# Anscombe & Aumann Expected Utility Betting and Insurance

Econ 2100

Fall 2018

Lecture 11, October 3

#### Outline

- Subjective Expected Utility
- Qualitative Probabilities
- Allais and Ellsebrg Paradoxes
- Utility Of Wealth
- Insurance and Betting

# Next Wednesday (October 10)

#### MIDTERM

- 75 minutes long,
- covers everything so far:
  - includes Monday's class (Lecture 12)
  - includes Problem Set 5, due next Wednesday;
- you can consult the class handouts (in printed form), and any notes you may have written.
- but there is no access to any other materials (no books, computers, etc).
- Past midterm exams with Yunyun... but the content of the course has changed over the years.

## **Anscombe and Aumann Structure**

- $\Omega = \{1, 2, ..., S\}$  is a finite set of states, with generic element  $s \in \Omega$ .
- X is a finite set of size n of consequences with a generic element  $x \in X$ .
- $\Delta X$  is the set of all probability distributions over X.
- Elements of  $\Omega$  reprent subjectively perceived randomness, while elements of  $\Delta X$  represent objectively perceived randomness.
- Preferences are on  $H = (\Delta X)^{\Omega}$ , the space of all functions from  $\Omega$  to  $\Delta X$ .
  - ullet An act is a function  $h:\Omega o\Delta X$  that assigns a lottery in  $\Delta X$  to each  $s\in\Omega$  .
    - Let  $h_s = h(s) \in \Delta X$ , and denote  $h_s(x) = [h(s)](x) \in [0,1]$ .
    - This is the probability of x conditional on s, given the act h:  $(\Pr(x|s,h))$
- The set of constant acts is

$$H_c = \{ f \in H : f(s) = f(s') \text{ for all } s \in \Omega \}$$

• If  $f,g \in H$ , then the function  $\alpha f + \beta g : \Omega \to \Delta X$  is defined by

$$[\alpha f + \beta g](s) = \alpha f(s) + \beta g(s).$$

Draw a picture to make sure you see how this works.

# Subjective Expected Utility (SEU): Idea

• Starting from preferences, identify a probability distribution  $\mu \in \Delta\Omega$  and a utility index  $v: X \to \mathbf{R}$  such that a utility representation of these preferences is

$$U(h) = \sum_{s \in \Omega} \mu(s) \left[ \sum_{x \in X} v(x) h_s(x) \right]$$

equivalently:

$$f \succsim g \Leftrightarrow \sum_{s \in \Omega} \mu(s) \left[ \sum_{x \in X} v(x) f_s(x) \right] \ge \sum_{s \in \Omega} \mu(s) \left[ \sum_{x \in X} v(x) g_s(x) \right]$$

## Some Accounting Details

• U(h) is the (subjective) expected value of v given act h since

$$\sum_{s} \mu(s) \underbrace{\left[\sum_{x} v(x) h_{s}(x)\right]}_{\mathbf{E}_{h(s)}[v(x)]} = \sum_{x} v(x) \underbrace{\left[\sum_{s} \mu(s) h_{s}(x) h_{s}(x)\right]}_{\mathbf{Pr}(x)}.$$

- $\sum_s \mu(s) h_s(x)$  is the total or unconditional subjective probability of receiving consequence x under the function h, denoted  $\Pr(x)$ .
  - Therefore  $\Pr(x) = \sum_s \Pr(s) \Pr(x|s,h)$ , since  $\mu(s) h_s(x) = \Pr(s) \Pr(x|s,h)$ .

# Last Class: State Dependent Expected Utility

#### Theorem

The preference relation  $\succeq$  on H is complete, transitive, independent and Archimedean if and only if there exists a set of vNM indices  $v_1, \ldots, v_S: X \to \mathbf{R}$  such that. the utility representation is

$$U(h) = \sum_{s \in \Omega} \sum_{x \in X} v_s(x) h_s(x)$$

- ullet This theorem does not define a unique probability distribution over  $\Omega$  (see today's homework).
- To pin down a probability distribution one needs one more assumption:
- The binary relation  $\succeq$  on H is state-independent if, for all non-null states  $s,t\in\Omega$ , for all acts  $h,g\in H$ , and for all lotteries  $\pi,\rho\in\Delta X$ ,

$$(h_{-s},\pi) \succsim (h_{-s},\rho) \quad \Rightarrow \quad (g_{-t},\pi) \succsim (g_{-t},\rho).$$

