
BREAKING WAVES AND SOLITARY WAVES TO THE
ROTATION-TWO-COMPONENT CAMASSA-HOLM SYSTEM

ROBIN MING CHEN, LILI FAN, HONGJUN GAO, AND YUE LIU

ABSTRACT. In this paper, we consider two types of solutions of the rotation-two-component
Camassa-Holm (R2CH) system, a model in the equatorial water waves with the effect of the Cori-
olis force. The first type of solutions exhibits finite time singularity in the sense of wave-breaking.
We perform a refined analysis based on the local structure of the dynamics to provide some criteria
that leads to the blow-up of solutions. The other type of solutions we study is the solitary waves. We
classify various localized solitary wave solutions for the R2CH system. In addition to those smooth
solitary wave solutions, we show that there are solitary waves with singularities, like peakons and
cuspons, depending on the values of the rotating parameter Ω and the balance index σ. We also
prove that horizontally symmetric weak solutions of this model must be traveling waves.
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1. INTRODUCTION

In this paper we study the following rotation-two-component Camassa-Holm (R2CH) system
(see [20] for the derivation of the model)

{
ut − uxxt −Aux + 3uux = σ(2uxuxx + uuxxx)− (1− 2ΩA)ρρx + 2Ωρ(ρu)x,

ρt + (ρu)x = 0,
(1.1)

where u(t, x) is the horizontal fluid velocity, ρ(t, x) is related to the free surface elevation from
equilibrium, the parameter A characterizes a linear underlying shear flow, the dimensionless con-
stant σ is a parameter which provides the competition/balance in fluid convection between nonlin-
ear steepening and amplification due to stretching, and Ω characterizes the angular velocity of the
Earth’s rotation. In practice, Ω is small (≈ 73·10−6 rad/s). We will always assume that 0 < Ω < 1

4

and 1− 2ΩA > 0 throughout this article.
System (1.1) is strongly related to several models describing the motion of waves at the free

surface of a shallow water under the influence of gravity. In absence of the Earth’s rotation, i.e.,
Ω = 0, system (1.1) becomes the generalized two-component Camassa-Holm system [7]

{
ut − uxxt −Aux + 3uux = σ(2uxuxx + uuxxx)− ρρx,
ρt + (ρu)x = 0.

(1.2)
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Further taking σ = 1, (1.2) recovers the standard two-component integrable Camassa-Holm sys-
tem [16, 31] {

ut − uxxt −Aux + 3uux + ρρx = 2uxuxx + uuxxx,

ρt + (ρu)x = 0.
(1.3)

Moreover, in the case ρ = 0, (1.2) is reduced to the Camassa-Holm (CH) equation [4, 5, 17, 21]:

ut + 2ωux − utxx + 3uux = 2uxuxx + uuxxx, (1.4)

where ω = A/2 is a constant related to the critical shallow water wave speed.
One of the motivations for the discovery of the CH equation is the quest for model equations

that can exhibit wave-breaking phenomenon that the well-known KdV equations does not have. In
fact, theH1 norm of the CH solution remains finite, and hence classical solutions can only develop
singularities in finite time in the form of wave-breaking (i.e., a solution that remains bounded while
its slope becomes unbounded in finite time) [12, 13, 14, 15]. Another remarkable property the CH
equation possesses is the presence of multi-solitons consisting of a train of peaked solitary waves
(called “peakons") [4, 5, 6]. Peakons interact in a similar way to that of the KdV (smooth) solitons,
but wave-breaking may occur during head-on collision of a peakon-antipeakon pair (cf. [15, 32]).

The above two distinctive features are also captured by the two-component system (1.2). One
can refer to [7, 16, 19, 22, 23, 24, 33] and the references therein for details. The goal of this paper
is to understand whether the two properties persist under the influence of the Coriolis force.

The wave-breaking phenomenon of system (1.1) has already been investigated in [20]. Utilizing
the transport structure of (1.1) it is shown in [20] that the solution blows up at time T if and only
if limt↑T− {infx∈R ux(t, x)} = −∞. Unlike many other quasi-linear model equations, a notable
difference in the blow-up analysis for (1.1) stems from the cubic term Ωρ(ρu)x, which fails to
be controlled by the conservation laws. Using the transport equation of ρ, such a term can be
rewritten as −Ω(ρ2)t. This suggests that instead of considering solely the evolution of u, one can
keep track of the dynamics of K = u + Ω(1 − ∂2

x)−1(ρ2). Note that from the conservation law
(2.2), ux blows up if and only if Kx blows up. But the advantage of considering K is that in the
equation for K and Kx, the cubic terms can be bounded by the conservation laws, which enables
one to carry out a standard procedure to reach a Riccati type inequality for Kx

