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Envelope Theorem With Constraints

The maximization problem is:

x∗(q) = arg max
F (x;q)=0k

φ(x;q)

Using the Chain Rule, the change of φ∗(q) = φ(x∗(q);q) is:

Dqφ(x∗(q);q) = Dqφ(x,q)|q=q, x=x∗(q) + Dxφ(x,q)|q=q, x=x∗(q) Dqx
∗(q)

Because the constraints hold, −F (x;q) = 0k and thus
−DxF (x;q)Dqx∗(q) =DqF (x;q)

From FOC we get
Dxφ(x;q) = λ>DxF (x;q)

Thus,

Dxφ(x,q)|q=q, x=x∗(q) Dqx
∗(q) =λ>DxF (x;q)Dqx∗(q) = −λ>DqF (x;q)

Envelope Theorem With Constraints
Then, the change in the objective function due to a change in q is:

Dqφ(x∗(q);q) = Dqφ(x,q)|q=q,x=x∗(q) − (λ∗(q))
> DqF (x,q)|q=q,x=x∗(q̄)



Envelope Theorem (With Constraints)
Summary
The Envelope Theorem is:

Dqφ(x∗(q);q) = Dqφ(x,q)|q=q, x=x∗(q) − (λ∗(q))
> DqF (x,q)|q=q, x=x(q)

The direct effect of the parameter q is on both the value of φ evaluated at the
maximizer x∗(q) but also on the constraints.

In the consumer’s problem, the entire differential effect of price and wage
changes on indirect utility occurs via the budget constraint.

φ is the utility function u, and φ(x∗(·); ·) is u(x∗(·)) (the indirect utility
function v (p,w ))
F is the budget constraint p · x − w ;
one can then figure out how the equality above would work if (some) prices and
income change.

Exercise

Compute the price effects, ∂x
∗(p,w )
∂pk

with k = 1, 2 for the Cobb—Douglas utility
function on R2+.



Application: Roy’s Identity
Walrasian demand is x∗(q) = argmax u(x) subject to p · x − w = 0

Use the previous results with

φ(x , q) = u(x), φ(x∗(q̄); q̄) = u(x∗(p,w)) = v(p,w), and F (x , q) = p · x −w .

the effect of prices and wage on utility is only via the budget constraint.

The Envelope theorem says:

Dqφ(x∗(q̄); q̄) = Dqφ(x , q)|x=x∗(q),q=q̄ − [λ∗(q̄)]
> DqF (x , q)|x=x∗(q̄),q=q̄

Thus
∂v
∂pi

=
∂u
∂pi

∣∣∣∣
x=x∗(p,w )

−λ∂(p · x − w )

∂pi

∣∣∣∣λ=λ∗(p,w )
x=x∗(p,w )

= 0− λxi |λ=λ∗(p,w )
x=x∗(p,w )

= −λ∗(p,w )x∗i (p,w )

∂v
∂w

=
∂u
∂w

∣∣∣∣
x=x∗(p,w )

− λ
∂(p · x − w )

∂w

∣∣∣∣λ=λ∗(p,w )
x=x∗(p,w )

= 0+ λ|λ=λ∗(p,w )
x=x∗(p,w )

=λ∗(p,w )

the Lagrange multiplier equals the marginal utility of a change in income.

Divide one of the two expressions above by the other and obtain

x∗i (p,w) =
− ∂v
∂pi
∂v
∂w

.

This is expression gives Roy’s Identity: ∂v
∂pi

= −x∗i (p,w) ∂v∂w .



Hicksian Demand
Definition
Given a utility function u : Rn+ → R, the Hicksian demand correspondence
h∗ : Rn++ × u(Rn+)→ Rn+ is defined by

h∗(p, v) = arg min
x∈Rn+

p · x subject to u(x) ≥ v .

Hicksian demand finds the cheapest consumption bundle that achieves a given
utility level.

Hicksian demand is also called compensated since along it one can measure
the impact of price changes for fixed utility.