# **Subjective Expected Utility Theorem**

## Theorem (Expected Utility Theorem, Anscombe and Aumann)

A preference relation  $\succsim$  on H is complete, transitive, independent, Archimedean, and state-independent if and only if there exists a vNM index  $v:X\to \mathbf{R}$  and a probability  $\mu\in\Delta\Omega$  such that

$$U(h) = \sum_{s \in \Omega} \mu(s) \left[ \sum_{x \in X} v(x) h_s(x) \right]$$

is a utility representation of  $\succsim$ . Moreover, this representation is unique up to affine transformations provided at

- least two acts can be ranked strictly.
  - Therefore:

$$h \succsim g \Leftrightarrow \sum_{s \in \Omega} \mu(s) \left[ \sum_{x \in X} v(x) h_s(x) \right] \ge \sum_{s \in \Omega} \mu(s) \left[ \sum_{x \in X} v(x) g_s(x) \right]$$

• The second part says: if there exist  $h, g \in H$  such that  $h \succ g$  and U(h) defined above represents  $\succsim$ , then  $U'(h) = \sum_s \mu'(s) \left[ \sum_x v'(x) h_s(x) \right]$  also represents  $\succsim$  if and only if  $\mu' = \mu$  and v' = av + b for some a > 0 and  $b \in \mathbf{R}$ .

## Remark

• The probability distribution  $\mu$  is unique.

# Subjective Expected Utility Theorem

## Theorem (Expected Utility Theorem, Anscombe and Aumann)

A preference relation  $\succsim$  on H is independent, Archimedean, and state-independent if and only if there exists a vNM index  $v:X\to \mathbf{R}$  and a probability  $\mu\in\Delta\Omega$  such that

$$U(h) = \sum_{s \in \Omega} \mu(s) \left[ \sum_{x \in X} v(x) h_s(x) \right] = \sum_{x \in X} v(x) \underbrace{\left[ \sum_{s \in \Omega} Pr(s) Pr(x|s) \over h_s(x) \right]}_{Pr(x)}$$

is a utility representation of  $\succeq$ . This representation is unique up to affine transformations.

- Preferences identify two things:
  - the utility index over consequences  $v: X \to \mathbf{R}$  and
  - the probability distribution over states  $\mu \in \Delta\Omega$ .
- Different preferences may imply different beliefs  $\mu$  on  $\Omega$ .
- $\bullet$  von Neumann-Morgenstern's Theorem only identifies the utility index v.

For this reason, this is called Subjective Expected Utility.

## **Anscombe & Aumann Proof**

• We will not do it in detail, but here is a breakdown of what would happen.

## Proof.

- First, convert each act h to a vector in  $[0,1]^S$ , by assigning each dimension  $s \in \{1,...,S\}$  a vNM expected utility for  $h_s$ 
  - this gives  $\left[\sum_{x} v(x)h_{s}(x)\right]$  in each state s;
  - monotonicity, a consequence of state-independence, is essential for this step.
- Then, construct an independent and Archimedean preference relation on  $[0,1]^S$  and the measure  $\mu$  is the dual of the affine utility on  $[0,1]^S$ .
- The necessity and uniqueness parts are as usual.

- Notice that this argument involves using the mixture space theorem (or vNM theorem) twice.
  - the first time to find  $\left[\sum_{x} v(x)h_{s}(x)\right]$  in each state s (this is  $\mathbf{E}_{h(s)}[v(x)]$ );
  - ullet the second to find the measure  $\mu$  as the dual of the affine utility on  $[0,1]^{\mathcal{S}}.$