d

dt
Kx . −K2

x + C,

and thus by choosing Kx sufficiently negative initially, the corresponding solution blows up in
finite time, cf. [20, Theorem 3.4]. A crucial ingredient in this argument is the use of the “global"
information of solutions (like the conservation laws) in deriving various estimates. However the
“local" structure of solutions is underappreciated. On the other hand, the non-diffusive nature of
the system indicates that the local structure of data may strongly affect the the evolution of the
solutions, in particular, the blow-ups. This has recently been evidenced in a class of CH-type
equations in a series of works of Brandolese and Cortez [1, 2, 3], and later extended to some other
quasilinear model equations with higher order nonlinearities [9, 10]. One of the main ideas lies
in understanding of the interplay between the solution and its gradient. For (1.1), this amounts to
tracking the dynamics ofK±Kx along the characteristics. Due to the nonlocal character involved
in K, the conservation law is still needed to establish the convolution estimate. However it is now
much apparent to see how rotation affects the wave-breaking. In particular, when the Coriolis
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effect is turned off our wave-breaking criterion recovers the one for the classical CH equation in
[2], cf. Theorem 2.1.

Another issue we want to address here is concerned with the solitary wave solutions of (1.1),
i.e. solutions of the form

(u(x, t), ρ(x, t)) = (ϕ(x− ct), ρ̃(x− ct)) , c ∈ R

for functions ϕ and ρ̃ : R → R such that ϕ → 0 and ρ̃ → 1 as |x| → ∞. In the study of
the CH traveling waves it was observed that both peaked and cusped traveling waves exist [29].
Later Lenells [26, 27] used a suitable framework for weak solutions to classify all weak traveling
waves of the CH equation. For the two-component CH system (1.3), it was shown in [16, 30, 33]
that all solitary waves are smooth, symmetric and monotonic away from the crest, and decays
exponentially far out. In [25], the authors considered a modified two-component CH equation
which allows dependence on average density as well as pointwise density and a linear dispersion
is added to the first equation of the system. They showed that the modified system admits peaked
solitary wave solution in both u and ρ. For the generalized two-component CH system (1.2),
the balance parameter σ leads to the possibility of existence of singular solitary waves (see [8]).
Moreover, it is shown that when σ ≤ 1, all smooth solitary waves are orbitally stable.

However it is unclear whether the R2CH system (1.1) supports solitary waves with singularities.
Using a natural weak formulation of the R2CH system (1.1), see (3.10) when σ = 0 and (3.16)
when σ 6= 0, we can define exactly in what sense the peaked and cusped solitary waves are
solutions. In fact, it turns out that the equation for ϕ takes the form

ϕ2
x = R(ϕ)

whereR is a rational function. A standard phase-plane analysis determines the behavior of solution
near the zeros and poles of R. In fact, peaked solitary waves exist when R has a removable pole
and cusped solitary waves correspond to when R has a non-removable pole. Due to the added
rotational term, the numerator of R contains a quadratic polynomial f(ϕ) whose root distribution
is quite complicated. By analyzing each possible case carefully, we show here peaked and cusped
solitary waves do exist for (1.1) and provide an implicit formula for the peaked solitary waves.

From the classification of the solitary waves for the R2CH system, we find that the solutions
include very exotic shapes. But when restricted to smooth solutions, the situation is clearer. In
particular, the smooth solutions are all symmetric around the crest. This raises the intriguing
question whether the classes of traveling and symmetric waves are identical. Adapting the idea of
[18], we are able to give an affirmative answer for the two-component system (1.1).

The remainder of this paper is organized as follows. In Section 2 we give a wave-breaking
criterion (Theorem 2.1) which addresses the local structure of the solutions and also indicates
explicitly how rotation is involved. We further provide an upper bound of ux along each charac-
teristics emanating from a vanishing point of ρ0. In Section 3 we introduce the weak formulation
of system (1.1) and define the class of solitary waves with singularities. In Section 4, we classify
various solitary wave solutions. In Section 5, we demonstrate that an x-symmetric weak solution
of system (1.1) must be a traveling wave.
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2. BLOW UP FOR ROTATIONAL 2CH

When σ = 1, the R2CH system reads{
ut − uxxt −Aux + 3uux = (2uxuxx + uuxxx)− (1− 2ΩA)ρρx + 2Ωρ(ρu)x,

ρt + (ρu)x = 0.
(2.1)

The above system admits an H1 × L2 conservation law

E(t) =
1

2

∫
R

(
u2 + u2

x + (1− 2ΩA)(ρ− 1)2
)
. (2.2)

The blow-up criterion for the R2CH system (2.1) can be formulated as

Lemma 2.1. [20] Assume that 1− 2ΩA > 0. Let (u0, ρ0 − 1) ∈ Hs ×Hs−1 with s > 3/2. Then
the corresponding solution (u, ρ) to system (2.1) with initial data (u0, ρ0) blows up in finite time
T <∞ if and only if

lim
t↑T−

{
inf
x∈R

ux(t, x)

}
= −∞. (2.3)

Now, we give a condition which can guarantees wave-breaking in finite time.

