Structural Properties of Utility Functions Walrasian Demand

Econ 2100

Fall 2018

Lecture 4, September 10

Outline

Structural Properties of Utility Functions

- Local Non Satiation
- Onvexity
- Quasi-linearity
- ② Walrasian Demand

From Last Class

Definition

The utility function $u: X \to \mathbb{R}$ represents the binary relation \succeq on X if $x \succeq y \Leftrightarrow u(x) \ge u(y).$

Theorem (Debreu)

Suppose $X \subseteq \mathbb{R}^n$. A binary relation \succeq on X is complete, transitive, and continuous if and only if it admits a continuous utility representation $u : X \to \mathbb{R}$.

• We are interested in connections between utility functions and preferences.

Structural Properties of Utility Functions

• The main idea is to understand the relation between properties of preferences and characteristics of the utility function that represents them.

NOTATION:

- We assume $X = \mathbb{R}^n$.
- If $x_i \ge y_i$ for each *i*, we write $x \ge y$.

Definition

A preference relation \succeq is locally nonsatiated if for all $x \in X$ and $\varepsilon > 0$, there exists some y such that $||y - x|| < \varepsilon$ and $y \succ x$.

Definition

A preference relation \succeq is locally nonsatiated if for all $x \in X$ and $\varepsilon > 0$, there exists some y such that $||y - x|| < \varepsilon$ and $y \succ x$.

• For any consumption bundle, there is always a nearby bundle that is strictly preferred to it. (Draw an example)

Definition

A preference relation \succeq is locally nonsatiated if for all $x \in X$ and $\varepsilon > 0$, there exists some y such that $||y - x|| < \varepsilon$ and $y \succ x$.

• For any consumption bundle, there is always a nearby bundle that is strictly preferred to it. (Draw an example)

Definition

A utility function $u: X \to \mathbb{R}$ is locally nonsatiated if it represents a locally nonsatiated preference relation \succeq ; that is, if for every $x \in X$ and $\varepsilon > 0$, there exists some y such that $||y - x|| < \varepsilon$ and u(y) > u(x).

Definition

A preference relation \succeq is locally nonsatiated if for all $x \in X$ and $\varepsilon > 0$, there exists some y such that $||y - x|| < \varepsilon$ and $y \succ x$.

• For any consumption bundle, there is always a nearby bundle that is strictly preferred to it. (Draw an example)

Definition

A utility function $u: X \to \mathbb{R}$ is locally nonsatiated if it represents a locally nonsatiated preference relation \succeq ; that is, if for every $x \in X$ and $\varepsilon > 0$, there exists some y such that $||y - x|| < \varepsilon$ and u(y) > u(x).

Example: The lexicographic preference on \mathbb{R}^2 is locally nonsatiated

- Fix (x_1, x_2) and $\varepsilon > 0$.
- Then $(x_1 + \frac{\varepsilon}{2}, x_2)$ satisfies $\|(x_1 + \frac{\varepsilon}{2}, x_2) (x_1.x_2)\| < \varepsilon$
- and $(x_1 + \frac{\varepsilon}{2}, x_2) \succ (x_1, x_2)$.

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proof.

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proof.

Let x be given, and let $y = x + \frac{\varepsilon}{n}e$, where e = (1, ..., 1).

• Then we have $y_i > x_i$ for each i.

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proof.

- Then we have $y_i > x_i$ for each *i*.
- Strict monotonicity implies that $y \succ x$.

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proof.

- Then we have $y_i > x_i$ for each i.
- Strict monotonicity implies that $y \succ x$.
- Note that

$$||y - x|| = \sqrt{\sum_{i=1}^{n} \left(\frac{\varepsilon}{n}\right)^2}$$

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proof.

- Then we have $y_i > x_i$ for each i.
- Strict monotonicity implies that $y \succ x$.
- Note that

$$||y - x|| = \sqrt{\sum_{i=1}^{n} \left(\frac{\varepsilon}{n}\right)^2} = \frac{\varepsilon}{\sqrt{n}}$$

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proof.

- Then we have $y_i > x_i$ for each i.
- Strict monotonicity implies that $y \succ x$.
- Note that

$$||y-x|| = \sqrt{\sum_{i=1}^{n} \left(\frac{\varepsilon}{n}\right)^2} = \frac{\varepsilon}{\sqrt{n}} < \varepsilon.$$

Proposition

If \succeq is strictly monotone, then it is locally nonsatiated.

Proof.

Let x be given, and let $y = x + \frac{\varepsilon}{n}e$, where e = (1, ..., 1).

- Then we have $y_i > x_i$ for each i.
- Strict monotonicity implies that $y \succ x$.
- Note that

$$||y-x|| = \sqrt{\sum_{i=1}^{n} \left(\frac{\varepsilon}{n}\right)^2} = \frac{\varepsilon}{\sqrt{n}} < \varepsilon.$$

• Thus \succeq is locally nonsatiated.

Definitions

Suppose C is a convex subset of X. A function $f : C \to \mathbb{R}$ is:

Definitions

Suppose C is a convex subset of X. A function $f : C \to \mathbb{R}$ is:

• concave if

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$

for all $\alpha \in [0, 1]$ and $x, y \in C$;

Definitions

Suppose C is a convex subset of X. A function $f : C \to \mathbb{R}$ is:

• concave if

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$

for all $\alpha \in [0, 1]$ and $x, y \in C$;

f

strictly concave if

$$f(\alpha x + (1 - \alpha)y) > \alpha f(x) + (1 - \alpha)f(y)$$

for all $\alpha \in (0, 1)$ and $x, y \in X$ such that $x \neq y$;

Definitions

Suppose C is a convex subset of X. A function $f : C \to \mathbb{R}$ is:

• concave if

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$

for all $\alpha \in [0, 1]$ and $x, y \in C$;

strictly concave if

$$F(\alpha x + (1 - \alpha)y) > \alpha f(x) + (1 - \alpha)f(y)$$

for all $\alpha \in (0, 1)$ and $x, y \in X$ such that $x \neq y$;

• quasiconcave if

$$f(x) \ge f(y) \Rightarrow f(\alpha x + (1 - \alpha)y) \ge f(y)$$

for all $\alpha \in [0, 1]$;

Definitions

Suppose C is a convex subset of X. A function $f : C \to \mathbb{R}$ is:

• concave if

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$

for all $\alpha \in [0, 1]$ and $x, y \in C$;

strictly concave if

$$F(\alpha x + (1 - \alpha)y) > \alpha f(x) + (1 - \alpha)f(y)$$

for all $\alpha \in (0, 1)$ and $x, y \in X$ such that $x \neq y$;

• quasiconcave if

$$f(x) \ge f(y) \Rightarrow f(\alpha x + (1 - \alpha)y) \ge f(y)$$

for all $\alpha \in [0, 1]$;

strictly quasiconcave if

$$f(x) \ge f(y)$$
 and $x \ne y \Rightarrow f(\alpha x + (1 - \alpha)y) > f(y)$

for all $\alpha \in (0, 1)$.

Definitions

A preference relation \succsim is

Definitions

A preference relation \succsim is

• convex if

$$x \succeq y \quad \Rightarrow \quad lpha x + (1 - lpha) y \succeq y ext{ for all } lpha \in (0, 1)$$

Definitions

- A preference relation \succsim is
 - convex if

$$x \succsim y \quad \Rightarrow \quad lpha x + (1 - lpha) y \succsim y ext{ for all } lpha \in (0, 1)$$

• strictly convex if

$$x \succeq y \text{ and } x \neq y \quad \Rightarrow \quad \alpha x + (1 - \alpha)y \succ y \text{ for all } \alpha \in (0, 1)$$

Definitions

- A preference relation \succsim is
 - convex if

$$x \succsim y \quad \Rightarrow \quad lpha x + (1 - lpha) y \succsim y ext{ for all } lpha \in (0, 1)$$

• strictly convex if

$$x \succeq y \text{ and } x \neq y \quad \Rightarrow \quad \alpha x + (1 - \alpha)y \succ y \text{ for all } \alpha \in (0, 1)$$

 Convexity says that taking convex combinations cannot make the decision maker worse off.

Definitions

- A preference relation \succsim is
 - convex if

$$x \succsim y \quad \Rightarrow \quad lpha x + (1 - lpha) y \succsim y ext{ for all } lpha \in (0, 1)$$

• strictly convex if

$$x \succeq y \text{ and } x \neq y \quad \Rightarrow \quad \alpha x + (1 - \alpha)y \succ y \text{ for all } \alpha \in (0, 1)$$

- Convexity says that taking convex combinations cannot make the decision maker worse off.
- Strict convexity says that taking convex combinations makes the decision maker better off.

