
Structural Properties of Utility Functions
Walrasian Demand

Econ 2100 Fall 2018

Lecture 4, September 10

Outline

1 Structural Properties of Utility Functions

1 Local Non Satiation
2 Convexity
3 Quasi-linearity

2 Walrasian Demand



From Last Class
Definition
The utility function u : X → R represents the binary relation % on X if

x % y ⇔ u(x) ≥ u(y).

Theorem (Debreu)

Suppose X ⊆ Rn . A binary relation % on X is complete, transitive, and continuous
if and only if it admits a continuous utility representation u : X → R.

We are interested in connections between utility functions and preferences.

Structural Properties of Utility Functions
The main idea is to understand the relation between properties of preferences
and characteristics of the utility function that represents them.

NOTATION:
We assume X = Rn .
If xi ≥ yi for each i , we write x ≥ y .



Local Non Satiation
Definition
A preference relation % is locally nonsatiated if for all x ∈ X and ε > 0, there exists
some y such that ‖y − x‖ < ε and y � x .

For any consumption bundle, there is always a nearby bundle that is strictly
preferred to it. (Draw an example)

Definition
A utility function u : X → R is locally nonsatiated if it represents a locally
nonsatiated preference relation %; that is, if for every x ∈ X and ε > 0, there exists
some y such that ‖y − x‖ < ε and u(y) > u(x).

Example: The lexicographic preference on R2 is locally nonsatiated
Fix (x1, x2) and ε > 0.

Then (x1 + ε
2 , x2) satisfies ‖(x1 +

ε
2 , x2)− (x1.x2)‖ < ε

and (x1 + ε
2 , x2) � (x1, x2).
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Local Non Satiation and Strict Monotonicity

Proposition

If % is strictly monotone, then it is locally nonsatiated.

Proof.

Let x be given, and let y = x + ε
n e, where e = (1, ..., 1).

Then we have yi > xi for each i .

Strict monotonicity implies that y � x .
Note that

||y − x || =

√√√√ n∑
i=1

( ε
n

)2
=

ε√
n
< ε.

Thus % is locally nonsatiated.
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Shapes of Functions

Definitions
Suppose C is a convex subset of X . A function f : C → R is:

concave if
f (αx + (1− α)y) ≥ αf (x) + (1− α)f (y)

for all α ∈ [0, 1] and x , y ∈ C ;
strictly concave if

f (αx + (1− α)y) > αf (x) + (1− α)f (y)
for all α ∈ (0, 1) and x , y ∈ X such that x 6= y ;
quasiconcave if

f (x) ≥ f (y)⇒ f (αx + (1− α)y) ≥ f (y)
for all α ∈ [0, 1];
strictly quasiconcave if

f (x) ≥ f (y) and x 6= y ⇒ f (αx + (1− α)y) > f (y)
for all α ∈ (0, 1).
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Convex Preferences

Definitions
A preference relation % is

convex if
x % y ⇒ αx + (1− α)y % y for all α ∈ (0, 1)

strictly convex if

x % y and x 6= y ⇒ αx + (1− α)y � y for all α ∈ (0, 1)

Convexity says that taking convex combinations cannot make the decision
maker worse off.

Strict convexity says that taking convex combinations makes the decision
maker better off.

Question
What does convexity imply for the utility function representing %?
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Convex Preferences: An Example

Let % on R2 be defined as x % y if and only if x1 + x2 ≥ y1 + y2 is convex
Proof: Suppose x % y , i.e. x1 + x2 ≥ y1 + y2, and fix α ∈ (0, 1).

Then
αx + (1− α)y = (αx1 + (1− α)y1, αx2 + (1− α)y2)

So,

[αx1 + (1− α)y1] + [αx2 + (1− α)y2] = α[x1 + x2︸ ︷︷ ︸
≥y1+y2

] + (1− α)[y1 + y2]

≥ α[y1 + y2] + (1− α)[y1 + y2]
= y1 + y2,

proving αx + (1− α)y % y .
This is not strictly convex, because (1, 0) % (0, 1) and (1, 0) 6= (0, 1) but

1
2
(1, 0) +

1
2
(0, 1) = (

1
2
,
1
2
) - (0, 1).
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Convexity and Quasiconcave Utility Functions

Convexity is equivalent to quasi concavity of the corresponding utility function.

Proposition

If u represents %, then:
1 % is convex if and only if u is quasiconcave;
2 % is strictly convex if and only if u is strictly quasiconcave.

