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General Equilibrium Under Uncertainty
Main Objective
Extend general equilibrium theory to account for time and uncertainty.

We use the structure of the expected utility model, while time is added by
thinking about a tree.
Trade, at least for now, takes place at the very beginning, before anybody
learns anything about the evolution of uncertainty.
Individuals and firms trade state-contingent commodities; those are promises
to deliver or receive different amounts of the goods as time and uncertainty
evolve.

Uncertainty is described by a finite set of states S with s as generic element.
An observable subset of S is called an event. It is a collection of states.

S and ∅ are events by definition.
If A and B are events, then A ∪ B , A ∩ B , and S\A = {s ∈ S : s /∈ A} are also
events.

If A is an event, p(A) ∈ [0, 1] is the probability of A.
p(A ∪ B) = p(A) + p(B) when A ∩ B = ∅.

The probability of an event is the sum of the probabilities of the individual
states in the event, provided these states are themselves events.
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Example: Flipping a Coin

Toss a coint twice:

S = {(H,H) , (H,T ) , (T ,H) , (T ,T )}

The set of of all possible events is the set of all possible subsets of S .

Suppose one observes the outcome of each toss over time; draw the
corresponding tree

The nodes in the figure correspond to what are called dated events.

The dated event (0, {(H ,H), (H ,T ), (T ,H), (T ,T )}) is the situation at time 0
before anything has happened.
The dated events (1, {(H ,H), (H ,T )}) , (1, {(T ,H), (T ,T )}) describe the
situation at time 1 (after one toss).
The dated event (2, {(H ,H)}) , (2, {(H ,T )}) , (2, {(T ,H)}) , (2, {(T ,T )})
describe the situation at time 2 (after both tosses).

One assignes probabilities to the states at time 2, and then use them to figure
out the probabilities of all events.

If the coin is fair, then each state us equally likely, and we can attach numbers
to the probability of each state and each event.
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Example: Flipping a Coin with Partial Information
Toss a coint twice:

S = {(H,H) , (H,T ) , (T ,H) , (T ,T )}
The set of of all possible events is the set of all possible subsets of S .

Suppose that at time 2 one only observes the number of H; these are the
events

{(T ,T )} , {(T ,H) , (H,T )} , and {(H,H)}
The information is different than before, and so shouyld be the tree.

The dated event (0, {(H ,H), (H ,T ), (T ,H), (T ,T )}) is the situation at time 0
before anything has happened.
At time 1 one learns nothing: (1, {(H ,H), (H ,T ), (T ,H), (T ,T )}) is also the
situation at time 1.
The dated events (2, {(H ,H)}) , (2, {(T ,H) , (H ,T )}) , (2, {(T ,T )}) describe
the situation at time 2 (after both tosses).
Draw the tree.

Since we only care about observable things, we only assign the following
probabilites

p (S) = 1, p (∅) = 0, p (T ,T ) , p {(T ,H) ∪ (H,T )} , and p (H,H)

If the coin is fair, then each state us equally likely, and we can attach numbers
to the probability of each state and each event.
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{(T ,T )} , {(T ,H) , (H,T )} , and {(H,H)}
The information is different than before, and so shouyld be the tree.

The dated event (0, {(H ,H), (H ,T ), (T ,H), (T ,T )}) is the situation at time 0
before anything has happened.
At time 1 one learns nothing: (1, {(H ,H), (H ,T ), (T ,H), (T ,T )}) is also the
situation at time 1.
The dated events (2, {(H ,H)}) , (2, {(T ,H) , (H ,T )}) , (2, {(T ,T )}) describe
the situation at time 2 (after both tosses).
Draw the tree.

Since we only care about observable things, we only assign the following
probabilites

p (S) = 1, p (∅) = 0, p (T ,T ) , p {(T ,H) ∪ (H,T )} , and p (H,H)

If the coin is fair, then each state us equally likely, and we can attach numbers
to the probability of each state and each event.



Partitions and Refinements

Definition
A partition of a set S is a set, P, of nonempty subsets of S that are mutually
disjoint and whose union is S :

∀A,B ∈ P A ∩ B = ∅ and
⋃
A∈P

A = S

This is sometimes called an information structure.

Definition
If F and P are partitions of S , F refines P if every A in P is a union of sets in F .
That is, for every A in P, the sets in F that are subsets of A form a partition of A.