Definitions

- A preference relation \succsim is
 - convex if

$$x \succsim y \quad \Rightarrow \quad lpha x + (1 - lpha) y \succsim y ext{ for all } lpha \in (0, 1)$$

• strictly convex if

$$x \succeq y \text{ and } x \neq y \quad \Rightarrow \quad \alpha x + (1 - \alpha)y \succ y \text{ for all } \alpha \in (0, 1)$$

- Convexity says that taking convex combinations cannot make the decision maker worse off.
- Strict convexity says that taking convex combinations makes the decision maker better off.

Question

• What does convexity imply for the utility function representing \gtrsim ?

Let \succeq on \mathbb{R}^2 be defined as $x \succeq y$ if and only if $x_1 + x_2 \ge y_1 + y_2$ is convex

Proof: Suppose $x \succeq y$, i.e. $x_1 + x_2 \ge y_1 + y_2$, and fix $\alpha \in (0, 1)$.

Let \succeq on \mathbb{R}^2 be defined as $x \succeq y$ if and only if $x_1 + x_2 \ge y_1 + y_2$ is convex

Proof: Suppose $x \succeq y$, i.e. $x_1 + x_2 \ge y_1 + y_2$, and fix $\alpha \in (0, 1)$.

• Then

$$\alpha x + (1 - \alpha)y = (\alpha x_1 + (1 - \alpha)y_1, \alpha x_2 + (1 - \alpha)y_2)$$

Let \succeq on \mathbb{R}^2 be defined as $x \succeq y$ if and only if $x_1 + x_2 \ge y_1 + y_2$ is convex

Proof: Suppose $x \succeq y$, i.e. $x_1 + x_2 \ge y_1 + y_2$, and fix $\alpha \in (0, 1)$.

Then

$$\alpha x + (1 - \alpha)y = (\alpha x_1 + (1 - \alpha)y_1, \alpha x_2 + (1 - \alpha)y_2)$$

• So,

$$\begin{aligned} [\alpha x_1 + (1 - \alpha)y_1] + [\alpha x_2 + (1 - \alpha)y_2] &= \alpha \underbrace{[x_1 + x_2]}_{\geq y_1 + y_2} + (1 - \alpha)[y_1 + y_2] \\ &\geq \alpha [y_1 + y_2] + (1 - \alpha)[y_1 + y_2] \\ &= y_1 + y_2, \end{aligned}$$

proving $\alpha x + (1 - \alpha)y \succeq y$.

Let \succeq on \mathbb{R}^2 be defined as $x \succeq y$ if and only if $x_1 + x_2 \ge y_1 + y_2$ is convex

Proof: Suppose $x \succeq y$, i.e. $x_1 + x_2 \ge y_1 + y_2$, and fix $\alpha \in (0, 1)$.

• Then

$$\alpha x + (1-\alpha)y = (\alpha x_1 + (1-\alpha)y_1, \alpha x_2 + (1-\alpha)y_2)$$

• So,

$$\begin{aligned} [\alpha x_1 + (1 - \alpha)y_1] + [\alpha x_2 + (1 - \alpha)y_2] &= \alpha \underbrace{[x_1 + x_2]}_{\geq y_1 + y_2} + (1 - \alpha)[y_1 + y_2] \\ &\geq \alpha [y_1 + y_2] + (1 - \alpha)[y_1 + y_2] \\ &= y_1 + y_2, \end{aligned}$$

proving $\alpha x + (1 - \alpha)y \succeq y$.

• This is not strictly convex, because $(1,0) \succeq (0,1)$ and $(1,0) \neq (0,1)$ but $\frac{1}{2}(1,0) + \frac{1}{2}(0,1) = (\frac{1}{2},\frac{1}{2}) \precsim (0,1).$

Convexity and Quasiconcave Utility Functions

• Convexity is equivalent to quasi concavity of the corresponding utility function.

Proposition If u represents ≿, then: ∑ is convex if and only if u is quasiconcave; ∑ is strictly convex if and only if u is strictly quasiconcave.

Convexity and Quasiconcave Utility Functions

• Convexity is equivalent to quasi concavity of the corresponding utility function.

Proposition	Ì
If u represents \succeq , then:	
• \succ is convex if and only if u is quasiconcave;	
② \succeq is strictly convex if and only if u is strictly quasiconcave.	

• Convexity of \succeq implies that any utility representation is quasiconcave, but not necessarily concave.

Convexity and Quasiconcave Utility Functions

• Convexity is equivalent to quasi concavity of the corresponding utility function.

Proposition
If u represents \succeq , then:
$oldsymbol{0}$ \succsim is convex if and only if u is quasiconcave;
$\mathbf{Q} \succeq$ is strictly convex if and only if μ is strictly quasiconcave.

 Convexity of ≿ implies that any utility representation is quasiconcave, but not necessarily concave.

Proof.

Question 5b. Problem Set 2, due next Tuesday.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

Proof.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

Proof.

• Suppose that *u* is quasiconcave.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

Proof.

- Suppose that *u* is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \succeq (z)$.
Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that *u* is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that u is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.
 - By quasiconcavity of u, $u(z) \le u(y)$
 - so $\alpha x + (1 \alpha)y \succeq z$.

$$u(z) \leq u(y) \leq u(\alpha x + (1 - \alpha)y),$$

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that u is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.
 - By quasiconcavity of u, so $\alpha x + (1 - \alpha)y \succeq z$. $u(z) \le u(y) \le u(\alpha x + (1 - \alpha)y)$,
 - Hence $\alpha x + (1 \alpha)y$ belongs to $\succeq (z)$, proving it is convex.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that u is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.
 - By quasiconcavity of u, so $\alpha x + (1 - \alpha)y \succeq z$. $u(z) \le u(y) \le u(\alpha x + (1 - \alpha)y)$,
 - Hence $\alpha x + (1 \alpha)y$ belongs to $\succeq (z)$, proving it is convex.
- Now suppose the better-than set is convex.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that u is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.
 - By quasiconcavity of u, so $\alpha x + (1 - \alpha)y \succeq z$. $u(z) \le u(y) \le u(\alpha x + (1 - \alpha)y)$,
 - Hence $\alpha x + (1 \alpha)y$ belongs to $\succeq (z)$, proving it is convex.
- Now suppose the better-than set is convex.
 - Let $x, y \in X$ and $\alpha \in [0, 1]$, and suppose $u(x) \ge u(y)$.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that u is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.
 - By quasiconcavity of u, so $\alpha x + (1 - \alpha)y \succeq z$. $u(z) \le u(y) \le u(\alpha x + (1 - \alpha)y)$,
 - Hence $\alpha x + (1 \alpha)y$ belongs to $\succeq (z)$, proving it is convex.
- Now suppose the better-than set is convex.
 - Let $x, y \in X$ and $\alpha \in [0, 1]$, and suppose $u(x) \ge u(y)$.
 - Then $x \succeq y$ and $y \succeq y$, and so x and y are both in $\succeq (y)$.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that u is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.
 - By quasiconcavity of u, so $\alpha x + (1 - \alpha)y \succeq z$. $u(z) \le u(y) \le u(\alpha x + (1 - \alpha)y)$,
 - Hence $\alpha x + (1 \alpha)y$ belongs to $\succeq (z)$, proving it is convex.
- Now suppose the better-than set is convex.
 - Let $x, y \in X$ and $\alpha \in [0, 1]$, and suppose $u(x) \ge u(y)$.
 - Then $x \succeq y$ and $y \succeq y$, and so x and y are both in $\succeq (y)$.
 - Since $\succeq (y)$ is convex (by assumption), then $\alpha x + (1 \alpha)y \succeq y$.

Proposition

Let \succeq be a preference relation on X represented by $u : X \to \mathbb{R}$. Then, the upper contour set is a convex subset of X if and only if u is quasiconcave.

- Suppose that u is quasiconcave.
 - Fix $z \in X$, and take any $x, y \in \gtrsim (z)$.
 - Wlog, assume $u(x) \ge u(y)$, so that $u(x) \ge u(y) \ge u(z)$, and let $\alpha \in [0, 1]$.
 - By quasiconcavity of u, so $\alpha x + (1 - \alpha)y \succeq z$. $u(z) \le u(y) \le u(\alpha x + (1 - \alpha)y)$,
 - Hence $\alpha x + (1 \alpha)y$ belongs to $\succeq (z)$, proving it is convex.
- Now suppose the better-than set is convex.
 - Let $x, y \in X$ and $\alpha \in [0, 1]$, and suppose $u(x) \ge u(y)$.
 - Then $x \succeq y$ and $y \succeq y$, and so x and y are both in $\succeq (y)$.
 - Since $\succeq (y)$ is convex (by assumption), then $\alpha x + (1 \alpha)y \succeq y$.
 - Since u represents \succeq , Thus u is quasiconcave. $u(\alpha x + (1 - \alpha)y) \ge u(y)$

Proposition

If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.