# Savage Subjective Expected Utility

- Anscombe & Aumann assume the existence of an objective randomizing device (preferences are defined over functions from states to objective lotteries).
  - $\bullet$   $\Delta X$  is a convex space and one can apply the mixture space theorem.
- Savage's theory instead considers all uncertainty as subjective: no probabilities are assumed a priori; all probabilities are identified by preferences over basic objects.
  - This comes at the cost of higher mathematical complexity (see Kreps' Theory of Choice).
- ullet  $\Omega$  is the state space, and X is a finite set of (sure) consequences.
- Savage acts are elements of  $X^{\Omega}$ , the space of all functions from  $\Omega$  to X.
- The decision maker has preferences  $\succsim$  over these acts.
- The expected utility representation is something like

$$U(f) = \sum_{x \in X} v(x) \mu(f^{-1}(x)) = \int_{\Omega} v \circ f d\mu = \mathbf{E}_{\mu}[v \circ f],$$

where f is any act,  $v: X \to \mathbf{R}$  is a vNM utility index on consequences, and  $\mu$  is a probability measure on  $\Omega$ .

Utility and probability are fully endogenous.

# **Probability Distributions**

- Economists think of preference as primitive, and derive subjective probability as a piece of a subject's utility function.
- Some statisticians think about probabilities the same way economists think about utility functions.

## **Definition**

A (finitely additive) probability measure on  $\Omega$  is a function  $\mu: 2^{\Omega} \to [0,1]$  such that:

- - ullet They usually assume that  $\mu$  is also countably additive, which is very useful technically.

# **Qualitative Probabilities**

## **Definition**

A binary relation  $\succeq^*$  on  $2^{\Omega}$  is a qualitative probability if:

- $\bullet$   $A \succeq^* \emptyset$ , for all  $A \subseteq \Omega$ ;
- $\circ$   $\Omega \succ^* \emptyset;^a$
- **9**  $A \succeq^* B$  if and only if  $A \cup C \succeq^* B \cup C$ , for all  $A, B, C \subseteq \Omega$  such that  $A \cap C = B \cap C = \emptyset$ .
  - <sup>a</sup>By  $A \succ^* B$ , we mean  $A \succeq^* B$  and not  $B \succeq^* A$ , i.e.  $\succ^*$  is the asymmetric component of  $\succeq^*$ .
  - Think of this as a binary relation  $\succeq^*$  expressing the idea of "more likely than".
  - This is a "personal" characteristic; it varies from individual to individual and can be used to infer the existence of "personal probabilities".

# **Qualitative Probabilities and Probability Measures**

 The relationship between qualitative probability relations and probability measures is similar to the one between preference orders and utility functions.

## Definition

The probability measure  $\mu$  represents the binary relation  $\succeq^*$  on  $2^{\Omega}$  if:

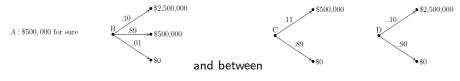
$$\mu(A) \ge \mu(B)$$
 if and only if  $A \succeq^* B$ .

## Result

- All binary relations that are represented by a probability measure are qualitative probabilities.
- The converse is false: not all qualitative probabilities can be represented by a probability measure.
- A stronger version of additivity is required to guarantee representation by a probability measure (see Fishburn 1986 in Statistical Science).
- Our theorems about preferences infer the existence of probabilities. Their theorem about probabilities infer the existence of a preference relation.

## Allais Paradox

The decision maker must choose between the following objective lotteries.



- One reasonable prefrence may rank  $A \succ B$  and  $D \succ C$ .
- Any such preferences violates independence:
- Consider the following lotteries E and F:



F: \$0 for sure

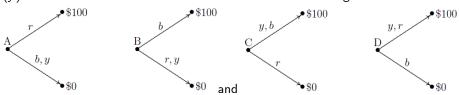
$$0.11A + .89A = A > B = 0.11E + .89A$$

$$0.11A + .89F = C \prec D = 0.11E + 0.89F$$

• But independence says for all  $f, g, h \in H$  and  $\alpha \in (0, 1)$ ,  $f \succeq g \Leftrightarrow \alpha f + (1 - \alpha)h \succeq \alpha g + (1 - \alpha)h$ .

# **Ellseberg Paradox**

An urn contains 90 balls. 30 balls are red (r) and 60 are either blue (b) or yellow (y). One ball will be drawn at random. Consider the following bets.