Partitions can be used to express the revelation of information over time.
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Information Over Time and Dated Events

Information is revealed over periods t = 0, 1, ...,T and that S is the set of
possible states of the world.

The amount of information available at time t is represented by a partition,
Pt , of S .
As information increases over time, then Pt+1 refines Pt , for all t.
The partition Pt is the set of events that occur up to time t.
Suppose that such a sequence of partitions, Pt , is given, for t = 0, 1, ...,T .

Definition

The set of dated events equals Γ = {(t,A) : 0 ≤ t ≤ T , A ∈ Pt , for all t}}, where
in a pair (t,A) the letter t is the date of occurrence of the event A.

Use Γ to also denote the cardinality of this set.

The special case in which T = 1 corresponds to the “timeless”model of
uncertainty we discussed when talking about individual decision making.
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Contingent Claims and Trade
All decisions are made at time −1: individuals exchange promises to deliver or
receive amounts of the commodities in pre-specified dated events.

Definition
A contingent claim is an agreement to deliver or receive an amount of a specified
commodity in a specified dated event.

The set of all contingent claims is the set of all vectors of quantities of
commodities in all dated events:

RΓ×L =
{
x : x is a function from Γ to RL

}
An element of this set specifies a quantity of some commodity l for each dated
event: x(t,A),l , where (t,A) is a dated event in Γ, and l is one of the L
commodities.

Eg: Sell 3.23 kilos of oranges, on 29 November, if the temperature is
21 Celsius, and it did not rain the previous day.

Trade in the contingent claims occurs at time −1; trades are made against a
single unit of account (money), and no trade occurs after the initial moment.
Agents exchange promises for future delivery or receipt; as time unfolds, only
deliveries and receipts corresponding to realized events will take place.

In periods 0, 1, ...,T , deliveries are made and taken according to the contingent
claims (contracts) purchased and sold at the beginning.
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General Equilibrium Under Uncertainty
Definitions

For each commodity l = 1, .., L, and each dated event in (t,A) ∈ Γ, one unit
of dated event contingent commodity l (t,A) is a title to receive one unit of
good l if and only if event A at time t occurs.

A dated event contingent commodity vector

x ∈ RΓ×L

is a title to receive the commodity vector x(t,A) ∈ RL if and only if dated event
(t,A) occurs.

These are binding promises to obtain certain quantities of each of the goods in
a given state, after that state is realized:

state-contingent commodities are ‘contracts’.

A state-contingent commodity vector is a random variable: it assigns a vector
in RL to each dated event.

REMARK: All State Contingent Commodities Are Traded
We assume that there is a market for each of these state contingent
commodities.
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Preferences Over State Contingent Goods

Expected Utility Preferences Over State Contingent Commodities

Agent i’s consumption set Xi ⊂ RΓ×L
+ contains state-contingent commodities.

Agent i’s preferences %i are over Xi .
Preferences take into account the passage of time time as well as uncertainty.
Typically, later consumption is less “valuable” than earlier consumption, and
less likely events are not as “valuable” as more likely events.

These are ex-ante preferences; they describe what i thinks at time −1 about
what she would like to consume in the future.

i makes trade-offs between random variables; one more unit of good l in dated
event (t,A) versus one less unit of good l ′ in dated event (t ′,A′);

Preferences reflect consumers probability distributions across dated events.

The latter are ‘subjective’probabilities.
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The consumer knows she will be rich in some dated events poor in others.
If ω(t,A)i > ω(t′,A′)i , consumer i is richer in (t,A).

If ω(t,A)i = ω(t,A′)i for any A and A′, the consumer wealth at time t is constant.
If ω(t,A)i = ω(t′,A′)i for any (t ,A) and (t ′,A′), then the consumer wealth is
constant overall.

The aggregate endowment in each state tells us when the economy is richer or
poorer.

If
∑

i ω(t,A)i >
∑

i ω(t′,A′)i then the economy is richer in dated event A.
If
∑

i ω(t,A)i is constant for all A, we say there is no aggregate uncertainty at
time t since the economy’s wealth is constant;

the wealth distribution across consumers, however, can change across events.

The consumer knows her income can fluctuate over time and events, and may
want to take precautions against those fluctuations.

For example, if some states as very unlikely she may have no use for wealth in
those states.
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Trade Under Uncertainty

Consumers know that their wealth may fluctuate.