If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

Proof.

• Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.
 - Using transitivity, $\alpha x + (1 \alpha)y \succeq y \succeq z$ for all $z \in A$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.
 - Using transitivity, $\alpha x + (1 \alpha)y \succeq y \succeq z$ for all $z \in A$.
 - Hence, αx + (1 − α)y ∈ C_≿(A) by definition of induced choice rule.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.
 - Using transitivity, $\alpha x + (1 \alpha)y \succeq y \succeq z$ for all $z \in A$.
 - Hence, $\alpha x + (1 \alpha)y \in C_{\succeq}(A)$ by definition of induced choice rule.
 - Therefore, $C_{\succeq}(A)$ is convex for any convex A.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.
 - Using transitivity, $\alpha x + (1 \alpha)y \succeq y \succeq z$ for all $z \in A$.
 - Hence, $\alpha x + (1 \alpha)y \in C_{\succeq}(A)$ by definition of induced choice rule.
 - Therefore, $C_{\succeq}(A)$ is convex for any convex A.
- Now suppose there exists a convex A for which $|C_{\succeq}(A)| \ge 2$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

Proof.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.
 - Using transitivity, $\alpha x + (1 \alpha)y \succeq y \succeq z$ for all $z \in A$.
 - Hence, $\alpha x + (1 \alpha)y \in C_{\succeq}(A)$ by definition of induced choice rule.
 - Therefore, $C_{\succeq}(A)$ is convex for any convex A.

• Now suppose there exists a convex A for which $|C_{\succeq}(A)| \ge 2$.

• Then there exist $x, y \in C_{\succeq}(A)$ with $x \neq y$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

Proof.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.
 - Using transitivity, $\alpha x + (1 \alpha)y \succeq y \succeq z$ for all $z \in A$.
 - Hence, $\alpha x + (1 \alpha)y \in C_{\succeq}(A)$ by definition of induced choice rule.
 - Therefore, $C_{\succeq}(A)$ is convex for any convex A.

• Now suppose there exists a convex A for which $|C_{\succeq}(A)| \ge 2$.

- Then there exist $x, y \in C_{\succeq}(A)$ with $x \neq y$.
- Since A is convex, $\alpha x + (1 \alpha)y \in A$ for all $\alpha \in (0, 1)$.

Proposition

- If \succeq is convex, then $C_{\succeq}(A)$ is convex for all convex A.
- If \succeq is strictly convex, then $C_{\succeq}(A)$ has at most one element for any convex A.

Proof.

- Let A be convex and $x, y \in \mathcal{C}_{\succeq}(A)$.
 - By definition of $C_{\succeq}(A)$, $x \succeq y$.
 - Since A is convex: $\alpha x + (1 \alpha)y \in A$ for any $\alpha \in [0, 1]$.
 - Convexity of \succeq implies $\alpha x + (1 \alpha)y \succeq y$.
 - By definition of C_{\succeq} , $y \succeq z$ for all $z \in A$.
 - Using transitivity, $\alpha x + (1 \alpha)y \succeq y \succeq z$ for all $z \in A$.
 - Hence, $\alpha x + (1 \alpha)y \in C_{\succeq}(A)$ by definition of induced choice rule.
 - Therefore, $C_{\succeq}(A)$ is convex for any convex A.

• Now suppose there exists a convex A for which $|C_{\succeq}(A)| \ge 2$.

- Then there exist $x, y \in C_{\succeq}(A)$ with $x \neq y$.
- Since A is convex, $\alpha x + (1 \alpha)y \in A$ for all $\alpha \in (0, 1)$.
- Since x ≿ y and x ≠ y, strict convexity implies αx + (1 − α)y ≻ y, but this contradicts the fact that y ∈ C_≿(A).

Definition

The function $u : \mathbb{R}^n \to \mathbb{R}$ is quasi-linear if there exists a function $v : \mathbb{R}^{n-1} \to \mathbb{R}$ such that u(x, m) = v(x) + m.

We usually think of the *n*-th good as money (the numeraire).

Definition

The function $u : \mathbb{R}^n \to \mathbb{R}$ is quasi-linear if there exists a function $v : \mathbb{R}^{n-1} \to \mathbb{R}$ such that u(x, m) = v(x) + m.

We usually think of the *n*-th good as money (the numeraire).

Proposition

- $(x,m) \succeq (x,m')$ if and only if $m \ge m'$, for all $x \in \mathbb{R}^{n-1}$ and all $m, m' \in \mathbb{R}$;
- (x, m) ≿ (x', m') if and only if (x, m + m'') ≿ (x', m' + m''), for all x ∈ ℝⁿ⁻¹
 and m, m', m'' ∈ ℝ;
- **()** for all $x, x' \in \mathbb{R}^{n-1}$, there exist $m, m' \in \mathbb{R}$ such that $(x, m) \sim (x', m')$.

Definition

The function $u : \mathbb{R}^n \to \mathbb{R}$ is quasi-linear if there exists a function $v : \mathbb{R}^{n-1} \to \mathbb{R}$ such that u(x, m) = v(x) + m.

We usually think of the *n*-th good as money (the numeraire).

Proposition

- $(x,m) \succeq (x,m')$ if and only if $m \ge m'$, for all $x \in \mathbb{R}^{n-1}$ and all $m, m' \in \mathbb{R}$;
- ◎ $(x,m) \succeq (x',m')$ if and only if $(x,m+m'') \succeq (x',m'+m'')$, for all $x \in \mathbb{R}^{n-1}$ and $m,m',m'' \in \mathbb{R}$;
- **9** for all $x, x' \in \mathbb{R}^{n-1}$, there exist $m, m' \in \mathbb{R}$ such that $(x, m) \sim (x', m')$.
- Given two bundles with identical goods, the consumer always prefers the one with more money.

Definition

The function $u : \mathbb{R}^n \to \mathbb{R}$ is quasi-linear if there exists a function $v : \mathbb{R}^{n-1} \to \mathbb{R}$ such that u(x, m) = v(x) + m.

We usually think of the *n*-th good as money (the numeraire).

Proposition

- $(x,m) \succeq (x,m')$ if and only if $m \ge m'$, for all $x \in \mathbb{R}^{n-1}$ and all $m, m' \in \mathbb{R}$;
- ◎ $(x,m) \succeq (x',m')$ if and only if $(x,m+m'') \succeq (x',m'+m'')$, for all $x \in \mathbb{R}^{n-1}$ and $m,m',m'' \in \mathbb{R}$;
- **9** for all $x, x' \in \mathbb{R}^{n-1}$, there exist $m, m' \in \mathbb{R}$ such that $(x, m) \sim (x', m')$.
- Given two bundles with identical goods, the consumer always prefers the one with more money.
- Adding (or subtracting) the same monetary amount does not change rankings.

Definition

The function $u : \mathbb{R}^n \to \mathbb{R}$ is quasi-linear if there exists a function $v : \mathbb{R}^{n-1} \to \mathbb{R}$ such that u(x, m) = v(x) + m.

We usually think of the *n*-th good as money (the numeraire).

Proposition

- $(x,m) \succeq (x,m')$ if and only if $m \ge m'$, for all $x \in \mathbb{R}^{n-1}$ and all $m, m' \in \mathbb{R}$;
- ◎ $(x,m) \succeq (x',m')$ if and only if $(x,m+m'') \succeq (x',m'+m'')$, for all $x \in \mathbb{R}^{n-1}$ and $m,m',m'' \in \mathbb{R}$;
- **9** for all $x, x' \in \mathbb{R}^{n-1}$, there exist $m, m' \in \mathbb{R}$ such that $(x, m) \sim (x', m')$.
- Given two bundles with identical goods, the consumer always prefers the one with more money.
- Adding (or subtracting) the same monetary amount does not change rankings.
- Monetary transfers can always be used to achieve indifference.

Definition

The function $u : \mathbb{R}^n \to \mathbb{R}$ is quasi-linear if there exists a function $v : \mathbb{R}^{n-1} \to \mathbb{R}$ such that u(x, m) = v(x) + m.