Convexity of % implies that any utility representation is quasiconcave, but not
necessarily concave.

Proof.
Question 5b. Problem Set 2, due next Tuesday.
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Quasiconcave Utility and Convex Upper Contours
Proposition

Let % be a preference relation on X represened by u : X → R. Then, the upper
contour set is a convex subset of X if and only if u is quasiconcave.

Proof.

Suppose that u is quasiconcave.

Fix z ∈ X , and take any x , y ∈% (z).
Wlog, assume u(x) ≥ u(y ), so that u(x) ≥ u(y ) ≥ u(z), and let α ∈ [0, 1].

By quasiconcavity of u,
u(z) ≤ u(y ) ≤ u(αx + (1 − α)y ),

so αx + (1 − α)y % z .
Hence αx + (1 − α)y belongs to % (z), proving it is convex.

Now suppose the better-than set is convex.

Let x , y ∈ X and α ∈ [0, 1], and suppose u(x) ≥ u(y ).
Then x % y and y % y , and so x and y are both in % (y ).
Since % (y ) is convex (by assumption), then αx + (1 − α)y % y .
Since u represents %,

u(αx + (1 − α)y ) ≥ u(y )
Thus u is quasiconcave.
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Convexity and Induced Choices
Proposition

If % is convex, then C%(A) is convex for all convex A.
If % is strictly convex, then C%(A) has at most one element for any convex A.

Proof.

Let A be convex and x , y ∈ C%(A).

By definition of C%(A), x % y .
Since A is convex: αx + (1 − α)y ∈ A for any α ∈ [0, 1].
Convexity of % implies αx + (1 − α)y % y .
By definition of C%, y % z for all z ∈ A.
Using transitivity, αx + (1 − α)y % y % z for all z ∈ A.
Hence, αx + (1 − α)y ∈ C%(A) by definition of induced choice rule.
Therefore, C%(A) is convex for any convex A.

Now suppose there exists a convex A for which
∣∣C%(A)∣∣ ≥ 2.

Then there exist x , y ∈ C%(A) with x 6= y .
Since A is convex, αx + (1 − α)y ∈ A for all α ∈ (0, 1).
Since x % y and x 6= y , strict convexity implies αx + (1 − α)y � y , but this
contradicts the fact that y ∈ C%(A).
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Quasi-linear Utility
Definition

The function u : Rn → R is quasi-linear if there exists a function v : Rn−1 → R
such that u(x ,m) = v(x) +m.

We usually think of the n-th good as money (the numeraire).

Proposition

The preference relation % on Rn admits a quasi-linear representation if and only
1 (x ,m) % (x ,m′) if and only if m ≥ m′, for all x ∈ Rn−1 and all m,m′ ∈ R;
2 (x ,m) % (x ′,m′) if and only if (x ,m +m′′) % (x ′,m′ +m′′), for all x ∈ Rn−1
and m,m′,m′′ ∈ R;

3 for all x , x ′ ∈ Rn−1, there exist m,m′ ∈ R such that (x ,m) ∼ (x ′,m′).

1 Given two bundles with identical goods, the consumer always prefers the one
with more money.

2 Adding (or subtracting) the same monetary amount does not change rankings.
3 Monetary transfers can always be used to achieve indifference.

Proof.
Question 5c. Problem Set 2, due next Tuesday.
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Proposition

The preference relation % on Rn admits a quasi-linear representation if and only
1 (x ,m) % (x ,m′) if and only if m ≥ m′, for all x ∈ Rn−1 and all m,m′ ∈ R;
2 (x ,m) % (x ′,m′) if and only if (x ,m +m′′) % (x ′,m′ +m′′), for all x ∈ Rn−1
and m,m′,m′′ ∈ R;

3 for all x , x ′ ∈ Rn−1, there exist m,m′ ∈ R such that (x ,m) ∼ (x ′,m′).

1 Given two bundles with identical goods, the consumer always prefers the one
with more money.

2 Adding (or subtracting) the same monetary amount does not change rankings.
3 Monetary transfers can always be used to achieve indifference.

Proof.
Question 5c. Problem Set 2, due next Tuesday.



Quasi-linear Preferences and Utility

Proposition

Suppose that the preference relation % on Rn admits two quasi-linear
representations: v(x) +m, and v ′(x) +m, where v , v ′ : Rn−1 → R. Then there
exists c ∈ R such that v ′(x) = v(x)− c for all x ∈ Rn−1.