This is because consumer i’s initial endowment ω(t,A) changes with the (t,A).

maybe i’s endowment is large in one dated event and small in another; or
maybe i’s endowment of desirable goods is large in some dated events and
small in others.

Without ex-ante (time −1) trade, consumers cannot insure themselves against
these income and consumpion fluctuations.

Trade allows for insurance:

consumers can sell so of their initial endowment in some dated events, and use
the proceeds to buy consumption in other states; or
they can sell some of their initial endowment of particular goods in some dated
events in which they will have a lot of those, and use the proceeds to buy more
of other goods in those states;
or they can do a combination of all these things.

Ex-ante markets for state-contingent commodities make these trades possible.
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Production Plans for State Contingent Goods

Like consumers, firms make decisions at time −1 while actual production takes
place from time 0 onward.

They decide what output vector to produce in each dated event.

Production plans are also state-contingent vectors.

Definition

The production possibility set is represented by a set Yj ⊂ RΓ×L for each firm j .

Firms ‘produce’state-contingent commodities.

A y ∈ RΓ×L is a binding promise to buy the corresponding inputs and sell the
corresponding outputs in each dated event.

The firm sells future production and makes a profit that is distributed to
consumers.

Shares in the firms are not state contingent, nor are they traded, but this is
just to keep notation simple.
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Markets and Prices in an Arrow-Debreu Economy
In the Arrow-Debreu model each state-contingent commodity is traded.

Arrow-Debreu Markets
There are Γ× S markets open at date −1.
In these markets, a trade specifies various amounts of goods to be delivered in
various states:

there is a price for each good in each state

pl(t,A) is the price agreed upon now for one unit of good l to be delivered in
dated event (t ,A).

Agents trade promises to receive, or give, amounts of good l if and when event
A occurs at time t.

In finance lingo, these are “forward”markets where “futures” are traded.

Trades of these ‘contracts’are agreed upon now by all parties involved.
Even though decisions are made now, the ‘physical’exchange of goods only
happens after uncertainty is resolved.
This system of payments and deliveries is well defined only if everyone knows
which state occurred: symmetric information.

We prevent situations where i says “This is event A” and j says “No, this is
event A′”; if that happens, state-contingent markets may not function properly.
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In finance lingo, these are “forward”markets where “futures” are traded.

Trades of these ‘contracts’are agreed upon now by all parties involved.
Even though decisions are made now, the ‘physical’exchange of goods only
happens after uncertainty is resolved.
This system of payments and deliveries is well defined only if everyone knows
which state occurred: symmetric information.

We prevent situations where i says “This is event A” and j says “No, this is
event A′”; if that happens, state-contingent markets may not function properly.
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Budget Constraint
A consumer’s income is given by the current value of (i) the state-contingent
commodities she owns and (ii) her share of state-contingent profits:

She sells her future endowment.
She receives a share of profits generated by firms’sales of future production.

The consumer pays the current cost of state-contingent commodities.

Budget Set

Bi (p, ωi ) =


xi ∈ Xi :

∑
(t,A)∈Γ

L∑
l=1
pl(t,A)xl(t,A)i

≤∑
(t,A)∈Γ

L∑
l=1
pl(t,A)ωl(t,A)i +

J∑
j=1

θji
∑

(t,A)∈Γ

L∑
l=1
plsyl(t,A)j


The consumer cannot spend more than her income.

Although physical exchanges are contingent on the realized state, payments
are not: they are made today.

Promises must be kept: Individuals cannot go bankrupt.
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Budget Constraint Notation
Budget Constraint Notation
Consumer i cannot spend more than she has:

overall expenditure︷ ︸︸ ︷
∑

(t,A)∈Γ

expenditure
in (t,A)︷ ︸︸ ︷

L∑
l=1

pl(t,A)xl(t,A)i ≤

overall revenue︷ ︸︸ ︷
∑

(t,A)∈Γ

revenue from
endowment in (t,A)︷ ︸︸ ︷
L∑
l=1

pl(t,A)ωl(t,A)i +
J∑
j=1

θji

j profits︷ ︸︸ ︷
∑

(t,A)∈Γ

j profits
in (t,A)︷ ︸︸ ︷

L∑
l=1

pl(t,A)yl(t,A)j


=

 ∑
(t,A)∈Γ

p(t,A) · x(t,A)i ≤
∑

(t,A)∈Γ

p(t,A) · ω(t,A)i +
J∑
j=1

θji
∑

(t,A)∈Γ

p(t,A) · y(t,A)j


=

p · xi ≤ p · ωi +
J∑
j=1

θji (p · yj )


where p(t,A) ∈ RL+ for each s, and p ∈ RΓ×L

+ .