We usually think of the *n*-th good as money (the numeraire).

Proposition

The preference relation \succsim on \mathbb{R}^n admits a quasi-linear representation if and only

- $(x,m) \succeq (x,m')$ if and only if $m \ge m'$, for all $x \in \mathbb{R}^{n-1}$ and all $m, m' \in \mathbb{R}$;
- ◎ $(x,m) \succeq (x',m')$ if and only if $(x,m+m'') \succeq (x',m'+m'')$, for all $x \in \mathbb{R}^{n-1}$ and $m,m',m'' \in \mathbb{R}$;
- **9** for all $x, x' \in \mathbb{R}^{n-1}$, there exist $m, m' \in \mathbb{R}$ such that $(x, m) \sim (x', m')$.
- Given two bundles with identical goods, the consumer always prefers the one with more money.
- Output Adding (or subtracting) the same monetary amount does not change rankings.
- Monetary transfers can always be used to achieve indifference.

Proof.

Question 5c. Problem Set 2, due next Tuesday.

Quasi-linear Preferences and Utility

Proposition

Suppose that the preference relation \succeq on \mathbb{R}^n admits two quasi-linear representations: v(x) + m, and v'(x) + m, where $v, v' : \mathbb{R}^{n-1} \to \mathbb{R}$. Then there exists $c \in \mathbb{R}$ such that v'(x) = v(x) - c for all $x \in \mathbb{R}^{n-1}$.

Proof.

Exercise

Homothetic Preferences and Utility

• Homothetic preferences are also useful in many applications, in particular for aggregation problems and macroeconomics.

DefinitionThe preference relation
$$\succeq$$
 on X is homothetic if for all $x, y \in X$,
 $x \sim y \Rightarrow \alpha x \sim \alpha y$ for each $\alpha > 0$

Homothetic Preferences and Utility

• Homothetic preferences are also useful in many applications, in particular for aggregation problems and macroeconomics.

Definition
The preference relation
$$\succeq$$
 on X is homothetic if for all $x, y \in X$,
 $x \sim y \Rightarrow \alpha x \sim \alpha y$ for each $\alpha > 0$

Proposition

The continuous preference relation \succeq on \mathbb{R}^n is homothetic if and only if it is represented by a utility function that is homogeneous of degree 1.

• A function is homogeneous of degree r if $f(\alpha x) = \alpha^r f(x)$ for any x and $\alpha > 0$.

Homothetic Preferences and Utility

• Homothetic preferences are also useful in many applications, in particular for aggregation problems and macroeconomics.

Definition
The preference relation
$$\succeq$$
 on X is homothetic if for all $x, y \in X$,
 $x \sim y \Rightarrow \alpha x \sim \alpha y$ for each $\alpha > 0$

Proposition

The continuous preference relation \succeq on \mathbb{R}^n is homothetic if and only if it is represented by a utility function that is homogeneous of degree 1.

• A function is homogeneous of degree r if $f(\alpha x) = \alpha^r f(x)$ for any x and $\alpha > 0$.

Proof.

Question 5d. Problem Set 2, due next Tuesday.

Demand Theory

Main Questions

- Suppose the consumer uses her income to purchase goods (commodities) at the exogenously given prices:
 - What are the optimal consumption choices?
 - How do they depend on prices and income?
- Typically, we answer this questions solving a constrained optimization problem using calculus.
- That means the utility function must be not only continuous, but also differentiable.
 - Differentiability, however, is not a property we can derive from preferences.
- Sometimes, calculus is not necessary, and we can talk about optimal choices even when preferences are not necessarily represented by a utility function.

• First, we define what a consumer can buy.

Definition

The Budget Set $B(\mathbf{p}, w) \subset \mathbf{R}^n$ at prices \mathbf{p} and income w is the set of all affordable consumption bundles and is defined by

 $B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbf{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w\}.$

• First, we define what a consumer can buy.

Definition

The Budget Set $B(\mathbf{p}, w) \subset \mathbf{R}^n$ at prices \mathbf{p} and income w is the set of all affordable consumption bundles and is defined by

$$B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbf{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w\}.$$

• This is the set of consumption bundles the consumer can choose from. She cannot purchase consumption bundles outside of this set.

• First, we define what a consumer can buy.

Definition

The Budget Set $B(\mathbf{p}, w) \subset \mathbf{R}^n$ at prices \mathbf{p} and income w is the set of all affordable consumption bundles and is defined by

$$B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbf{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w\}.$$

- This is the set of consumption bundles the consumer can choose from. She cannot purchase consumption bundles outside of this set.
- Implicit assumptions: goods are perfectly divisible; consumption is non negative; the total price of consumption cannot exceed income; prices are linear. Think of possible violations.

• First, we define what a consumer can buy.

Definition

The Budget Set $B(\mathbf{p}, w) \subset \mathbf{R}^n$ at prices \mathbf{p} and income w is the set of all affordable consumption bundles and is defined by

$$B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbf{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w\}.$$

- This is the set of consumption bundles the consumer can choose from. She cannot purchase consumption bundles outside of this set.
- Implicit assumptions: goods are perfectly divisible; consumption is non negative; the total price of consumption cannot exceed income; prices are linear. Think of possible violations.

Exercise

Suppose w = \$100. There are two commodities, electricity and food. Each unit of food costs \$1. The first 20Kwh electricity cost \$1 per *Kwh*, but the price of each incremetal unit of electricity is \$1.50 per *Kwh*. Write the consumer's budget set formally and draw it.
Main Idea

• The optimal consumption bundles are those that are weakly preferred to all other affordable bundles.

Main Idea

• The optimal consumption bundles are those that are weakly preferred to all other affordable bundles.

Definition

Given a preference relation \succeq , the Walrasian demand correspondence $x^* : \mathbf{R}_{++}^n \times \mathbf{R}_+ \to \mathbf{R}_+^n$ is defined by $x^*(\mathbf{p}, w) = \{ \mathbf{x} \in B(\mathbf{p}, w) : \mathbf{x} \succeq \mathbf{y} \text{ for any } \mathbf{y} \in B(p, w) \}.$

Main Idea

• The optimal consumption bundles are those that are weakly preferred to all other affordable bundles.

Definition

Given a preference relation \succeq , the Walrasian demand correspondence $x^* : \mathbf{R}^n_{++} \times \mathbf{R}_+ \to \mathbf{R}^n_+$ is defined by $x^*(\mathbf{p}, w) = \{\mathbf{x} \in B(\mathbf{p}, w) : \mathbf{x} \succeq \mathbf{y} \text{ for any } \mathbf{y} \in B(p, w)\}.$

• By definition, for any $\mathbf{x}^* \in x^*(\mathbf{p}, w)$

 $\mathbf{x}^* \succeq \mathbf{x}$ for any $\mathbf{x} \in B(\mathbf{p}, w)$.

Main Idea

• The optimal consumption bundles are those that are weakly preferred to all other affordable bundles.

Definition

Given a preference relation \succeq , the Walrasian demand correspondence $x^* : \mathbf{R}_{++}^n \times \mathbf{R}_+ \to \mathbf{R}_+^n$ is defined by $x^*(\mathbf{p}, w) = \{\mathbf{x} \in B(\mathbf{p}, w) : \mathbf{x} \succeq \mathbf{y} \text{ for any } \mathbf{y} \in B(p, w)\}.$

• By definition, for any $\mathbf{x}^* \in x^*(\mathbf{p}, w)$

$$\mathbf{x}^* \succeq \mathbf{x}$$
 for any $\mathbf{x} \in B(\mathbf{p}, w)$.

 Walrasian demand equals the induced choice rule for preference relation ≿ and available set B(p, w):

$$x^*(\mathbf{p},w) = C_{\succeq}(B(\mathbf{p},w)).$$

Main Idea

• The optimal consumption bundles are those that are weakly preferred to all other affordable bundles.

Definition

Given a preference relation \succeq , the Walrasian demand correspondence $x^* : \mathbf{R}_{++}^n \times \mathbf{R}_+ \to \mathbf{R}_+^n$ is defined by $x^*(\mathbf{p}, w) = \{\mathbf{x} \in B(\mathbf{p}, w) : \mathbf{x} \succeq \mathbf{y} \text{ for any } \mathbf{y} \in B(p, w)\}.$

• By definition, for any $\mathbf{x}^* \in x^*(\mathbf{p},w)$

$$\mathbf{x}^* \succeq \mathbf{x}$$
 for any $\mathbf{x} \in B(\mathbf{p}, w)$.