Theorem 2.1. Assume 1−2ΩA > 0. Let (u, ρ) be the solution of (2.1) with initial data (u0, ρ0−
1) ∈ Hs ×Hs−1 with s > 3/2 and T be the maximal time of existence. Assume there exists a x0

such that
ρ0(x0) = 0, (2.4)

and

u0,x(x0) < −
∣∣∣∣u0(x0)− A

2

∣∣∣∣− 4ΩC1 − 4

√
ΩC1

√
E(0), (2.5)

where

C1 =
3E(0)

4(1− 2ΩA)
+

3

2
. (2.6)

Then the corresponding solution (u, ρ) to system (2.1) blows up in finite time. Moreover, the
blow-up time T ∗ satisfies

T ∗ ≤ 8√
K2

0,x(x0)−
(
K0(x0)− A

2

)2 , (2.7)

where
K0(x) = u0(x) + Ω(1− ∂2

x)−1(ρ2)(0, x).

Remark 2.1. Note that in the case when Ω = 0, the condition (2.5) on the velocity u reduces to
the same one as for the classical Camassa-Holm equation with linear dispersion (see [2, Corollary
2.4]). Here the appearance of the the Coriolis effect brings up delicate interaction between the
surface and the velocity. To control the additional terms in the blow-up analysis we are forced to
use the conservation law of E(t), as can be seen from the following proof.

Proof of Theorem 2.1. By a simple density argument, we need only to prove this theorem for
s ≥ 3. We follow the characteristics of the R2CH system to generate finite-time blow-up. Hence
we define the characteristics q(t, x) as{

qt(t, x) = u(t, q(t, x)),

q(0, x) = x,
x ∈ R, t ∈ [0, T ). (2.8)
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One can easily check that q ∈ C1([0, T )× R,R) with qx(t, x) > 0 for all (t, x) ∈ [0, T )× R.
Denote p(x) = 1

2e
−|x| the fundamental solution of 1−∂2

x on R, and define the two convolution
operators p+, p− as

p+ ∗ f(x) =
e−x

2

∫ x

−∞
eyf(y)dy,

p− ∗ f(x) =
ex

2

∫ ∞
x

e−yf(y)dy.

(2.9)

Then we have the relation

p = p+ + p−, px = p− − p+. (2.10)

It is easily checked that the derivatives of u and ux along the characteristics can be obtained
from the following computation

ut + uux =− px ∗
(
−Au+ u2 +

1

2
u2
x +

1− 2ΩA

2
ρ2 − Ωρ2u

)
+ Ωp ∗ (ρ2ux), (2.11)

uxt + uuxx =− 1

2
u2
x + u2 +

1− 2ΩA

2
ρ2 − Ωuρ2 +Apxx ∗ u

− p ∗
(
u2 +

1

2
u2
x +

1− 2ΩA

2
ρ2 − Ωρ2u

)
+ Ωpx ∗ (ρ2ux). (2.12)

For wave-breaking, one would like to choose some initial data such that ux approaches −∞
in finite time. The difficulty in the analysis of the dynamics of ux sources from the last term
px ∗ (ρ2ux), which fails to be controlled by the conservation laws. Our idea is to absorb this term
by considering the dynamics of the quantity

K := u+ Ωp ∗ ρ2 (2.13)

together with its derivative Kx. A direct computation shows that the dynamics of K and Kx are
given by [20]

Kt + uKx =− px ∗
(
u2 +

1

2
u2
x

)
− 1− 2ΩA

2
px ∗ ρ2 +Apx ∗ u+ Ωupx ∗ ρ2, (2.14)

Kxt + uKxx =− 1

2
u2
x + u2 − p ∗

(
u2 +

1

2
u2
x

)
+

1− 2ΩA− 2Ωu

2
ρ2 + Ωup ∗ ρ2

+Ap ∗ u−Au− 1− 2ΩA

2
p ∗ ρ2. (2.15)

For x0 ∈ R given in the theorem, let

γ(t) = ρ(t, q(t, x0)), t ∈ [0, T ), (2.16)

where q(t, x0) is defined by (2.8). Along with the trajectory of q(t, x), we have

γ′(t) = −γux, t ∈ [0, T ). (2.17)

From assumption (2.4) we know that γ(0) = ρ0(x0) = 0 and hence equation (2.17) implies

γ(t) ≡ 0, for t ∈ [0, T ). (2.18)

From now on we make an abuse of notation by denoting

u(t) = u(t, q(t, x0)), ux(t) = ux(t, q(t, x0)), K(t) = K(t, q(t, x0)), Kx(t) = Kx(t, q(t, x0)).
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We further denote ′ the material derivative ∂t + u∂x along the characteristics q(t, x0). Then from
(2.14), (2.15) and (2.18) we see that

(K +Kx)′ = −2p− ∗
(
u2 −Au+

1

2
u2
x

)
− 1

2
u2
x + u2 −Au− (1− 2ΩA− 2Ωu)p− ∗ ρ2,

(K −Kx)′ = 2p+ ∗
(
u2 −Au+

1

2
u2
x

)
+

1

2
u2
x − u2 +Au+ (1− 2ΩA− 2Ωu)p+ ∗ ρ2.