Summary

The Economy
An Arrow-Debreu economy is described by a set Γ of states of the world and:

for each agent i : a consumption set Xi ⊂ RΓ×L
+ , a preference relation %i on Xi ,

an endowment vector ωi ∈ RΓ×L
+ , and shares θji ≥ 0 denoting her ownership of

each firm;
for each firm j : a production possibility set Yj ⊂ RΓ×L.

Individual characteristics (endowment, preferences, and production) can
depend on the realized date event.

Remark
Relative to the original general equilibirum model, this is nothing but a change of
labels.
There are L “physical” commodities, but Γ× L commodities are traded. This
model, then, corresponds to the original GE setup with L replaced by Γ× L.

For this to work one assumes that there exist competitive markets for all date
event contingent commodities. We say this economy has complete markets.
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An Arrow-Debreu Economy

For all j = 1, ..., J, firm j production set is Yj ⊂ RΓ×N .

For all i = 1, ..., I , consumer i’s preferences are defined over RΓ×N
+

For all i = 1, ..., I , consumer i’s initial endowment is ωi ∈ RΓ×N
+ .

Arrow-Debreu (complete markets) Economy

In an Arrow-Debreu (complete markets) economy trading is possible in all
contingent claims.

Remark
With this description of an Economy, all that is different from before is the
dimensionality of consumption and production spaces. The definitions of
competitive equilibrium and Pareto optimality stay the same.

This is very helpful because we know that, under the appropriate conditions,
the two welfare theorems apply.
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Robinson With Dated Events

There are two periods, and two equally likely states in the second period.

Thus S = {s , s ′}, and the events are {s} and {s ′}.

Hence the dated events thus are (0, {s, s ′}), (1, {s}), and (1, {s ′}).
The consumer is endowed with one unit of the only good in period 0, and
none in period 1:

ω =
(
ω(0,S), ω(1,s), ω(1,s ′)

)
= (1, 0, 0)

In each state, the consumer’s utility for consumption of x units of the good is
log(x); the overall utility is the sum of the utility from consumption in period
0 and the expected utility from consumption in period 1:

u
(
x(0,S), x(1,s), x(1,s ′)

)
= log x(0,S) +

1
2
log x(1,s) +

1
2
log x(1,s ′)

The firm’s output is
√
−y(0,S) in dated event (1, s), and −y(0,S) in dated

event (1, s ′), where −y(0, S) is the firm’s input of the good in period 0:

Y
{
y(0,S), y(1,s), y(1,s ′) : y(0,S) ≤ 0, y(1,s) ≤

√
−y(0,S), y(1,s ′) ≤ −y(0,S)

}
The time zero good can be used to produce goods in the future.
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none in period 1:

ω =
(
ω(0,S), ω(1,s), ω(1,s ′)

)
= (1, 0, 0)

In each state, the consumer’s utility for consumption of x units of the good is
log(x); the overall utility is the sum of the utility from consumption in period
0 and the expected utility from consumption in period 1:

u
(
x(0,S), x(1,s), x(1,s ′)

)
= log x(0,S) +

1
2
log x(1,s) +

1
2
log x(1,s ′)

The firm’s output is
√
−y(0,S) in dated event (1, s), and −y(0,S) in dated

event (1, s ′), where −y(0, S) is the firm’s input of the good in period 0:

Y
{
y(0,S), y(1,s), y(1,s ′) : y(0,S) ≤ 0, y(1,s) ≤

√
−y(0,S), y(1,s ′) ≤ −y(0,S)

}
The time zero good can be used to produce goods in the future.