Proof.
Exercise



Homothetic Preferences and Utility

Homothetic preferences are also useful in many applications, in particular for
aggregation problems and macroeconomics.

Definition
The preference relation % on X is homothetic if for all x , y ∈ X ,

x ∼ y ⇒ αx ∼ αy for each α > 0

Proposition

The continuous preference relation % on Rn is homothetic if and only if it is
represented by a utility function that is homogeneous of degree 1.

A function is homogeneous of degree r if f (αx) = αr f (x) for any x and α > 0.

Proof.
Question 5d. Problem Set 2, due next Tuesday.
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Demand Theory

Main Questions

Suppose the consumer uses her income to purchase goods (commodities) at
the exogenously given prices:

What are the optimal consumption choices?
How do they depend on prices and income?

Typically, we answer this questions solving a constrained optimization problem
using calculus.

That means the utility function must be not only continuous, but also
differentiable.

Differentiability, however, is not a property we can derive from preferences.

Sometimes, calculus is not necessary, and we can talk about optimal choices
even when preferences are not necessarily represented by a utility function.



Budget Set
First, we define what a consumer can buy.

Definition

The Budget Set B(p,w) ⊂ Rn at prices p and income w is the set of all affordable
consumption bundles and is defined by

B(p,w) = {x ∈ Rn+ : p · x ≤ w}.

This is the set of consumption bundles the consumer can choose from. She
cannot purchase consumption bundles outside of this set.

Implicit assumptions: goods are perfectly divisible; consumption is non
negative; the total price of consumption cannot exceed income; prices are
linear. Think of possible violations.

Exercise

Suppose w = $100. There are two commodities, electricity and food. Each unit of
food costs $1. The first 20Kwh electricity cost $1 per Kwh, but the price of each
incremetal unit of electricity is $1.50 per Kwh. Write the consumer’s budget set
formally and draw it.
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Walrasian Demand

Main Idea
The optimal consumption bundles are those that are weakly preferred to all
other affordable bundles.

Definition
Given a preference relation %, the Walrasian demand correspondence
x∗ : Rn++ × R+ → Rn+ is defined by

x∗(p,w) = {x ∈ B(p,w) : x % y for any y ∈ B(p,w)}.

By definition, for any x∗ ∈ x∗(p,w)
x∗ % x for any x ∈ B(p,w).

Walrasian demand equals the induced choice rule for preference relation % and
available set B(p,w):

x∗(p,w) = C%(B(p,w)).
More implicit assumptions: income is non negative; prices are strictly positive.
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Walrasian Demand With Utility

Although we do not need the utility function to exist to define Walrasian
demand, if a utility function exists there is an equivalent definition.

Definition
Given a utility function u : Rn+ → R, the Walrasian demand correspondence
x∗ : Rn++ × R+ → Rn+ is defined by

x∗(p,w) = arg max
x∈B(p,w )

u(x) where B(p,w) = {x ∈ Rn+ : p · x ≤ w}.

As before,
x∗(p,w) = C%(B(p,w)).

and for any x∗ ∈ x∗(p,w)
u(x∗) ≥ u(x) for any x ∈ B(p,w).

We can derive some properties of Walrasian demand directly from assumptions
on preferences and/or utility.
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Walrasian Demand Is Homogeneous of Degree Zero

Proposition
Walrasian demand is homogeneous of degree zero: for any α > 0

x∗(αp, αw) = x∗(p,w)

Proof.
For any α > 0,

B(αp, αw) = {x ∈ Rn+ : αp · x ≤ αw} = {x ∈ Rn+ : p · x ≤ w} = B(p,w)
because α is a scalar

Since the constraints are the same, the optimal choices must also be the
same.
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The Consumer Spends All Her Income
This is sometimes known as Walras’Law for individuals

Proposition (Full Expenditure)

If % is locally nonsatiated , then
p · x = w for any x ∈ x∗(p,w)

Proof.
Suppose not.

Then there exists an x ∈ x∗(p,w) with p · x < w
Find some y such that

‖y − x‖ < ε with ε > 0 and p · y ≤ w
(why does such a y always exist?)
By local non satiation, this implies y � x contradicing x ∈ x∗(p,w).
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Walrasian Demand Is Convex
Proposition

If u is quasiconcave, then x∗(p,w) is convex.
If u is strictly quasiconcave, then x∗(p,w) is unique.

Same as before (u (stricly) quasiconcave means % (strictly) convex).

Proof.