Applying [2, Lemma 3.1 (1)] with m = −A2/4 and K = 1 we have the following convolution
estimates

p± ∗
(
u2 −Au+

1

2
u2
x

)
≥ 1

4

(
u2 −Au− A2

4

)
. (2.19)

This in turn provides the bounds for (K ±Kx)′ as

(K +Kx)′ ≤ −1

2

[
u2
x −

(
u− A

2

)2
]
− (1− 2ΩA− 2Ωu)p− ∗ ρ2,

(K −Kx)′ ≥ 1

2

[
u2
x −

(
u− A

2

)2
]

+ (1− 2ΩA− 2Ωu)p+ ∗ ρ2.

Using the fact that

(K ±Kx)′ =

[(
K − A

2

)
±Kx

]′
, (1− 2ΩA)p± ∗ ρ2 ≥ 0

we can further deduce that[(
K − A

2

)
+Kx

]′
≤ −1

2

[
u2
x −

(
u− A

2

)2
]

+ 2Ωup− ∗ ρ2,

[(
K − A

2

)
−Kx

]′
≥ 1

2

[
u2
x −

(
u− A

2

)2
]
− 2Ωup+ ∗ ρ2.

The convolution terms in the above estimates can be bounded by

0 ≤ p± ∗ ρ2 = p± ∗ (ρ− 1)2 + 2p± ∗ (ρ− 1) + p± ∗ 1

≤ ‖p±‖L∞‖ρ− 1‖2L2 + 2‖p±‖L2‖ρ− 1‖L2 + 1

≤ 3

4
‖ρ− 1‖2L2 +

3

2
≤ 3E(0)

4(1− 2ΩA)
+

3

2
= C1,

(2.20)

where we have used the definition (2.6) and the fact that

‖p±‖L∞ =
1

2
, ‖p±‖L2 =

1

2
√

2
, ‖ρ− 1‖2L2 ≤

E(0)

1− 2ΩA
.

From (2.20) we can also bound

|up± ∗ ρ2| ≤ ‖u‖L∞‖p± ∗ ρ2‖L∞ ≤
√
E(0)C1. (2.21)

Putting together, we can further conclude that[(
K − A

2

)
+Kx

]′
≤ −1

2

[
u2
x −

(
u− A

2

)2
]

+ 2ΩC1

√
E(0),

[(
K − A

2

)
−Kx

]′
≥ 1

2

[
u2
x −

(
u− A

2

)2
]
− 2ΩC1

√
E(0).

(2.22)
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In addition, it follows from (2.10), (2.13) and (2.20) that(
u− A

2

)
+ ux ≤

(
K − A

2

)
+Kx ≤

(
u− A

2

)
+ ux + 2ΩC1,(

u− A

2

)
− ux ≤

(
K − A

2

)
−Kx ≤

(
u− A

2

)
− ux + 2ΩC1.

(2.23)

Now if the assumption (2.5) holds, we have that

1

2

[
u2
x −

(
u− A

2

)2
]
− 2ΩC1

√
E(0) > 0,

which implies, from (2.22), that[(
K − A

2

)
+Kx

]′
(0) < 0,

[(
K − A

2

)
−Kx

]′
(0) > 0. (2.24)

Hence at least for a short time t, K(t) + Kx(t) is non-increasing and K(t) − Kx(t) is non-
decreasing. From (2.5), the definition (2.13) of K and (2.23) we know that(

K(0)− A

2

)
+Kx(0) < −4

√
ΩC1

√
E(0)− 2ΩC1,(

K(0)− A

2

)
−Kx(0) > 4

√
ΩC1

√
E(0) + 4ΩC1.

(2.25)

The short time monotonicity (2.24) indicates that the above bounds continue to hold, at least for a
short time. Therefore going back to u and ux using (2.23) again we have that(

u(t)− A

2

)
+ ux(t) < −4

√
ΩC1

√
E(0)− 2ΩC1,(

u(t)− A

2

)
− ux(t) > 4

√
ΩC1

√
E(0) + 2ΩC1,

(2.26)

which, when plugging in to (2.22), shows that the monotonicity of
(
K − A

2

)
± Kx persists and

thus the bounds of the form in (2.25) continue to hold for later time. Therefore the estimates
(2.26) still hold true, pushing the monotonicity even further in time. Hence, we always have
K(t)− A

2 +Kx(t) < 0 is non-increasing, and K(t)− A
2 −Kx(t) > 0 is non-decreasing, which

allows us to define the function

h(t) =
√
K2
x(t)− [K(t)−A/2]2 > 0.