 Walrasian demand equals the induced choice rule for preference relation ≿ and available set B(p, w):

$$x^*(\mathbf{p},w) = C_{\succeq}(B(\mathbf{p},w)).$$

• More implicit assumptions: income is non negative; prices are strictly positive.

Walrasian Demand With Utility

• Although we do not need the utility function to exist to define Walrasian demand, if a utility function exists there is an equivalent definition.

Definition

Given a utility function $u : \mathbf{R}_{+}^{n} \to \mathbf{R}$, the Walrasian demand correspondence $x^{*} : \mathbf{R}_{++}^{n} \times \mathbf{R}_{+} \to \mathbf{R}_{+}^{n}$ is defined by $x^{*}(\mathbf{p}, w) = \arg \max_{\mathbf{x} \in B(\mathbf{p}, w)} u(\mathbf{x})$ where $B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbf{R}_{+}^{n} : \mathbf{p} \cdot \mathbf{x} \le w\}.$

Walrasian Demand With Utility

• Although we do not need the utility function to exist to define Walrasian demand, if a utility function exists there is an equivalent definition.

Definition

Given a utility function $u : \mathbf{R}_{+}^{n} \to \mathbf{R}$, the Walrasian demand correspondence $x^{*} : \mathbf{R}_{++}^{n} \times \mathbf{R}_{+} \to \mathbf{R}_{+}^{n}$ is defined by $x^{*}(\mathbf{p}, w) = \arg \max_{\mathbf{x} \in B(\mathbf{p}, w)} u(\mathbf{x})$ where $B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbf{R}_{+}^{n} : \mathbf{p} \cdot \mathbf{x} \le w\}.$

As before,

$$x^*(\mathbf{p},w) = C_{\succeq}(B(\mathbf{p},w)).$$

and for any $\mathbf{x}^* \in x^*(\mathbf{p}, w)$ $u(\mathbf{x}^*) \ge u(\mathbf{x})$ for any $\mathbf{x} \in B(\mathbf{p}, w).$

Walrasian Demand With Utility

• Although we do not need the utility function to exist to define Walrasian demand, if a utility function exists there is an equivalent definition.

Definition

Given a utility function $u : \mathbf{R}_{+}^{n} \to \mathbf{R}$, the Walrasian demand correspondence $x^{*} : \mathbf{R}_{++}^{n} \times \mathbf{R}_{+} \to \mathbf{R}_{+}^{n}$ is defined by $x^{*}(\mathbf{p}, w) = \arg \max_{\mathbf{x} \in B(\mathbf{p}, w)} u(\mathbf{x})$ where $B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbf{R}_{+}^{n} : \mathbf{p} \cdot \mathbf{x} \le w\}.$

• As before,

$$x^*(\mathbf{p},w) = C_{\succeq}(B(\mathbf{p},w)).$$

and for any $\mathbf{x}^* \in x^*(\mathbf{p}, w)$

 $u(\mathbf{x}^*) \ge u(\mathbf{x})$ for any $\mathbf{x} \in B(\mathbf{p}, w)$.

 We can derive some properties of Walrasian demand directly from assumptions on preferences and/or utility.

Proposition

Walrasian demand is homogeneous of degree zero: for any $\alpha > 0$ $x^*(\alpha \mathbf{p}, \alpha w) = x^*(\mathbf{p}, w)$

Proposition

Walrasian demand is homogeneous of degree zero: for any $\alpha > 0$

$$x^*(\alpha \mathbf{p}, \alpha w) = x^*(\mathbf{p}, w)$$

Proof.

For any $\alpha > 0$,

$$B(\alpha \mathbf{p}, \alpha w) = \{ \mathbf{x} \in \mathbf{R}^n_+ : \alpha \mathbf{p} \cdot \mathbf{x} \le \alpha w \}$$

Proposition

Walrasian demand is homogeneous of degree zero: for any $\alpha > 0$

$$x^*(\alpha \mathbf{p}, \alpha w) = x^*(\mathbf{p}, w)$$

Proof.

For any $\alpha > 0$,

$$B(\alpha \mathbf{p}, \alpha w) = \{ \mathbf{x} \in \mathbf{R}^n_+ : \alpha \mathbf{p} \cdot \mathbf{x} \le \alpha w \} = \{ \mathbf{x} \in \mathbf{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w \}$$

Proposition

Walrasian demand is homogeneous of degree zero: for any $\alpha > 0$

$$x^*(\alpha \mathbf{p}, \alpha w) = x^*(\mathbf{p}, w)$$

Proof.

For any $\alpha > 0$,

$$B(\alpha \mathbf{p}, \alpha w) = \{ \mathbf{x} \in \mathbf{R}_{+}^{n} : \alpha \mathbf{p} \cdot \mathbf{x} \le \alpha w \} = \{ \mathbf{x} \in \mathbf{R}_{+}^{n} : \mathbf{p} \cdot \mathbf{x} \le w \} = B(\mathbf{p}, w)$$

Proposition

Walrasian demand is homogeneous of degree zero: for any $\alpha > 0$

$$x^*(\alpha \mathbf{p}, \alpha w) = x^*(\mathbf{p}, w)$$

Proof.

For any $\alpha > 0$,

$$B(\alpha \mathbf{p}, \alpha w) = \{\mathbf{x} \in \mathbf{R}^n_+ : \alpha \mathbf{p} \cdot \mathbf{x} \le \alpha w\} = \{\mathbf{x} \in \mathbf{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w\} = B(\mathbf{p}, w)$$

because α is a scalar

Proposition

Walrasian demand is homogeneous of degree zero: for any $\alpha > 0$

$$x^*(\alpha \mathbf{p}, \alpha w) = x^*(\mathbf{p}, w)$$

Proof.

For any $\alpha > 0$,

$$B(\alpha \mathbf{p}, \alpha w) = \{\mathbf{x} \in \mathbf{R}^n_+ : \alpha \mathbf{p} \cdot \mathbf{x} \le \alpha w\} = \{\mathbf{x} \in \mathbf{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w\} = B(\mathbf{p}, w)$$

because α is a scalar

• Since the constraints are the same, the optimal choices must also be the same.

This is sometimes known as Walras' Law for individuals

Proposition (Full Expenditure)

If \succeq is locally nonsatiated , then

$$\mathbf{p} \cdot \mathbf{x} = w$$
 for any $\mathbf{x} \in x^*(\mathbf{p}, w)$

This is sometimes known as Walras' Law for individuals

Proposition (Full Expenditure)

If \succeq is locally nonsatiated , then

$$\mathbf{p} \cdot \mathbf{x} = w$$
 for any $\mathbf{x} \in x^*(\mathbf{p}, w)$

Proof.

Suppose not.

This is sometimes known as Walras' Law for individuals

Proposition (Full Expenditure)

If \succeq is locally nonsatiated , then

$$\mathbf{p} \cdot \mathbf{x} = w$$
 for any $\mathbf{x} \in x^*(\mathbf{p}, w)$

Proof.

Suppose not.

• Then there exists an $\mathbf{x} \in x^*(\mathbf{p}, w)$ with $\mathbf{p} \cdot \mathbf{x} < w$

This is sometimes known as Walras' Law for individuals

Proposition (Full Expenditure)

If \succeq is locally nonsatiated , then

$$\mathbf{p} \cdot \mathbf{x} = w$$
 for any $\mathbf{x} \in x^*(\mathbf{p}, w)$

Proof.

Suppose not.

- Then there exists an $\mathbf{x} \in x^*(\mathbf{p}, w)$ with $\mathbf{p} \cdot \mathbf{x} < w$
- Find some **y** such that

$$\|\mathbf{y} - \mathbf{x}\| < \varepsilon \text{ with } \varepsilon > 0 \qquad \text{and} \qquad \mathbf{p} \cdot \mathbf{y} \le w$$

(why does such a **y** always exist?)

This is sometimes known as Walras' Law for individuals

Proposition (Full Expenditure)

If \succeq is locally nonsatiated , then

$$\mathbf{p} \cdot \mathbf{x} = w$$
 for any $\mathbf{x} \in x^*(\mathbf{p}, w)$

Proof.

Suppose not.

- Then there exists an $\mathbf{x} \in x^*(\mathbf{p}, w)$ with $\mathbf{p} \cdot \mathbf{x} < w$
- Find some y such that

 $\|\mathbf{y} - \mathbf{x}\| < \varepsilon \text{ with } \varepsilon > 0 \qquad \text{and} \qquad \mathbf{p} \cdot \mathbf{y} \le w$

(why does such a **y** always exist?)