- Many prefer A to B and C over D. Is this consistent with expected utility?
  - By expected utility, there exists a (subjective) probability distribution  $\mu$  over  $\{r, y, b\}$ .
  - From  $A \succ B$  and  $C \succ D$  we conclude:  $\mu(r)U(\$100) + \underbrace{(1 \mu(r))}_{\mu(b) + \mu(y)}U(\$0) \quad > \quad \mu(b)U(\$100) + \underbrace{(1 \mu(b))}_{\mu(r) + \mu(y)}U(\$0)$   $\Rightarrow \mu(r) \quad > \quad \mu(b)$  and  $(\mu(b) + \mu(y))U(\$100) + \mu(r)U(\$0) \quad > \quad (\mu(r) + \mu(y))U(\$100) + \mu(b)U(\$0)$

 $\Rightarrow \mu(r) < \mu(b)$ 

This contradicts the hypothesis of consistent subjective beliefs.

# (Knightian) Uncertainty vs. Risk

Risk

B R B = 30 R = 70 B + R = 100

Knightian Uncertainty (Ambiguity)

B R  $20 \le B \le 50 \quad 50 \le R \le 80$ B+R=100

 $P(B) = \frac{3}{10}$   $P(R) = \frac{7}{10}$ 

$$P(B) = ?$$
  $P(R) = ?$ 

Some theories that can account for Knightian Uncertainty.

• Gilboa & Schmeidler (weaken independence): Maxmin Expected Utility

$$x \succsim y \Leftrightarrow \min_{\mu \in C} \sum_{s} \mu(s) u(x_s) \ge \min_{\mu \in C} \sum_{s} \mu(s) u(y_s)$$

• Truman Bewley (drop completeness): Expected Utility with Sets

$$x \succsim y \Leftrightarrow \sum_{s} \mu(s)u(x_s) \ge \sum_{s} \mu(s)u(y_s)$$
 for all  $\mu \in C$ 

# **Probability Distribution On Wealth**

- Many applications of expected utility consider preferences on probability distributions of wealth (a continuous variable).
- A probability distribution is characterized by its cumulative distribution function.

## Definition

A cumulative distribution function (cdf)  $F : \mathbf{R} \to [0,1]$  satisfies:

- $x \ge y$  implies  $F(x) \ge F(y)$  (nondecreasing);
- $\lim_{y\downarrow x} F(y) = F(x)$  (right continuous);<sup>a</sup>
- $\lim_{x\to-\infty} F(x) = 0$  and  $\lim_{x\to\infty} F(x) = 1$ .
- <sup>a</sup>Recall that, if it exists,  $\lim_{y \downarrow x} f(y) = \lim_{n \to \infty} f(x + \frac{1}{n})$ .

## Notation

- $\mu_F$  denotes the mean (expected value) of F, i.e.  $\mu_F = \int x \, dF(x)$ .
- ullet  $\delta_x$  is the degenerate distribution function at x; i.e.  $\delta_x$  yields x with certainty:

$$\delta_x(z) = \begin{cases} 0 & \text{if } z < x \\ 1 & \text{if } z \ge x \end{cases}.$$

# **Expected Utility Of Wealth**

- As usual, the space of all distribution functions is convex and one can define preferences on it.
- The utility index  $v : \mathbf{R} \to \mathbf{R}$  is defined over wealth (can be negative).
- The expected utility is the integral of v with respect to F

$$\int v(x)dF(x) = \int vdF$$

• If F is differentiable, the expectation is computed using the density f = F':

$$\int v \, dF = \int v(x)f(x) \, dx.$$

## von Neumann and Morgenstern Expected Utility

Under some axioms, there exists a utility function U on distributions defined as  $U(F) = \int v \, dF$ , for some continuous index  $v : \mathbf{R} \to \mathbf{R}$  over wealth, such that

$$F \succsim G \iff \int v \, dF \ge \int v \, dG$$

- Axioms not important from now on (need a stronger continuity assumption).
- We always think of v as a weakly increasing function (more wealth cannot be bad).