Walrasian demand x∗(p,w ) is also called uncompensated since along it price
changes can make the consumer better-off or worse-off.

Draw a picture.

The constraint is in “utils”while the objective function is in money.

For Walrasian (uncompensated) demand, the constraint is in money while the
objective is in “utils”.

This is the dual of the utility maximization problem:

the solutions to the two problems are connected when prices are the same.



Properties of Hicksian Demand

Proposition

If u is continuous, then h∗(p, v) is nonempty and compact.

Proof.

By continuity, {x ∈ Rn+ : u(x) ≥ v}, the upper contour set of x , is closed.
For a suffi ciently large M, the closed set {x ∈ Rn+ : p · x ≤ M} and the upper
contour set of x are not disjoint.

Then

h∗(p, v) = arg min
x∈Rn+

p · x subject to
u(x) ≥ v
and

p · x ≤ M
The modified constraint set is closed and bounded.

... from here on, the proof follows the proof that Walrasian demand is
nonempty and compact... (fill in the details as exercise).



Hicksian Demand Is Downward Sloping
Law of Demand: as the price of a good increases the compensated
quantity demanded of that good cannot increase.

Take two price vectors p and q, and define

x = h∗(p, v) and y = h∗(q, v)

The following is a ‘revealed preference’argument:

1
y could have been chosen at prices p but was not,
hence y cannot be cheaper than x at prices p.

⇒ p · x ≤ p · y

2 p · (x − y) ≤ 0

3
x could have been chosen at prices q but was not,
hence x cannot be cheaper than y at prices q

⇒ q · x ≥ q · y

4 q · (x − y) ≥ 0 or −q · (x − y) ≤ 0
5 Adding 2. and 4. we get (p − q) · (x − y) ≤ 0
6 Choose p and q so that pi 6= qi and pj = qj for all j 6= i :

(pi − qi ) (xi − yi ) ≤ 0

A similar result does not hold for Walrasian demand.



The Expenditure Function

Definition
Given a continuous utility function u : Rn+ → R, the expenditure function
e : Rn++ × u(Rn+)→ R+ is defined by

e(p, v) = p · x
for some x ∈ h∗(p, v).

This is the function that tracks the minimized value of the amount spent by
the consumer as prices and utility change.

Proposition
If the utility function is continuous and locally nonsatiated, then the expenditure
functions is homogeneous of degree 1 and concave in p.

Proof.
Question 5, Problem Set 4.



Walrasian and Hicksian Demand Are Equal
Proposition

Suppose u is continuous and locally nonsatiated. If v > u(0n), then:

x∗(p,w) = h∗(p, v(p,w));

h∗(p, v) = x∗(p, e(p, v)).

These are sets: the consumption bundles that maximize utility are the same as
the consumption bundles that minimize expenditure, provided the constraints
of the two problems “match up”.

The income level for the constraint in the utility maximization problem must be
w = p · x∗ where x∗ ∈ h∗(p, v ).
The utility level for the constraint in the expenditure minimization problem
must be v = u(x∗) where x∗ ∈ x∗(p, v ).

Walrasian and Hicksian demand must coincide when computed according to
the same prices, income, and utility.

The proposition implies that

e(p, v(p,w)) = w and v(p, e(p, v)) = v

so for a fixed price vector p̂, e(p̂, ·) and v(p̂, ·) are inverses of each other.



Walrasian and Hicksian Demand Are Equal
We want to show that x∗ ∈ x∗(p,w) solves min p · x subject to u(x) ≥ u(x∗)
We want to show that x∗ ∈ h∗(p, v) solves max u(x) subject to p · x ≤ p · x∗
Proof.

Pick x∗ ∈ x∗(p,w), and suppose x∗ /∈ h∗ (p, u(x∗)): x∗ is a utility maximizer
but not expenditure minimizer.