Computing the derivative of h leads to

h′(t) =
−(K −A/2 +Kx)′(K −A/2−Kx)− (K −A/2 +Kx)(K −A/2−Kx)′

2
√
K2
x(t)− [K(t)−A/2]2

≥

{
1

2

[
u2
x −

(
u− A

2

)2
]
− 2ΩC1

√
E(0)

}
(K −A/2−Kx)− (K −A/2 +Kx)

2
√
K2
x(t)− [K(t)−A/2]

≥ 1

2

[
u2
x −

(
u− A

2

)2
]
− 2ΩC1

√
E(0) > 0,

where we have used the fact that
(K −A/2−Kx)− (K −A/2 +Kx)

2
≥ h.
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From (2.23) and (2.26) it follows that

0 <

(
K − A

2

)
−Kx ≤

(
u− A

2

)
− ux + 2ΩC1 < 2

[(
u− A

2

)
− ux

]
,

0 < −
(
K − A

2

)
−Kx ≤ −

(
u− A

2

)
− ux.

Therefore

K2
x −

(
K − A

2

)2

≤ 2

[
u2
x −

(
u− A

2

)2
]
,

and hence

h′ ≥ 1

4
h2 − 2ΩC1

√
E(0). (2.27)

Evaluating (2.23) at initial time we have(
K(0)− A

2

)
+Kx(0) ≤

(
u0(x0)− A

2

)
+ u0,x(x0) + 2ΩC1 < −4

√
ΩC1

√
E(0),(

K(0)− A

2

)
−Kx(0) ≥

(
u0(x0)− A

2

)
− u0,x(x0) > 4

√
ΩC1

√
E(0).

Therefore we know that

h2(0) > 16ΩC1

√
E(0).

Therefore from (2.27) we see that h is increasing and in fact we have

h′ ≥ 1

8
h2.

This is enough to show that h blows up in finite time. Indeed, we can solve to get

h(t) ≥ 8h(0)

8− th(0)
.

Therefore we see that

h(t)→ +∞ as t→ 8

h(0)
.

On the other hand, since

h(t) ≤ −Kx = −ux − Ωpx ∗ ρ2,

and from (2.20) we know that

h(t) ≤ −ux + 2C1.

Therefore −ux must blow up at time T ∗ which satisfies

T ∗ ≤ 8

h(0)
, (2.28)

completing the proof. �

It is known from Lemma 2.1 that the solution of system (2.1) breaks down in finite time T if
and only if

lim
t→T−

inf
x∈R

ux(t, x) = −∞.

An interesting question is whether ux has an upper bound. The investigation on this issue gives
the following result.
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Proposition 2.1. Assume that 1 − 2ΩA > 0. Let (u0, ρ0 − 1) ∈ Hs × Hs−1 with s > 3/2,
and T > 0 be the maximal time of existence of the solution (u, ρ) to system (2.1) with initial data
(u0, ρ0). Then for x ∈ Λ := {x ∈ R : ρ0(x) = 0}, we have that ux(t, q(t, x)) is bounded from
above for t ∈ [0, T ).

Proof. Similar to the arguments in the beginning of the proof of Theorem 2.1, we need only to
prove this theorem for s ≥ 3. Given x ∈ R, let

M1(t) = Kx(t, q(t, x)), γ(t) = ρ(t, q(t, x)), t ∈ [0, T ), (2.29)

where q(t, x) is defined by (2.8). Along the trajectory of q(t, x), we have

γ′(t) = −γux, t ∈ [0, T ). (2.30)

For any x ∈ Λ, equation (2.30) implies

γ(t) = ρ(t, q(t, x)) = 0, for t ∈ [0, T ). (2.31)

Then (2.15) has the form

M ′1(t) = −1

2
(M1 − Ω∂xp ∗ ρ2)2 + f(t, q(t, x)) (2.32)

with

f = Ωup ∗ ρ2 +A∂2
xp ∗ u+ u2 − p ∗

(
u2 +

1

2
u2
x +

1− 2ΩA

2
ρ2

)
, (2.33)

for x ∈ Λ, where “ ′ ” is the derivative with respect to t. And we can get the upper bound of f

f ≤ C2
E(0), (2.34)

where CE(0) denotes a constant that depends only on E(0). Given any x ∈ R, let us define

P (t) = M1(t)− ‖u0,x‖L∞ − 2ΩC1 − 2CE(0),

where C1 is defined by (2.6). Observing P (t) is a C1-differentiable function in [0, t) and satisfies

P (0) = M1(0)− ‖u0,x‖L∞ − 2ΩC1 − 2CE(0)

≤ u0,x(x) + Ωpx ∗ ρ2(0, x)− ‖u0,x‖L∞ − 2ΩC1 ≤ 0,

where we have used the estimate (2.20). We now claim

P (t) ≤ 0, ∀ t ∈ [0, T ). (2.35)

Assume the contrary that there is t0 ∈ [0, T ) such that P (t0) > 0. Let

t1 = max{t < t0;P (t) = 0}.