• By local non satiation, this implies $\mathbf{y} \succ \mathbf{x}$ contradicing $\mathbf{x} \in x^*(\mathbf{p}, w)$.

Walrasian Demand Is Convex

Proposition

If u is quasiconcave, then $x^*(\mathbf{p}, w)$ is convex. If u is strictly quasiconcave, then $x^*(\mathbf{p}, w)$ is unique.

Walrasian Demand Is Convex

Proposition

If u is quasiconcave, then $x^*(\mathbf{p}, w)$ is convex. If u is strictly quasiconcave, then $x^*(\mathbf{p}, w)$ is unique.

• Same as before (*u* (stricly) quasiconcave means \succeq (strictly) convex).

Walrasian Demand Is Convex

Proposition

If u is quasiconcave, then $x^*(\mathbf{p}, w)$ is convex. If u is strictly quasiconcave, then $x^*(\mathbf{p}, w)$ is unique.

• Same as before (u (stricly) quasiconcave means \succeq (strictly) convex).

Proof.

Suppose $\mathbf{x}, \mathbf{y} \in x^*(\mathbf{p}, w)$ and pick $\alpha \in [0, 1]$.

- First convexity: need to show $\alpha \mathbf{x} + (1 \alpha)\mathbf{y} \in x^*(\mathbf{p}, w)$.
 - $\mathbf{x} \succeq \mathbf{y}$ by definition of $x^*(\mathbf{p}, w)$.
 - *u* is quasiconcave, thus \succeq is convex and $\alpha \mathbf{x} + (1 \alpha) \mathbf{y} \succeq \mathbf{y}$.
 - $\mathbf{y} \succeq \mathbf{z}$ for any $\mathbf{z} \in B(\mathbf{p}, w)$ by definition of $x^*(\mathbf{p}, w)$.
 - Transitivity implies $\alpha \mathbf{x} + (1 \alpha)\mathbf{y} \succeq \mathbf{z}$ for any $\mathbf{z} \in B(\mathbf{p}, w)$; thus $\alpha \mathbf{x} + (1 \alpha)\mathbf{y} \in x^*(\mathbf{p}, w)$.
- Now uniqueness.
 - $\mathbf{x}, \mathbf{y} \in x^*(\mathbf{p}, w)$ and $\mathbf{x} \neq \mathbf{y}$ imply $\alpha \mathbf{x} + (1 \alpha)\mathbf{y} \succ \mathbf{y}$ for any $\alpha \in (0, 1)$ because u is strictly quasiconcave (\succeq is strictly convex).
 - Since $B(\mathbf{p}, w)$ is convex, $\alpha \mathbf{x} + (1 \alpha)\mathbf{y} \in B(\mathbf{p}, w)$, contradicting $\mathbf{y} \in x^*(\mathbf{p}, w)$.

Walrasian Demand Is Non-Empty and Compact

Proposition

If u is continuous, then $x^*(\mathbf{p}, w)$ is nonempty and compact.

Walrasian Demand Is Non-Empty and Compact

Proposition

If u is continuous, then $x^*(\mathbf{p}, w)$ is nonempty and compact.

• We already proved this as well.

Walrasian Demand Is Non-Empty and Compact

Proposition

If u is continuous, then $x^*(\mathbf{p}, w)$ is nonempty and compact.

• We already proved this as well.

Proof.

Define A by

$$A = B(\mathbf{p}, w) = \{\mathbf{x} \in \mathbb{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \le w\}$$

• This is a closed and bounded (i.e. compact, set) and $x^*(\mathbf{p},w) = C_\succeq(A) = C_\succeq(B(\mathbf{p},w))$

where \succeq are the preferences represented by u.

 Then x*(p, w) is the set of maximizers of a continuous function over a compact set.

How do we find the Walrasian Demand?

How do we find the Walrasian Demand?

• Need to solve a constrained maximization problem, usually using calculus.

How do we find the Walrasian Demand?

• Need to solve a constrained maximization problem, usually using calculus.

Question 6, Problem Set 2; due next Tuesday.

For each of the following utility functions, find the Walrasian demand correspondence. (Hint: pictures may help)

How do we find the Walrasian Demand?

• Need to solve a constrained maximization problem, usually using calculus.

Question 6, Problem Set 2; due next Tuesday.

For each of the following utility functions, find the Walrasian demand correspondence. (Hint: pictures may help)

•
$$u(\mathbf{x}) = \prod_{i=1}^{n} x_i^{\alpha_i}$$
 with $\alpha_i > 0$ (Cobb-Douglas).
• $u(\mathbf{x}) = \min\{\alpha_1 x_1, \alpha_2 x_2, ..., \alpha_n x_n\}$ with $\alpha_i > 0$ (generalized Leontief).
• $u(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i x_i$ for $\alpha_i > 0$ (generalized linear).
• $u(\mathbf{x}) = \left[\sum_{i=1}^{n} \alpha_i x_i^{\rho}\right]^{\frac{1}{\rho}}$ (generalized CES).

• Can we do the second one using calculus?

How do we find the Walrasian Demand?

• Need to solve a constrained maximization problem, usually using calculus.

Question 6, Problem Set 2; due next Tuesday.

For each of the following utility functions, find the Walrasian demand correspondence. (Hint: pictures may help)

•
$$u(\mathbf{x}) = \prod_{i=1}^{n} x_i^{\alpha_i}$$
 with $\alpha_i > 0$ (Cobb-Douglas).
• $u(\mathbf{x}) = \min\{\alpha_1 x_1, \alpha_2 x_2, ..., \alpha_n x_n\}$ with $\alpha_i > 0$ (generalized Leontief).
• $u(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i x_i$ for $\alpha_i > 0$ (generalized linear).
• $u(\mathbf{x}) = \left[\sum_{i=1}^{n} \alpha_i x_i^{\rho}\right]^{\frac{1}{\rho}}$ (generalized CES).

- Can we do the second one using calculus?
- How about the third? Do we need calculus?

How do we find the Walrasian Demand?

• Need to solve a constrained maximization problem, usually using calculus.

Question 6, Problem Set 2; due next Tuesday.

For each of the following utility functions, find the Walrasian demand correspondence. (Hint: pictures may help)

•
$$u(\mathbf{x}) = \prod_{i=1}^{n} x_i^{\alpha_i}$$
 with $\alpha_i > 0$ (Cobb-Douglas).
• $u(\mathbf{x}) = \min\{\alpha_1 x_1, \alpha_2 x_2, ..., \alpha_n x_n\}$ with $\alpha_i > 0$ (generalized Leontief).
• $u(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i x_i$ for $\alpha_i > 0$ (generalized linear).
• $u(\mathbf{x}) = \left[\sum_{i=1}^{n} \alpha_i x_i^{\rho}\right]^{\frac{1}{\rho}}$ (generalized CES).

- Can we do the second one using calculus?
- How about the third? Do we need calculus?
- Constant elasticity of substitution (CES) preferences are the most commonly used homothetic preferences. Many preferences are a special case of CES.

How to solve	$\max f(x)$	subject to	$g_i(x) \leq 0$	with $i = 1,, m$	

How to solve $\max f(x)$ subject to $g_i(x) \le 0$ with i = 1, ..., m

() Write the Langrange function $L : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ as

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

How to solve $| \max f(x) |$ subject to $g_i(x) \leq 0$ with i = 1, ..., mWrite the Langrange function $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ as $L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$ Write the First Order Conditions: $\overbrace{\nabla L(\mathbf{x},\boldsymbol{\lambda})}^{m} = \nabla f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(\mathbf{x}) = \mathbf{0}$ $\frac{\partial f(\mathbf{x})}{\partial x_i} - \sum_{i=1}^m \lambda_i \frac{\partial g_i(\mathbf{x})}{\partial x_i} = 0 \text{ for all } j = 1, \dots, n$

How to solve max f(x) subject to $g_i(x) \le 0$ with i = 1, ..., mWrite the Langrange function $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ as $L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$ Write the First Order Conditions: $\overbrace{\nabla L(\mathbf{x},\boldsymbol{\lambda})}^{m} = \nabla f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(\mathbf{x}) = \mathbf{0}$ $\frac{\partial f(\mathbf{x})}{\partial x_i} - \sum_{i=1}^m \lambda_i \frac{\partial g_i(\mathbf{x})}{\partial x_i} = 0 \text{ for all } j=1,...,n$ Write constraints, inequalities for λ , and complementary slackness conditions: $g_i(\mathbf{x}) \leq 0$ with i = 1, ..., m $\lambda_i > 0$ with i = 1, ..., m $\lambda_i g_i(\mathbf{x}) = 0$ with i = 1, ..., m