Then ∃x ′ s.t. p · x ′ < p · x∗ ≤ w and u(x ′) ≥ u(x∗)
By local nonsatiation, ∃x” (close to x ′) s.t.

p · x” < w and u(x”) > u(x ′)
contradicting the fact that x∗ is a utility maximizer. Therefore x∗ must also be
a expenditure minimizer.

Since p · x∗ = w by full expenditure, we also have e (p, v(p,w)) = w .

Pick x∗ ∈ h∗(p, v), and suppose x∗ /∈ x∗(p, p · x∗): x∗ an expenditure
minimizer but not a utility maximizer.

Then ∃x ′ s.t. u(x ′) > u (x∗) and p · x ′ ≤ p · x∗
Consider the bundle αx ′ with α < 1. By continuity of u,

u(αx ′) > u (x∗) ≥ v for α < 1, α→ 1.
Therefore, p · αx ′ < p · x ′ ≤ p · x∗
contradicting the fact that x∗ is an expenditure minimizer. Therefore x∗ must
also be a utility maximizer.

Because u (x∗) = v we have v (p, e(p, v)) = v .



Support Function
Definition

Given a closed set K ⊆ Rn , the support function µK : Rn → R ∪ {−∞} is
µK (p) = inf

x∈K
p · x.

It can equal −∞ since there might exists x ∈ K such that p · x becomes
unboundedly negative for a closed set.

for example: K = {x ∈ R2 : x1 ∈ R, x2 ∈ [0,∞)}, and p = (−1, 0).
if K is convex (closed and bounded in Rn), the support function is finite.

When a set K is convex, one can ‘recover’it using the support function:
given a p ∈ Rn , {x ∈ Rn : p · x ≥ µK (p)} is an half space that contains K ;
furthermore, K is the intersection of all such half spaces (for all p).

If K is not convex, the intersection of all sets {x ∈ Rn : p · x ≥ µK (p)} is the
smallest closed convex set containing K (this is called the convex hull).

Theorem (Duality Theorem)

Let K be a nonempty closed set. There exists a unique x ∈ K such that
p · x = µK (p) if and only if µK is differentiable at p. If so, ∇µK (p) = x.

The support function is ‘linear’in p.
e(p, v) is the support function of the set K = {x ∈ Rn+ : u(x) ≥ v}.



Properties of the Expenditure Function

Proposition

If u(x) is continuous, locally nonsatiated, and strictly quasiconcave, then e(p, v) is
differentiable in p.

Proof.

Immediate from the previous theorem (verify the assumptions hold).

Question 6 Problem Set 4

Using the result above and the fact that h∗(p, v) = x∗(p, e(p, v)), provide
suffi cient conditions for differentiability with respect to p of the indirect utility
function, and extend the suffi cient conditions for continuity and differentiability in p
of Walrasian demand to Hicksian demand.



Shephard’s Lemma
Proposition (Shephard’s Lemma)

Suppose u : Rn+ → R is a continuous, locally nonsatiated, and strictly quasiconcave
utility function. Then, for all p ∈ Rn++ and v ∈ R,

h∗(p, v) = ∇pe(p, v).

Hicksian demand is the derivative of the expenditure function.

There are different ways to prove Shephard’s Lemma:
Use the duality theorem.

Use the envelope theorem:

let φ(x , q) = p · x , φ(x∗(q); q) = e(p, v ), and F (x , q) = u(x)− v ,
then:

Dqφ(x∗(q̄); q̄) = Dqφ(x , q)|x=x∗(q),q=q̄ − [λ∗(q̄)]
> DqF (x , q)|x=x∗(q̄),q=q̄

becomes
∇pe(p, v ) = h∗(p, v )− 0

since F does not depend on p.

Brute force (next slide).



Shephard’s Lemma: Proof
Proof.

We want to show that h∗(p, v) = ∇pe(p, v).