Then P (t1) = 0 and P ′(t1) ≥ 0, or equivalently,

M1(t1) = ‖u0,x‖L∞ + 2ΩC1 + 2CE(0) (2.36)

and

M ′1(t1) ≥ 0. (2.37)
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By (2.32), (2.34) and (2.36), it then follows that

M1
′(t1) = −1

2
(M1(t1)− Ω∂xp ∗ ρ2)2 + f(t1, q(t1, x))

≤ −1

2

(
‖u0,x‖L∞ + 2CE(0)

)2
+ C2

E(0) < 0,

which is a contradiction to (2.37). This verifies the estimate in (2.35). Therefore, for any x such
that ρ(x) = 0

sup
t∈[0,T )

{ux(t, q(t, x)) + Ω∂xp ∗ ρ2(t, q(t, x))} ≤ 2ΩC1 + 2CE(0) + ‖u0,x‖L∞ ,

which implies
sup
t∈[0,T )

ux(t, q(t, x)) ≤ ‖u0,x‖L∞ + 4ΩC1 + 2CE(0).

This completes the proof of Proposition 2.1. �

3. WEAK FORMULATIONS

In this section, we derive the weak formulations for system (1.1), introduce the notion of various
types of solitary waves, and derive the ODEs for the solitary waves.

Since ρ→ 1 as |x| → ∞ in (1.1), we define ρ = 1 + η with η → 0 as |x| → ∞, and hence we
can rewrite system (1.1) as

ut − utxx −Aux + 3uux − σ(2uxuxx + uuxxx)

+(1− 2ΩA)(1 + η)ηx − 2Ω(1 + η) ((1 + η)u)x = 0,

ηt + ((1 + η)u)x = 0.

(3.1)

Using the kernel p defined in the previous section, we can further rewrite system (3.1) in a weak
form as

ut + σuux =

−px ∗
[
−Au+ 3−σ

2 u2 + σ
2u

2
x + 1−2ΩA

2 (1 + η)2 − 2Ω∂−1
x ((1 + η) ((1 + η)u)x)

]
,

ηt + ((1 + η)u)x = 0.

(3.2)

This way we can define a weak solution to (1.1) as follows.

Definition 3.1. Assume that ~u = (u, η) ∈ X(R) where X(R) = C(R+, H
1(R) × L2(R)), and

that ~u satisfies
∫ ∫

R+×R[u(1− ∂2
x)ψt + Ω(1 + η)2ψt

−(Au− 3
2u

2 − σ
2u

2
x − 1−2ΩA

2 (1 + η)2)ψx − σ
2u

2ψxxx]dtdx = 0,∫ ∫
R+×R[ηψt + (1 + η)uψx]dtdx = 0.

(3.3)

for all ψ ∈ C∞0 (R+ × R). Then ~u(t, x) is a weak solution to the system (3.1).

Now we give the definitions of solitary waves, peakons and cuspons of (3.1).

Definition 3.2. A solitary wave of (3.1) is a nontrivial traveling wave solution of (3.1) of the form
(ϕ(x− ct), η(x− ct)) ∈ H1 ×H1with c ∈ R and ϕ, η vanishing at infinity.

Remark 3.1. Here we demand more regularity of η for a solitary wave than for a general solution
due to the continuity requirement of η in the subsequent discussions, which is also important to
obtain Proposition 3.1.
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Definition 3.3. [26] We say that a continuous function ϕ has a peak at x if ϕ is smooth locally on
either side of x and

0 6= lim
y↑x

ϕx(y) = − lim
y↓x

ϕx(y) 6= ±∞.

Wave profiles with peaks are called peaked waves or peakons.

Definition 3.4. [26] We say that a continuous function ϕ has a cusp at x if ϕ is smooth locally on
either side of x and

lim
y↑x

ϕx(y) = − lim
y↓x

ϕx(y) = ±∞.

Wave profiles with cusps are called cusped waves or cuspons.

It is easily seen that a solitary wave (ϕ, η) with speed c ∈ R satisfies
[
−(c+A)ϕ+ cϕxx +

3

2
ϕ2 − σϕϕxx −

σ

2
ϕ2
x +

1− 2ΩA− 2Ωc

2
(1 + η)2

]
x

= 0,

(−cη + (1 + η)ϕ)x = 0,

(3.4)

where we have used ((1 + η)ϕ)x = cηx in the first equation.
Integrating the system we get

−(c+A)ϕ+ cϕxx + 3
2ϕ

2

= σϕϕxx + σ
2ϕ

2
x − 1−2ΩA−2Ωc

2 (1 + η)2 + 1−2ΩA−2Ωc
2 , in D′(R).