How to solve $\max f(x)$ **subject to** $g_i(x) \le 0$ with i = 1, ..., m

() Write the Langrange function $L : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ as

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$$

Write the First Order Conditions:

$$\underbrace{\nabla L(\mathbf{x}, \boldsymbol{\lambda})}_{\frac{\partial f(\mathbf{x})}{\partial x_j} - \sum_{i=1}^{m} \lambda_i \frac{\partial g_i(\mathbf{x})}{\partial x_j} = 0}_{\text{for all } j=1,..,n} \delta_i \nabla g_i(\mathbf{x}) = \mathbf{0}$$

) Write constraints, inequalities for λ , and complementary slackness conditions:

$$\begin{array}{ll} g_i\left(\mathbf{x}\right) \leq 0 \quad \text{with} \quad i=1,..,m\\ \lambda_i \geq 0 \quad \text{with} \quad i=1,..,m\\ \lambda_i g_i\left(\mathbf{x}\right) = 0 \quad \text{with} \quad i=1,..,m \end{array}$$

• Find the x and λ that satisfy all these and you are done...
An Optimization Recipe

How to solve max f(x) subject to $g_i(x) \le 0$ with i = 1, ..., mWrite the Langrange function $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ as $L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$ Write the First Order Conditions: $\overbrace{\nabla L(\mathbf{x},\boldsymbol{\lambda})}^{'''} = \nabla f(\mathbf{x}) - \sum_{i}^{'''} \lambda_i \nabla g_i(\mathbf{x}) = \mathbf{0}$ $\frac{\partial f(\mathbf{x})}{\partial x_i} - \sum_{i=1}^m \lambda_i \frac{\partial g_i(\mathbf{x})}{\partial x_i} = 0 \text{ for all } j=1,...,n$ Write constraints, inequalities for λ , and complementary slackness conditions: $g_i(\mathbf{x}) \leq 0$ with i = 1, ..., m $\lambda_i > 0$ with i = 1, ..., m $\lambda_i g_i(\mathbf{x}) = 0$ with i = 1, ..., mFind the x and λ that satisfy all these and you are done...hopefully.

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Here $x^*(\mathbf{p}, w)$ is the solution to

$$\max_{x_1, x_2 \in \{p_1 x_1 + p_2 x_2 \le w, \ x_1 \ge 0, \ x_2 \ge 0\}} x_1^{\alpha} x_2^{1-\alpha}$$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Here $x^*(\mathbf{p}, w)$ is the solution to

$$\max_{x_1, x_2 \in \{p_1 x_1 + p_2 x_2 \le w, x_1 \ge 0, x_2 \ge 0\}} x_1^{\alpha} x_2^{1-c}$$

$$L(\mathbf{x}, \boldsymbol{\lambda}) = x_1^{\alpha} x_2^{1-\alpha} - \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) - \left(-\lambda_1 x_1 \right) - \left(-\lambda_2 x_2 \right)$$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Here $x^*(\mathbf{p}, w)$ is the solution to

$$\max_{x_1, x_2 \in \{p_1 x_1 + p_2 x_2 \le w, x_1 \ge 0, x_2 \ge 0\}} x_1^{\alpha} x_2^{1-c}$$

• The Langrangian is $L(\mathbf{x}, \boldsymbol{\lambda}) = x_1^{\alpha} x_2^{1-\alpha} - \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) - \left(-\lambda_1 x_1 \right) - \left(-\lambda_2 x_2 \right)$ • The First Order Condition (w.r.t. **x**) is:

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Here $x^*(\mathbf{p}, w)$ is the solution to

$$\max_{x_1, x_2 \in \{p_1 x_1 + p_2 x_2 \le w, x_1 \ge 0, x_2 \ge 0\}} x_1^{\alpha} x_2^{1-c}$$

• The Langrangian is $L(\mathbf{x}, \boldsymbol{\lambda}) = x_1^{\alpha} x_2^{1-\alpha} - \lambda_w (p_1 x_1 + p_2 x_2 - w) - (-\lambda_1 x_1) - (-\lambda_2 x_2)$ • The First Order Condition (w.r.t. **x**) is: $\underbrace{\nabla L(\mathbf{x}, \boldsymbol{\lambda})}_{2\times 1} = \begin{pmatrix} \alpha x_1^{\alpha-1} x_2^{1-\alpha} - \lambda_w p_1 + \lambda_1 \\ (1-\alpha) x_1^{\alpha} x_2^{-\alpha} - \lambda_w p_2 + \lambda_2 \end{pmatrix}$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Here $x^*(\mathbf{p}, w)$ is the solution to

$$\max_{x_1, x_2 \in \{p_1 x_1 + p_2 x_2 \le w, \ x_1 \ge 0, \ x_2 \ge 0\}} x_1^{\alpha} x_2^{1-c}$$

The Langrangian is $L(\mathbf{x}, \boldsymbol{\lambda}) = x_1^{\alpha} x_2^{1-\alpha} - \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) - \left(-\lambda_1 x_1 \right) - \left(-\lambda_2 x_2 \right)$ The First Order Condition (w.r.t. **x**) is: $\nabla L(\mathbf{x}, \boldsymbol{\lambda}) = \begin{pmatrix} \alpha x_1^{\alpha-1} x_2^{1-\alpha} - \lambda_w p_1 + \lambda_1 \\ (1-\alpha) x_1^{\alpha} x_2^{-\alpha} - \lambda_w p_2 + \lambda_2 \end{pmatrix} = \begin{pmatrix} \alpha \frac{u(x_1, x_2)}{x_1} - \lambda_w p_1 + \lambda_1 \\ (1-\alpha) \frac{u(x_1, x_2)}{x_2} - \lambda_w p_2 + \lambda_2 \end{pmatrix} = 0$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Here $x^*(\mathbf{p}, w)$ is the solution to

$$\max_{x_1, x_2 \in \{p_1 x_1 + p_2 x_2 \le w, \ x_1 \ge 0, \ x_2 \ge 0\}} x_1^{\alpha} x_2^{1-c}$$

$$\begin{array}{ll} p_1 x_1 + p_2 x_2 - w \leq 0 & -x_1 \leq 0, \quad \text{and} \quad -x_2 \leq 0 \\ \lambda_w \geq 0, & \lambda_1 \geq 0, \quad \text{and} \quad \lambda_2 \geq 0 \\ \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) = 0, \quad \lambda_1 x_1 = 0, \quad \text{and} \quad \lambda_2 x_2 = 0 \end{array}$$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Here $x^*(\mathbf{p}, w)$ is the solution to

$$\max_{x_1, x_2 \in \{p_1 x_1 + p_2 x_2 \le w, \ x_1 \ge 0, \ x_2 \ge 0\}} x_1^{\alpha} x_2^{1-c}$$

The Langrangian is $L(\mathbf{x}, \boldsymbol{\lambda}) = x_1^{\alpha} x_2^{1-\alpha} - \lambda_w (p_1 x_1 + p_2 x_2 - w) - (-\lambda_1 x_1) - (-\lambda_2 x_2)$ The First Order Condition (w.r.t. x) is: $\underbrace{\nabla L(\mathbf{x}, \boldsymbol{\lambda})}_{2 \times 1} = \begin{pmatrix} \alpha x_1^{\alpha - 1} x_2^{1 - \alpha} - \lambda_w p_1 + \lambda_1 \\ (1 - \alpha) x_1^{\alpha} x_2^{-\alpha} - \lambda_w p_2 + \lambda_2 \end{pmatrix} = \begin{pmatrix} \alpha \frac{u(x_1, x_2)}{x_1} - \lambda_w p_1 + \lambda_1 \\ (1 - \alpha) \frac{u(x_1, x_2)}{x_1} - \lambda_w p_2 + \lambda_2 \end{pmatrix} = \mathbf{0}$ The constraints, inequalities for λ , and complementary slackness are: $\begin{array}{ll} p_1 x_1 + p_2 x_2 - w \leq 0 & -x_1 \leq 0, \quad \text{and} \quad -x_2 \leq 0 \\ \lambda_w \geq 0, & \lambda_1 \geq 0, \quad \text{and} \quad \lambda_2 \geq 0 \end{array}$ $\lambda_w (p_1 x_1 + p_2 x_2 - w) = 0, \quad \lambda_1 x_1 = 0, \text{ and } \lambda_2 x_2 = 0$ Find a solution to the above (easy for me to say).