Using the definition, and then the chain rule

∇pe(p, v) = ∇p [p · h∗ (p, u)] = h∗ (p, u) + [p · Dph∗ (p, u)]>

The first order conditions of the minimization problem say

p = λ∇pu (h∗ (p, u))

Therefore

∇pe(p, v) = h∗ (p, u) + λ [∇pu (h∗ (p, u)) · Dph∗ (p, u)]>

At an optimum, the constraint must bind and so

u (h∗ (p, u)) = v

Thus
∇pu (h∗ (p, u)) · Dph∗ (p, u) = 0

and therefore
h∗(p, v) = ∇pe(p, v).

as desired.



Roy’s Identity
Proposition (Roy’s identity)

Suppose u is continuous, locally nonsatiated, and strictly quasiconcave and v is
differentiable at (p,w) 6= 0. Then

x∗(p,w) = − 1
∂v (p,w )
∂w

∇pv(p,w),

This can be also written as

x∗k (p,w) = −
∂v (p,w )
∂pk

∂v (p,w )
∂w

, for all k

Walrasian demand equals the derivative of the indirect utility function
multiplied by a “correction term”.

This correction normalizes by the marginal utility of wealth.

There are different ways to prove Roy’s Identity

Use the envelope theorem (earlier).

Use the chain rule and the first order conditions.

Brute force (next slide).



Roy’s Identity
Proof.
We want to show that

x∗k (p,w) = −
∂v (p,w )
∂pk

∂v (p,w )
∂w

Fix some p̄, w̄ and let ū = v (p̄, w̄).

The following identity holds for all p

v (p, e (p, ū)) = ū

differentiating w.r.t pk we get
∂v
∂pk

+
∂v
∂w

∂e
∂pk

= 0

and therefore
∂v
∂pk

+
∂v
∂w
hk = 0

Let x̄k = xk (p̄, w̄) and evaluate the previous equality at p̄, w̄ :
∂v
∂pk

+
∂v
∂w
x̄k = 0

Solve for x̄k to get the result.



Slutsky Matrix
Definition

The Slutsky matrix, denoted Dph∗(p, v), is the n × n matrix of derivative of the
Hicksian demand function with respect to price (its first n dimensions).

Notice this says “function”, so the Slutsky matrix is defined only when
Hicksian demand is unique.

Proposition
Suppose u : Rn+ → R is continuous, locally nonsatiated, strictly quasiconcave and
h∗(·) is continuously differentiable at (p, v). Then:

1 The Slutsky matrix is the Hessian of the expenditure function:
Dph∗(p, v) = D2ppe(p, v);

2 The Slutsky matrix is symmetric and negative semidefinite;
3 Dph∗(p, v)p = 0n .

Proof.
Question 8, Problem Set 4.



Slutsky Decomposition
Proposition
If u is continuous, locally nonsatiated, and strictly quasiconcave, and h∗ is
differentiable, then: for all (p,w)

Dph∗(p, v(p,w)) = Dpx∗(p,w) + Dw x∗(p,w)x∗(p,w)>

or
∂h∗j (p, v(p,w))

∂pk
=
∂x∗j (p,w)

∂pk
+
∂x∗j (p,w)

∂w
x∗k (p,w), for all j , k

Proof.
Remember that

h∗(p, v) = x∗(p, e(p, v)).

Take the equality for good j and differentiate with respect to pk
∂h∗j
∂pk

=
∂x∗j
∂pk

+
∂x∗j
∂w

∂e
∂pk

=
∂x∗j
∂pk

+
∂x∗j
∂w

h∗k

Evaluate this for some p,w and u = v (p,w) so that h∗(·) = x∗(·)
∂h∗j
∂pk

=
∂x∗j
∂pk

+
∂x∗j
∂w

x∗k



Slutsky Equation

Hicksian decomposition of demand
Rearranging from the previous proposition:

∂x∗j (p,w)

∂pk
=
∂h∗j (p, v(p,w))

∂pk︸ ︷︷ ︸
substitution effect

−
∂x∗j (p,w)

∂w
x∗k (p,w)︸ ︷︷ ︸

income effect

This is also known as the Slutsky equation:

it connects the derivatives of compensated and uncompensated demands.