Robinson With Dated Events: Pareto Optimum

A Pareto optimal allocation solves the problem

max
x(0,S),x(1,s),x(1,s′)

[
log x(0,S) +

1
2
log x(1,s) +

1
2
log x(1,s ′)

]
subject to

y(0,S) ≤ 0, 0 ≤ x(0,S) ≤ 1+ y(0,S)

0 ≤ x(1,s) ≤
√
−y(0,S), 0 ≤ x(1,s ′) ≤ −y(0,S)

A little work (that you should replicate at home) shows that the solution is

x(0,S) =
4
7
, x(1,s) = y(1,s ′) =

√
3
7
, x(1,s) = y(1,s ′) =

3
7
, y(0,S) = −3

7
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Robinson With Dated Events: Equilibrium
The competitive equilibrium (with p(0,S) = 1) can be found using the first
order conditions of the consumer’s utility maximization problem.

For x(0,S):
∂u(x(0,S),x(1,s),x(1,s′))

∂x(0,S)
= λp(0,S) ⇒ 1

x(0,S)
= λp(0,S) ⇒ λ = 7

4

For x(1,a):
∂u(x(0,S),x(1,s),x(1,s′))

∂x(1,s)
= λp(1,a) ⇒ 1

2
1

x(1,s)
= λp(1,s) ⇒ p(1,s) = 2

7

√
7
3

For x(1,b):
∂u(x(0,S),x(1,s),x(1,s′))

∂x(1,s′)
= λp(1,b) ⇒ 1

2
1

x(1,s′)
= λp(1,s′) ⇒ p(1,s′) = 2

3

Therefore the competitive equilibirum is

x∗ =
(
x∗(0,S), x

∗
(1,s), x

∗
(1,s ′)

)
=

(
4
7
,

√
3
7
,
3
7

)

y∗ =
(
y∗(0,S), y

∗
(1,s), y

∗
(1,s ′)

)
=

(
−3
7
,

√
3
7
,
3
7

)

p∗ =
(
p∗(0,S), p

∗
(1,s), p

∗
(1,s ′)

)
=

(
1,
2
7

√
7
3
,
2
3

)
Why is the good more valueable in state s ′ even though the two states are
equilly likely?
How do we interpret the numbers for x∗ and y∗?
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General Equilibrium Under Uncertainty Alone

Suppose there is no time and there are S states.

The set of all vectors of contingent claims is RS×L

One can think of each commodity bundle as an S-dimensional random variable
(a random vector).

If there is only one commodity, L = 1, one typically thinks of it as money.

Rather than labeling dated events as (0, {s}) for each s ∈ S we may as well
drop the 0 and just label each event by the realized state s.



Edgeworth Box Examples

Notation
Two consumer, two equally likely states,

uA (xsA, xs ′A) =
1
2
log xsA +

1
2
log xs ′A and ωA = (2, 0)

uB (xsB , xs ′B ) =
1
2
log xsB +

1
2
log xs ′B and ωB = (0, 2)

What is the CE where the price of the good (money) in state s equals one?

Since the utility functions are Cobb-Douglas, the consumers spends half of
their income on each good:

x∗sA = 1, x∗s ′A =
1
ps ′
, and x∗sB = ps ′ , x∗s ′B = 1

From the supply equal demand equation for the good in state s we then get
1+ ps ′ = 2 which yields p∗s ′ = 1.
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Edgeworth Box Examples

Notation
Suppose we have the same economy but

uA (·) =
1
4
log xsA +

3
4
log xs ′A and uB (·) =

1
2
log xsB +

1
2
log xs ′B

Similar reasning gives that consumer A spends 14 of her income on the good in
state s, so

x∗sA =
1
2
, x∗s ′A =

3
2
1
ps ′
, and x∗sB = ps ′ , x∗s ′B = 1

From the supply equal demand equation for the good in state s we then get
1
2 + ps ′ = 2 which yields p∗s ′ = 3

2 .

As one consumer gives more weight to state s ′, the equilibrium allocation and
prices change.

the good in state s ′ is more valuable.
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Notation
Suppose we have the same economy but

uA (·) =
1
4
log xsA +

3
4
log xs ′A and uB (·) =

1
4
log xsB +

3
4
log xs ′B

Similar reasoning gives that consumer A spends 14 of her income on the good
in state s, so

x∗sA =
1
2
, x∗s ′A =

3
2
1
ps ′
, and x∗sB =

1
2
ps ′ , x∗s ′B =

3
2

From the supply equal demand equation for good s we then get 12 + 1
2ps ′ = 2

which yields p∗s ′ = 3.

When both consumers agree one state is three times more likely than the
other, the price of money in that state is three times the price of money in the
other state.
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Next Week

Focus on the model in which there is no time.

Introduce financial markets.