−cη + (1 + η)ϕ = 0.

(3.5)

The fact that the second equation of the above system holds in a strong sense comes from the
regularity of ϕ and η.

Our next goal is to decouple system (3.5) to derive a closed ODE for ϕ. From the first equation
in (3.5) we see that if the coefficient of (1 + η)2 vanishes then the resulting system is decoupled.
Hence we split the case into two.

3.1. When 1− 2ΩA− 2Ωc = 0. In this case system (3.5) becomes an ODE for ϕ solely and an
algebraic equation for η. Moreover, the equation for ϕ is reminiscent of the case of compressible
elastic rod equation [27] and the Camassa-Holm equation with a linear dispersion [26], where a
very detailed classification of traveling waves has been given. Repeating the analysis performed
in [26, 27] carefully one can recover the classification for solitary waves for the ϕ component. In
particular, for the interest of the peaked waves we find that peaked ϕ-solitary wave exists only
when

σ = 1, A = 0, 1− 2Ωc = 0, (3.6)

which takes the form
ϕ(x) = ce−|x|.

However when one turns to the η component the second equation in (3.5) leads to

η =
ϕ

c− ϕ
,

and thus when ϕ exhibits a peak singularity then η given from the above formula leaves H1, and
therefore in this case peaked waves are also excluded.

Given that the classification of solitary waves in the case when 1 − 2ΩA − 2Ωc = 0 can be
done following [26, 27], our main effort will be to gain information about the solitary waves with
an emphasis on peaked solitary waves
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3.2. when 1 − 2ΩA − 2Ωc 6= 0. In this case one needs to solve the second equation in (3.5) for
η and then plug the result into the first one. To do so, we need the following

Proposition 3.1. If (ϕ, η) is a solitary wave of (3.1) for some c ∈ R, then c 6= 0 and ϕ(x) 6= c

for any x ∈ R.

Proof. Since the constant 1−2ΩA−2Ωc
2 6= 0, the proof follows closely to the one in [8, Proposition

2.4], and hence we omit the details. �

Using Proposition 3.1 we obtain from the second equation of (3.5) that

η =
ϕ

c− ϕ
. (3.7)

Plugging this into the first equation of (3.5), we obtain a single equation for the unknown ϕ

− (c+A)ϕ+ cϕxx +
3

2
ϕ2

= σϕϕxx +
σ

2
ϕ2
x −

1− 2ΩA− 2Ωc

2

c2

(c− ϕ)2
+

1− 2ΩA− 2Ωc

2
, in D′ (R). (3.8)

Now we discuss (3.8) in the cases σ = 0 and σ 6= 0 separately.
Case A: When σ = 0, (3.8) becomes

ϕxx =
c+A

c
ϕ− 3

2c
ϕ2 +

1− 2ΩA− 2Ωc

2c
− 1− 2ΩA− 2Ωc

2

c2

c(c− ϕ)2
. (3.9)

Since ϕ ∈ H1 and from Proposition 3.1, c 6= 0, and c− ϕ 6= 0, we know that |c− ϕ| is bounded
away from 0. Hence from the standard local regularity theory to elliptic equations we see that
ϕ ∈ C∞ and so is η. Therefore in this case all solitary waves are smooth. Multiplying (3.9) by ϕx
and integrating on (−∞, x], we get

ϕ2
x =

ϕ2
[
(c− ϕ)2 +A(c− ϕ)− (1− 2ΩA− 2Ωc)

]
c(c− ϕ)

=
ϕ2
[
ϕ2 − (2c+A)ϕ+ c2 +Ac− (1− 2ΩA− 2Ωc)

]
c(c− ϕ)

: =
ϕ2f(ϕ)

c(c− ϕ)
:= G(ϕ), (3.10)

where

f(ϕ) = ϕ2 − (2c+A)ϕ+ c2 +Ac− (1− 2ΩA− 2Ωc). (3.11)

Case B: When σ 6= 0, we can rewrite (3.8) as((
ϕ− c

σ

)2
)
xx

= ϕ2
x −

2(c+A)

σ
ϕ+

3

σ
ϕ2 − 1− 2ΩA− 2Ωc

σ

+
1− 2ΩA− 2Ωc

σ

c2

(c− ϕ)2
, in D′(R). (3.12)

The following lemma concerns the regularity of the solitary waves when σ 6= 0. The idea is
inspired by the study of the travelling waves of Camassa-Holm equation [26].
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Lemma 3.1. Let σ 6= 0 and (ϕ, η) is a solitary wave of (3.1). Then(
ϕ− c

σ

)k
∈ Cj

(
R \ ϕ−1

( c
σ

))
, for k ≥ 2j . (3.13)

Therefore

ϕ ∈ C∞
(
R \ ϕ−1

( c
σ

))
.