Suppose x, y ∈ x∗(p,w) and pick α ∈ [0, 1].
First convexity: need to show αx+ (1− α)y ∈ x∗(p,w).

x % y by definition of x∗(p,w ).
u is quasiconcave, thus % is convex and αx+ (1 − α)y % y.
y % z for any z ∈ B(p,w ) by definition of x∗(p,w ).
Transitivity implies αx+ (1 − α)y % z for any z ∈ B(p,w ); thus
αx+ (1 − α)y ∈ x∗(p,w ).

Now uniqueness.

x, y ∈ x∗(p,w ) and x 6= y imply αx+ (1− α)y � y for any α ∈ (0, 1) because u
is strictly quasiconcave (% is strictly convex).
Since B(p,w ) is convex, αx+ (1 − α)y ∈ B(p,w ), contradicting
y ∈ x∗(p,w ).



Walrasian Demand Is Convex
Proposition

If u is quasiconcave, then x∗(p,w) is convex.
If u is strictly quasiconcave, then x∗(p,w) is unique.

Same as before (u (stricly) quasiconcave means % (strictly) convex).

Proof.

Suppose x, y ∈ x∗(p,w) and pick α ∈ [0, 1].
First convexity: need to show αx+ (1− α)y ∈ x∗(p,w).

x % y by definition of x∗(p,w ).
u is quasiconcave, thus % is convex and αx+ (1 − α)y % y.
y % z for any z ∈ B(p,w ) by definition of x∗(p,w ).
Transitivity implies αx+ (1 − α)y % z for any z ∈ B(p,w ); thus
αx+ (1 − α)y ∈ x∗(p,w ).

Now uniqueness.

x, y ∈ x∗(p,w ) and x 6= y imply αx+ (1− α)y � y for any α ∈ (0, 1) because u
is strictly quasiconcave (% is strictly convex).
Since B(p,w ) is convex, αx+ (1 − α)y ∈ B(p,w ), contradicting
y ∈ x∗(p,w ).



Walrasian Demand Is Convex
Proposition

If u is quasiconcave, then x∗(p,w) is convex.
If u is strictly quasiconcave, then x∗(p,w) is unique.

Same as before (u (stricly) quasiconcave means % (strictly) convex).

Proof.

Suppose x, y ∈ x∗(p,w) and pick α ∈ [0, 1].
First convexity: need to show αx+ (1− α)y ∈ x∗(p,w).

x % y by definition of x∗(p,w ).
u is quasiconcave, thus % is convex and αx+ (1 − α)y % y.
y % z for any z ∈ B(p,w ) by definition of x∗(p,w ).
Transitivity implies αx+ (1 − α)y % z for any z ∈ B(p,w ); thus
αx+ (1 − α)y ∈ x∗(p,w ).

Now uniqueness.

x, y ∈ x∗(p,w ) and x 6= y imply αx+ (1− α)y � y for any α ∈ (0, 1) because u
is strictly quasiconcave (% is strictly convex).
Since B(p,w ) is convex, αx+ (1 − α)y ∈ B(p,w ), contradicting
y ∈ x∗(p,w ).



Walrasian Demand Is Non-Empty and Compact

Proposition

If u is continuous, then x∗(p,w) is nonempty and compact.

We already proved this as well.

Proof.
Define A by

A = B(p,w) = {x ∈ Rn+ : p · x ≤ w}

This is a closed and bounded (i.e. compact, set) and

x∗(p,w) = C%(A) = C%(B(p,w))
where % are the preferences represented by u.
Then x∗(p,w) is the set of maximizers of a continuous function over a
compact set.
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Walrasian Demand: Examples
How do we find the Walrasian Demand?

Need to solve a constrained maximization problem, usually using calculus.

Question 6, Problem Set 2; due next Tuesday.
For each of the following utility functions, find the Walrasian demand
correspondence. (Hint: pictures may help)

1 u(x) =
n∏
i=1
xαii with αi > 0 (Cobb-Douglas).

2 u(x) = min{α1x1, α2x2, ..., αnxn} with αi > 0 (generalized Leontief).
3 u(x) =

∑n
i=1 αixi for αi > 0 (generalized linear).

4 u(x) =
[∑n

i=1 αix
ρ
i

] 1
ρ (generalized CES).

Can we do the second one using calculus?

How about the third? Do we need calculus?

Constant elasticity of substitution (CES) preferences are the most commonly
used homothetic preferences. Many preferences are a special case of CES.
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2 u(x) = min{α1x1, α2x2, ..., αnxn} with αi > 0 (generalized Leontief).
3 u(x) =

∑n
i=1 αixi for αi > 0 (generalized linear).