If one takes k = j , the following is the “own price”Slutsky equation
∂x∗j (p,w)

∂pj
=
∂h∗j (p, v(p,w))

∂pj︸ ︷︷ ︸
substitution effect

−
∂x∗j (p,w)

∂w
x∗j (p,w)︸ ︷︷ ︸

income effect



Normal, Inferior, and Giffen Goods
The own price Slutsky equation

∂x∗j (p,w)

∂pj
=
∂h∗j (p, v(p,w))

∂pj︸ ︷︷ ︸
substitution effect

−
∂x∗j (p,w)

∂w
x∗j (p,w)︸ ︷︷ ︸

income effect

.

Since the Slutsky matrix is negative semidefinite, ∂h∗k/∂pk ≤ 0;
the first term is always negative while the second can have either sign;
the substitution effect always pushes the consumer to purchase less of a
commodity when its price increases.

Normal, Inferior, and Giffen Goods
A normal good has a positive income affect.

An inferior good has a negative income effect.

A Giffen good has a negative overall effect (i.e. ∂x∗k /∂pk > 0);

this can happen only if the income effect is negative and overwhelms the
substitution effect

∂x∗k
∂w

x∗k <
∂h∗k
∂pk
≤ 0.



Slutsky Equation and Elasticity
Definition

εy ,q = ∂y
∂q

q
y is called the elasticity of y with respect to q

Elasticity is a unit free measure (percentage change in y for a given percentage
change in q) that is often used to compare price effects across different goods.

The own price Slutsky equation

∂x∗j (p,w)

∂pj
=
∂h∗j (p, v(p,w))

∂pj
−
∂x∗j (p,w)

∂w
x∗j (p,w)

Multiply both sides by pj/x∗j (·) and rewrite as
∂x∗j (p,w)

∂pj

pj
x∗j (p,w)

=
∂h∗j (p, v(p,w))

∂pj

pj
x∗j (p,w)

−
∂x∗j (p,w)

∂w
pj

w
x∗j (p,w)

x∗j (p,w)

w

or

εxj ,pj = εhj ,pj −εxj ,w
pjx∗j (p,w)

w

The elasticty of Walrasian (uncompensated) demand is equal to the elasticity of
Hicksian (compensated) demand minus the income elasticity of demand
multiplied by the share that good has in the budget.



Gross Substitutes

The cross price Slutsky equation

∂x∗j (p,w)

∂pk
=
∂h∗j (p, v(p,w))

∂pk
−
∂x∗j (p,w)

∂w
x∗j (p,w)

Intuitively, we think of two goods as substitutes if the demand for one increases
when the price of the other increases.

Definition

We say good j is a gross substitute for k if
∂x∗j (p,w )

∂pk
≥ 0.

Unfortunately the definition of substitutes based on Walrasian
(uncompensated) demand is not very useful since it does not satisfy symmetry:

we can have
∂x∗j (p,w )

∂pk
> 0 and ∂x∗k (p,w )

∂pj
< 0.

There is a better definition that is based on Hicksian (compensated) demand.



Net Substitutes
Definition
We say goods j and k are

net substitutes if
∂h∗j (p,w )

∂pk
≥ 0 and net complements if

∂h∗j (p,w )

∂pk
≤ 0.

This definition is symmetric:
∂h∗j (p,w )

∂pk
≥ 0 if and only if ∂h

∗
k (p,w )
∂pj

≥ 0.

Proof.

∂h∗j (p,w)

∂pk
=
∂ ∂e(p,v )

∂pj

∂pk
by Shephard’s Lemma

=
∂2e(p, v)

∂pk∂pj

=
∂2e(p, v)

∂pj∂pk
by Young’s Theorem

=
∂h∗k (p,w)

∂pj
by Shephard’s Lemma again



Next Class

Comparative Statics Without Calculus

Testable Implication of Consumer Theory