# **Simple Probability**

- A simple probability distribution  $\pi$  on  $X \subset \mathbf{R}$  is specified by
  - a finite subset of X called the support and denoted  $supp(\pi)$ , and
  - for each  $x \in X$ ,  $\pi(x) > 0$  with  $\sum_{x \in supp(\pi)} \pi(x) = 1$
- If we restrict attention to simple probability distributions, then even if X is infinite, only elements with strictly positive probability count.
- The utility index  $v: X \to \mathbf{R}$  is defined over wealth (can be negative).
- The expected utility is the expected value of  $\nu$  with respect to  $\pi$

$$\sum_{x \in supp(\pi)} \pi(x) v(x)$$

- One can write more money is better as: for each  $x,y \in X$  such that x > y then  $\delta_x \succ \delta_y$ .
- We can use this setting to think about many applied choice under uncertainty problems like betting and insurance.

# **Betting**

#### A Gamble

- Suppose an individual is offered the following bet:
  - win ax with probability p

lose x with probability 1-p

• The expected value of this bet is

$$pax + (1 - p)(-x) = [pa + (1 - p)(-1)]x$$

#### **Definition**

A bet is actuarially fair if it has expected value equal to zero (i.e.  $a = \frac{1-p}{p}$ ); it is better than fair if the expected value is positive and worse than fair if it is negative.

# How does she evaluate this bet? Use the expected utility model to find out

• If vNM index is  $v(\cdot)$  and initial wealth is w, expected utility is:

probability of winning 
$$v\left(w+ax\right)$$
 probability of losing  $p$   $v\left(w-x\right)$  utility of wealh if win utility of wealth if lose

• How much does she want of this bet? Answer by finding the optimal x.

# **Betting and Expected Utility**

win ax with probability p

lose x with probability 1-p

The consumer solves

$$\max_{x} pv (w + ax) + (1 - p) v (w - x)$$

The FOC is

$$pav'(w + ax) = (1 - p)v'(w - x)$$

rearranging

$$\frac{pa}{(1-p)} = \frac{v'(w-x)}{v'(w+ax)}$$

- If the bet is fair, the left hand side is 1. Therefore, at an optimum, the right hand side must also be 1.
- If the vNM utility function is strictly increasing and strictly concave (v' > 0 and v'' < 0), the only way a fair bet can satisfy this FOC is to solve

$$w + ax = w - x$$

which implies x = 0.

- She will take no part of a fair bet.
- What happens with a better than fair bet?

## Insurance

#### **An Insurance Problem**

• An individual faces a potential "accident":

the loss is  $\emph{L}$  with probability  $\pi$ 

nothing happens with probability  $1-\pi$ 

## **Definition**

An insurance contract establishes an initial premium P and then reimburses an amount Z if and only if the loss occurs.

## **Definition**

Insurance is actuarially fair when its expected cost is zero; it is less than fair when its expected cost is positive.

• The expected cost (to the individual) of an insurance contract is

$$P - \left[\pi(-Z) + (1-\pi) \begin{pmatrix} 0 \\ \text{loss} \end{pmatrix}\right] = P - \pi Z$$

• Fair insurance means

$$P = \pi Z$$

# **Insurance and Expected Utility**

#### An Insurance Problem

ullet An individual with current wealth W and utility function  $v(\cdot)$  faces a potential accident:

lose  $\emph{L}$  with probability  $\pi$  or lose zero with probability  $1-\pi$ 

• If she buys insurance, her expected utility is

$$\pi v(\underbrace{W-L-P+Z}) + (1-\pi) v(\underbrace{W-P}_{\text{wealth if no loss}})$$

• For example, if the loss is fully reimbursed (Z = L), this becomes  $\pi v(W - P) + (1 - \pi) v(W - P) = v(W - P)$ 

• Will she buy any insurance? Yes if 
$$\underbrace{\pi v (W - L - P + Z) + (1 - \pi) v (W - P)}_{\text{expected utility with insurance}} \ge \underbrace{\pi v (W - L) + (1 - \pi) v (W)}_{\text{expected utility with insurance}}$$

- How much coverage will she want if she buys any coverage?
  - Find the optimal Z.
- The answer depends on the premium set by the insurance company P (which could depend on Z) as well as the curvature of the utility function v.

## **Next Class**

Risk aversion