4 u(x) =
[∑n

i=1 αix
ρ
i

] 1
ρ (generalized CES).

Can we do the second one using calculus?

How about the third? Do we need calculus?

Constant elasticity of substitution (CES) preferences are the most commonly
used homothetic preferences. Many preferences are a special case of CES.



An Optimization Recipe

How to solve max f (x) subject to gi (x) ≤ 0 with i = 1, ..,m

1 Write the Langrange function L : Rn × Rm → R as

L (x,λ) = f (x)−
m∑
i=1

λigi (x)

2 Write the First Order Conditions:
n×1︷ ︸︸ ︷

∇L (x,λ) = ∇f (x)−
m∑
i=1

λi∇gi (x) = 0︸ ︷︷ ︸
∂f (x)
∂xj
−

m∑
i=1
λi
∂gi (x)
∂xj

=0 for all j=1,..,n

3 Write constraints, inequalities for λ, and complementary slackness conditions:
gi (x) ≤ 0 with i = 1, ..,m

λi ≥ 0 with i = 1, ..,m
λigi (x) = 0 with i = 1, ..,m

4 Find the x and λ that satisfy all these and you are done...

hopefully.



An Optimization Recipe

How to solve max f (x) subject to gi (x) ≤ 0 with i = 1, ..,m

1 Write the Langrange function L : Rn × Rm → R as

L (x,λ) = f (x)−
m∑
i=1

λigi (x)

2 Write the First Order Conditions:
n×1︷ ︸︸ ︷

∇L (x,λ) = ∇f (x)−
m∑
i=1

λi∇gi (x) = 0︸ ︷︷ ︸
∂f (x)
∂xj
−

m∑
i=1
λi
∂gi (x)
∂xj

=0 for all j=1,..,n

3 Write constraints, inequalities for λ, and complementary slackness conditions:
gi (x) ≤ 0 with i = 1, ..,m

λi ≥ 0 with i = 1, ..,m
λigi (x) = 0 with i = 1, ..,m

4 Find the x and λ that satisfy all these and you are done...

hopefully.



An Optimization Recipe

How to solve max f (x) subject to gi (x) ≤ 0 with i = 1, ..,m

1 Write the Langrange function L : Rn × Rm → R as

L (x,λ) = f (x)−
m∑
i=1

λigi (x)

2 Write the First Order Conditions:
n×1︷ ︸︸ ︷

∇L (x,λ) = ∇f (x)−
m∑
i=1

λi∇gi (x) = 0︸ ︷︷ ︸
∂f (x)
∂xj
−

m∑
i=1
λi
∂gi (x)
∂xj

=0 for all j=1,..,n

3 Write constraints, inequalities for λ, and complementary slackness conditions:
gi (x) ≤ 0 with i = 1, ..,m

λi ≥ 0 with i = 1, ..,m
λigi (x) = 0 with i = 1, ..,m

4 Find the x and λ that satisfy all these and you are done...

hopefully.



An Optimization Recipe

How to solve max f (x) subject to gi (x) ≤ 0 with i = 1, ..,m

1 Write the Langrange function L : Rn × Rm → R as

L (x,λ) = f (x)−
m∑
i=1

λigi (x)

2 Write the First Order Conditions:
n×1︷ ︸︸ ︷

∇L (x,λ) = ∇f (x)−
m∑
i=1

λi∇gi (x) = 0︸ ︷︷ ︸
∂f (x)
∂xj
−

m∑
i=1
λi
∂gi (x)
∂xj

=0 for all j=1,..,n

3 Write constraints, inequalities for λ, and complementary slackness conditions:
gi (x) ≤ 0 with i = 1, ..,m

λi ≥ 0 with i = 1, ..,m
λigi (x) = 0 with i = 1, ..,m

4 Find the x and λ that satisfy all these and you are done...

hopefully.



An Optimization Recipe

How to solve max f (x) subject to gi (x) ≤ 0 with i = 1, ..,m

1 Write the Langrange function L : Rn × Rm → R as

L (x,λ) = f (x)−
m∑
i=1

λigi (x)

2 Write the First Order Conditions:
n×1︷ ︸︸ ︷

∇L (x,λ) = ∇f (x)−
m∑
i=1

λi∇gi (x) = 0︸ ︷︷ ︸
∂f (x)
∂xj
−

m∑
i=1
λi
∂gi (x)
∂xj

=0 for all j=1,..,n

3 Write constraints, inequalities for λ, and complementary slackness conditions:
gi (x) ≤ 0 with i = 1, ..,m

λi ≥ 0 with i = 1, ..,m
λigi (x) = 0 with i = 1, ..,m

4 Find the x and λ that satisfy all these and you are done...

hopefully.