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_1, x_2)}{x_1} - \lambda_w \, p_1 + \lambda_1 = 0 & \text{and} & (1 - \alpha) \frac{u(x_1, x_2)}{x_2} - \lambda_w \, p_2 + \lambda_2 = 0 \\ p_1 x_1 + p_2 x_2 - w \le 0 \\ -x_1 \le 0, \ -x_2 \le 0 & \text{and} & \lambda_w \ge 0, \lambda_1 \ge 0, \lambda_2 \ge 0 \\ \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) = 0 & \text{and} & \lambda_1 x_1 = 0, \ \lambda_2 x_2 = 0 \end{array}$$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_1, x_2)}{x_1} - \lambda_w \, p_1 + \lambda_1 = 0 & \text{and} & (1 - \alpha) \frac{u(x_1, x_2)}{x_2} - \lambda_w \, p_2 + \lambda_2 = 0 \\ p_1 x_1 + p_2 x_2 - w \le 0 \\ -x_1 \le 0, \ -x_2 \le 0 & \text{and} & \lambda_w \ge 0, \lambda_1 \ge 0, \lambda_2 \ge 0 \\ \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) = 0 & \text{and} & \lambda_1 x_1 = 0, \ \lambda_2 x_2 = 0 \end{array}$$

• **x**^{*}(*p*, *w*) must be strictly positive (why?),

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_1, x_2)}{x_1} - \lambda_w p_1 + \lambda_1 = 0 & \text{and} & (1 - \alpha) \frac{u(x_1, x_2)}{x_2} - \lambda_w p_2 + \lambda_2 = 0 \\ p_1 x_1 + p_2 x_2 - w \le 0 \\ -x_1 \le 0, \ -x_2 \le 0 & \text{and} & \lambda_w \ge 0, \lambda_1 \ge 0, \lambda_2 \ge 0 \\ \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) = 0 & \text{and} & \lambda_1 x_1 = 0, \ \lambda_2 x_2 = 0 \end{array}$$

• $\mathbf{x}^*(p, w)$ must be strictly positive (why?), hence $\lambda_1 = \lambda_2 = 0$.

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_{1},x_{2})}{x_{1}} - \lambda_{w} p_{1} + \lambda_{1} = 0 & \text{and} & (1 - \alpha) \frac{u(x_{1},x_{2})}{x_{2}} - \lambda_{w} p_{2} + \lambda_{2} = 0 \\ p_{1}x_{1} + p_{2}x_{2} - w \leq 0 & \\ -x_{1} \leq 0, \ -x_{2} \leq 0 & \text{and} & \lambda_{w} \geq 0, \lambda_{1} \geq 0, \lambda_{2} \geq 0 \\ \lambda_{w} \left(p_{1}x_{1} + p_{2}x_{2} - w \right) = 0 & \text{and} & \lambda_{1}x_{1} = 0, \ \lambda_{2}x_{2} = 0 \end{array}$$

• $\mathbf{x}^*(p, w)$ must be strictly positive (why?), hence $\lambda_1 = \lambda_2 = 0$.

• The budget constraint must bind (why?),

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_{1},x_{2})}{x_{1}} - \lambda_{w} p_{1} + \lambda_{1} = 0 & \text{and} & (1 - \alpha) \frac{u(x_{1},x_{2})}{x_{2}} - \lambda_{w} p_{2} + \lambda_{2} = 0 \\ p_{1}x_{1} + p_{2}x_{2} - w \leq 0 \\ -x_{1} \leq 0, \ -x_{2} \leq 0 & \text{and} & \lambda_{w} \geq 0, \lambda_{1} \geq 0, \lambda_{2} \geq 0 \\ \lambda_{w} \left(p_{1}x_{1} + p_{2}x_{2} - w \right) = 0 & \text{and} & \lambda_{1}x_{1} = 0, \ \lambda_{2}x_{2} = 0 \end{array}$$

• $\mathbf{x}^*(p, w)$ must be strictly positive (why?), hence $\lambda_1 = \lambda_2 = 0$.

• The budget constraint must bind (why?), hence $\lambda_w \ge 0$.

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_1, x_2)}{x_1} - \lambda_w p_1 + \lambda_1 = 0 \quad \text{and} \quad (1 - \alpha) \frac{u(x_1, x_2)}{x_2} - \lambda_w p_2 + \lambda_2 = 0 \\ p_1 x_1 + p_2 x_2 - w \le 0 \\ -x_1 \le 0, \quad -x_2 \le 0 \quad \text{and} \quad \lambda_w \ge 0, \lambda_1 \ge 0, \lambda_2 \ge 0 \\ \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) = 0 \quad \text{and} \quad \lambda_1 x_1 = 0, \quad \lambda_2 x_2 = 0 \end{array}$$

- $\mathbf{x}^*(\mathbf{p}, \mathbf{w})$ must be strictly positive (why?), hence $\lambda_1 = \lambda_2 = 0$.
- The budget constraint must bind (why?), hence $\lambda_w \ge 0$.
- Therefore the top two equalities become

$$\alpha u(x_1, x_2) = \lambda_w p_1 x_1 \quad \text{and} \quad (1 - \alpha) u(x_1, x_2) = \lambda_w p_2 x_2$$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_1, x_2)}{x_1} - \lambda_w p_1 + \lambda_1 = 0 \quad \text{and} \quad (1 - \alpha) \frac{u(x_1, x_2)}{x_2} - \lambda_w p_2 + \lambda_2 = 0 \\ p_1 x_1 + p_2 x_2 - w \le 0 \\ -x_1 \le 0, \quad -x_2 \le 0 \quad \text{and} \quad \lambda_w \ge 0, \lambda_1 \ge 0, \lambda_2 \ge 0 \\ \lambda_w \left(p_1 x_1 + p_2 x_2 - w \right) = 0 \quad \text{and} \quad \lambda_1 x_1 = 0, \ \lambda_2 x_2 = 0 \end{array}$$

- $\mathbf{x}^*(\mathbf{p}, \mathbf{w})$ must be strictly positive (why?), hence $\lambda_1 = \lambda_2 = 0$.
- The budget constraint must bind (why?), hence $\lambda_w \ge 0$.
- Therefore the top two equalities become

 $\alpha u(x_1, x_2) = \lambda_w p_1 x_1 \quad \text{and} \quad (1 - \alpha) u(x_1, x_2) = \lambda_w p_2 x_2$

• Summing both sides and using Full Expenditure we get

$$u(x_1, x_2) = \lambda_w(p_1x_1 + p_2x_2) = \lambda_w w$$

Compute Walrasian demand when the utility function is $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

We must solve:

$$\begin{array}{ll} \alpha \frac{u(x_{1},x_{2})}{x_{1}} - \lambda_{w} p_{1} + \lambda_{1} = 0 \quad \text{and} \quad (1 - \alpha) \frac{u(x_{1},x_{2})}{x_{2}} - \lambda_{w} p_{2} + \lambda_{2} = 0\\ p_{1}x_{1} + p_{2}x_{2} - w \leq 0\\ -x_{1} \leq 0, \quad -x_{2} \leq 0 \quad \text{and} \quad \lambda_{w} \geq 0, \lambda_{1} \geq 0, \lambda_{2} \geq 0\\ \lambda_{w} \left(p_{1}x_{1} + p_{2}x_{2} - w \right) = 0 \quad \text{and} \quad \lambda_{1}x_{1} = 0, \quad \lambda_{2}x_{2} = 0 \end{array}$$

- $\mathbf{x}^*(p, w)$ must be strictly positive (why?), hence $\lambda_1 = \lambda_2 = 0$.
- The budget constraint must bind (why?), hence $\lambda_w \ge 0$.
- Therefore the top two equalities become

$$\alpha u(x_1, x_2) = \lambda_w p_1 x_1 \qquad \text{and} \qquad (1 - \alpha) u(x_1, x_2) = \lambda_w p_2 x_2$$

• Summing both sides and using Full Expenditure we get

$$u(x_1, x_2) = \lambda_w(p_1x_1 + p_2x_2) = \lambda_w w$$

Substituting back then yields

$$x_1^*(p,w) = \frac{\alpha w}{p_1}, \ x_2^*(p,w) = \frac{(1-\alpha)w}{p_2}, \text{ and } \lambda_w = \left(\frac{\alpha}{p_1}\right)^{\alpha} \left(\frac{1-\alpha}{p_2}\right)^{1-\alpha}$$

Next Week

- More Properties of Walrasian Demand.
- Indirect Utility.
- Comparative Statics.
- Expenditure Minimization.