizontal axes in R²:

$$A = \{x \in \mathbf{R}^2 : x_2 = 0\}$$

has measure zero.

- A circle or a straight line also have Lebesgue measure zero in \mathbf{R}^2 .
- Any finite set has Lebesgue measure zero in \mathbb{R}^n .
- Q and (every countable set) has Lebesgue measure zero in R.
 - Notice that this holds even though the rationals are dense in the reals.

Proposition

If A_n has Lebesgue measure zero $\forall n$ then $\bigcup_{n \in \mathbb{N}} A_n$ has Lebesgue measure zero.

Lebesgue Measure Zero: Examples

Open Sets Are Not Lebesgue Measure Zero

- No open set in \mathbb{R}^n has Lebesgue measure zero.
- If $O \subset \mathbf{R}^n$ is open, then there exists a rectangle R such that $\bar{R} \subset O$ and such that

$$Vol(R) = r > 0$$

• If $\{I_i\}$ is any collection of rectangles such that

$$O \subset \cup_{j=1}^{\infty} I_j$$
,

then

$$\bar{R} \subset O \subset \cup_{j=1}^{\infty} I_j$$
,

SO

$$\sum_{j=1}^{\infty} \operatorname{Vol}(I_j) \geq \operatorname{Vol}(R) = r > 0$$

Genericity and Sard's Theorem

- Lebesgue measure zero captures the idea that certain sets are rare. They are not generic.
- This can be used to ask how rare are critical points of a function.
- A function may have many critical points.
 - For example, if a function is constant on an interval, then every element of the interval is a critical point.
 - But even in that case a function does not have many critical values.
- Critical values are not generic.

Theorem (Sard's Theorem)

Let $X \subset \mathbf{R}^n$ be open, and $f: X \to \mathbf{R}^m$ be C^r with $r \ge 1 + \max\{0, n - m\}$. Then the set of all critical values of f has Lebesgue measure zero.

Genericity and Sard's Theorem

Theorem (Sard's Theorem)

Let $X \subset \mathbf{R}^n$ be open, and $f: X \to \mathbf{R}^m$ be C^r with $r \ge 1 + \max\{0, n - m\}$. Then the set of all critical values of f has Lebesgue measure zero.

Sard's Theorem has many interesting implications.

Consequence of Sard's Theorem

- Given a randomly chosen function f, it is very unlikely that 0 will be a critical value of f.
- If by some fluke 0 is a critical value of f, then a slight perturbation of f will make 0 a regular value.
- Next, we formalize this idea.

Transversality

• Let $g: \mathbf{R}^n \to \mathbf{R}^n$ be C^1 . Consider the family of n equations in n variables:

$$g(\mathbf{x}) = 0$$

• Suppose for some x such that $g(\mathbf{x}) = \mathbf{0}$,

$$\operatorname{rank}(Dg(\mathbf{x})) < n.$$

- That is, some $x \in g^{-1}(0)$ is a critical point of g, thus 0 is a critical value of g.
- By Sard's Theorem, "almost every" $\mathbf{a} \neq 0$ is a regular value of g.
 - So for **a** outside a set of Lebesgue measure zero, $Dg(\mathbf{x})$ has full rank for every \mathbf{x} that solves $g(\mathbf{x}) = \mathbf{a}$.
 - Therefore, for any such **a** and any $\mathbf{x} \in g^{-1}(\mathbf{a})$, we can use the Inverse Function Theorem to show that a local inverse $x(\mathbf{a})$ exists, and give a formula for $Dx(\mathbf{a})$.

Transversality

• Suppose $f: \mathbf{R}^n \times \mathbf{R}^p \to \mathbf{R}^m$. We have a parameterized family of equations

$$f(\mathbf{x}, \mathbf{a}) = \mathbf{0}$$

where, as before, we interpret $\mathbf{a} \in \mathbf{R}^p$ to be a vector of parameters that indexes the function $f(\cdot, \mathbf{a})$.

• For a given a, we are interested in the set of solutions

$$\{\mathbf{x} \in X : f(\mathbf{x}, \mathbf{a}) = \mathbf{0}\}\$$

and the way that this correspondence depends on a.

Transversality Theorem

Theorem (Transversality Theorem)

Let $X \subset \mathbf{R}^n$ and $A \subset \mathbf{R}^p$ be open, and $f: X \times A \to \mathbf{R}^m$ be C^r with $r \ge 1 + \max\{0, n-m\}$. Suppose that $\mathbf{0}$ is a regular value of f. Then

- there is a set $A_0 \subset A$ such that $A \setminus A_0$ has Lebesgue measure zero, and
- for all $\mathbf{a} \in A_0$, $\mathbf{0}$ is a regular value of $f_a = f(\cdot, \mathbf{a})$.

Remark

- Notice the difference between " $\mathbf{0}$ is a regular value of f" which is an assumption, and " $\mathbf{0}$ is a regular value of f_a for a fixed $\mathbf{a} \in A_0$ " which is a conclusion.
 - **0** is a regular value of f if and only if $Df(\mathbf{x}, \mathbf{a})$ has full rank for every (\mathbf{x}, \mathbf{a}) such that $f(\mathbf{x}, \mathbf{a}) = 0$.
 - Instead, for fixed $\mathbf{a}_0 \in A_0$, $\mathbf{0}$ is a regular value of $f_{\mathbf{a}_0} = f(\cdot, \mathbf{a}_0)$ if and only if $D_x f(\mathbf{x}, \mathbf{a}_0)$ has full rank for every \mathbf{x} such that $f_{\mathbf{a}_0}(\mathbf{x}) = f(\mathbf{x}, \mathbf{a}_0) = 0$.
- We can use the implicit function theorem everywhere, except for a set of points that have Lebesgue measure zero.

Transversality and Implicit Function Theorems

Implications of the Transversality Theorem

- Suppose n=m so that there are as many equations (m) as endogenous variables (n). Suppose f is C^1 (note that $1=1+\max\{0,n-n\}$).
- If **0** is a regular value of f
 - so $Df(\mathbf{x}, \mathbf{a})$ has rank n = m for every (x, a) such that $f(\mathbf{x}, \mathbf{a}) = 0$
- by the Transversality Theorem
 - there is a set $A_0 \subset A$ such that $A \setminus A_0$ has Lebesgue measure zero and
 - for every $a_0 \in A_0$, $D_x f(x, a_0)$ has rank n = m for all x such that $f(x, a_0) = 0$.
- Fix $a_0 \in A_0$ and x_0 such that $f(x_0, a_0) = 0$.
- By the Implicit Function Theorem, there exist open sets A^* containing a_0 and X^* containing x_0 , and a C^1 function $x:A^*\to X^*$ such that
 - $x(a_0) = x_0$
 - f(x(a), a) = 0 for every $a \in A^*$
 - if $(x, a) \in X^* \times A^*$ then

$$f(x, a) = 0 \Leftrightarrow x = x(a)$$

that is, x_0 is locally unique, and x(a) is locally unique for each $a \in A^*$

• Moreover: $Dx(a_0) = -[D_x f(x_0, a_0)]^{-1} D_a f(x_0, a_0)$

Tomorrow

We talk about the shape of functions, and about properties that can be preserved across functions.

- Convexity
- Concave and Convex Functions
- Cardinal and Ordinal Properties