An Optimization Recipe

How to solve max f (x) subject to gi (x) ≤ 0 with i = 1, ..,m

1 Write the Langrange function L : Rn × Rm → R as

L (x,λ) = f (x)−
m∑
i=1

λigi (x)

2 Write the First Order Conditions:
n×1︷ ︸︸ ︷

∇L (x,λ) = ∇f (x)−
m∑
i=1

λi∇gi (x) = 0︸ ︷︷ ︸
∂f (x)
∂xj
−

m∑
i=1
λi
∂gi (x)
∂xj

=0 for all j=1,..,n

3 Write constraints, inequalities for λ, and complementary slackness conditions:
gi (x) ≤ 0 with i = 1, ..,m

λi ≥ 0 with i = 1, ..,m
λigi (x) = 0 with i = 1, ..,m

4 Find the x and λ that satisfy all these and you are done...hopefully.



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

Here x∗(p,w) is the solution to
max

x1,x2∈{p1x1+p2x2≤w , x1≥0, x2≥0}
xα1 x

1−α
2

1 The Langrangian is

L (x,λ) = xα1 x
1−α
2 − λw (p1x1 + p2x2 − w)− (−λ1x1)− (−λ2x2)

2 The First Order Condition (w.r.t. x) is:

∇L (x,λ)︸ ︷︷ ︸
2×1

=

 αxα−11 x1−α2 − λw p1 + λ1

(1− α) xα1 x−α2 − λw p2 + λ2

 =

 α u(x1,x2)x1
− λw p1 + λ1

(1− α) u(x1,x2)x2
− λw p2 + λ2

 = 0

3 The constraints, inequalities for λ, and complementary slackness are:
p1x1 + p2x2 − w ≤ 0 −x1 ≤ 0, and −x2 ≤ 0

λw ≥ 0, λ1 ≥ 0, and λ2 ≥ 0
λw (p1x1 + p2x2 − w) = 0, λ1x1 = 0, and λ2x2 = 0

4 Find a solution to the above (easy for me to say).
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The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?),

hence λ1 = λ2 = 0.

The budget constraint must bind (why?), hence λw ≥ 0.
Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2
Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?),

hence λ1 = λ2 = 0.

The budget constraint must bind (why?), hence λw ≥ 0.
Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2
Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?), hence λ1 = λ2 = 0.

The budget constraint must bind (why?),

hence λw ≥ 0.
Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2
Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?), hence λ1 = λ2 = 0.

The budget constraint must bind (why?),

hence λw ≥ 0.

Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2
Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?), hence λ1 = λ2 = 0.

The budget constraint must bind (why?), hence λw ≥ 0.

Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2
Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?), hence λ1 = λ2 = 0.

The budget constraint must bind (why?), hence λw ≥ 0.
Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2

Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?), hence λ1 = λ2 = 0.

The budget constraint must bind (why?), hence λw ≥ 0.
Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2
Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



The Recipe In Action: Cobb-Dougals Utility

Compute Walrasian demand when the utility function is u(x1, x2) = xα1 x
1−α
2

We must solve:
α u(x1,x2)x1

− λw p1 + λ1 = 0 and (1− α) u(x1,x2)x2
− λw p2 + λ2 = 0

p1x1 + p2x2 − w ≤ 0
−x1 ≤ 0, − x2 ≤ 0

and λw ≥ 0, λ1 ≥ 0, λ2 ≥ 0

λw (p1x1 + p2x2 − w) = 0 and λ1x1 = 0, λ2x2 = 0

x∗(p,w) must be strictly positive (why?), hence λ1 = λ2 = 0.

The budget constraint must bind (why?), hence λw ≥ 0.
Therefore the top two equalities become

αu(x1, x2) = λw p1x1 and (1− α) u(x1, x2) = λw p2x2
Summing both sides and using Full Expenditure we get

u(x1, x2) = λw (p1x1 + p2x2) = λww

Substituting back then yields

x∗1 (p,w) =
αw
p1

, x∗2 (p,w) =
(1− α)w

p2
, and λw =

(
α

p1

)α(1− α
p2

)1−α



Next Week

More Properties of Walrasian Demand.

Indirect Utility.

Comparative Statics.

Expenditure Minimization.