Proof. From Proposition 3.1 we know that c 6= 0 and ϕ 6= c and thus ϕ satisfies (3.12). Let
v = ϕ− c

σ and denote

r(v) =
3

σ

(
v +

c

σ

)2
− 2(c+A)

σ

(
v +

c

σ

)
− 1− 2ΩA− 2Ωc

σ
.

Then r(v) is a polynomial in v. By the fact that ϕ− c 6= 0, we get that

σ − 1

σ
c− v = c− ϕ 6= 0. (3.14)

Then v satisfies

(v2)xx = v2
x + r(v) +

(1− 2ΩA− 2Ωc)c2

σ

(
σ − 1

σ
c− v

)−2

.

Using the assumption, one have (v2)xx ∈ L1
loc(R). Hence (v2)x is absolutely continuous and

hence
v2 ∈ C1(R), and then v ∈ C1

(
R\v−1(0)

)
.

Hence from (3.14) and that v + c
σ ∈ H

1(R) ⊂ C(R) we know(
σ − 1

σ
c− v

)−2

∈ C(R) ∩ C1
(
R\v−1(0)

)
.

Moreover,

(vk)xx = (kvk−1vx)x =
k

2

(
vk−2(v2)x

)
x

= k(k − 2)vk−2v2
x +

k

2
vk−2(v2)xx

= k(k − 2)vk−2v2
x +

k

2
vk−2

[
v2
x + r(v) +

(1− 2ΩA− 2Ωc)c2

σ

(
σ − 1

σ
c− v

)−2
]

= k

(
k − 3

2

)
vk−2v2

x +
k

2
vk−2r(v) +

k(1− 2ΩA− 2Ωc)c2

2σ
vk−2

(
σ − 1

σ
c− v

)−2

.

(3.15)

For k = 3, the right-hand side of (3.15) is in L1
loc(R), which implies that

v3 ∈ C1(R).

For k ≥ 4, we infer from (3.15) that

(vk)xx =
k

4

(
k − 3

2

)
vk−4

[
(v2)x

]2
+
k

2
vk−2r(v)

+
k(1− 2ΩA− 2Ωc)c2

2σ
vk−2

(
σ − 1

σ
c− v

)−2

∈ C(R).

Therefore vk ∈ C2(R) for k ≥ 4.
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For k ≥ 8 we know from the above that

v4, vk−4, vk−2, vk−2r(v) ∈ C2(R), and vk−2

(
σ − 1

σ
c− v

)−2

∈ C2
(
R\v−1(0)

)
.

Moreover we have

vk−2v2
x =

1

4
(v4)x

1

k − 4
(vk−4)x ∈ C1(R).

Hence from (3.15) we conclude that

vk ∈ C3
(
R\v−1(0)

)
, k ≥ 8.

Applying the same argument to higher values of k we prove that vk ∈ Cj
(
R\v−1(0)

)
for

k ≥ 2j , and hence (3.13). �

Denote x = min{x : ϕ(x) = c
σ} (if ϕ 6= c

σ for all x then let x = +∞), then x ≤ +∞.
By Lemma 3.1, a solitary wave ϕ is smooth on (−∞, x) and (3.8) holds pointwise on (−∞, x).
Multiplying (3.12) by ϕx and integrating on (−∞, x] for x < x to get

ϕ2
x =

ϕ2
[
(c− ϕ)2 +A(c− ϕ)− (1− 2ΩA− 2Ωc)

]
(c− ϕ)(c− σϕ)

=
ϕ2
[
ϕ2 − (2c+A)ϕ+ c2 +Ac− (1− 2ΩA− 2Ωc)

]
(c− ϕ)(c− σϕ)

=
ϕ2f(ϕ)

(c− ϕ)(c− σϕ)
:= F (ϕ), (3.16)

where f(ϕ) is defined by (3.11).
Putting together, we obtain the ODEs for ϕ as follows.

ϕ2
x =

{
G(ϕ), when σ = 0,

F (ϕ), when σ 6= 0.
(3.17)

Since both G and F are rational functions of ϕ, a simple phase-plane analysis determines the
behavior of solutions near the zeros and poles of G and F . We will first look at the case when
σ 6= 0.

Case 1. When ϕ approaches a simple zero m of F (ϕ), it follows that F (m) = 0 and F ′(m) 6=
0. Then the solution ϕ of (3.16) satisfies

ϕ2
x = (ϕ−m)F ′(m) +O((ϕ−m)2) as ϕ→ m,

Hence

ϕ(x) = m+
1

4
(x− x0)2F

′
(m) +O((x− x0)4) as x→ x0, (3.18)

where ϕ(x0) = m.

Case 2. If F (ϕ) has a double zero at ϕ = 0, so that F ′(0) = 0 and F ′′(0) > 0, then

ϕ2
x = ϕ2F ′′(0) +O(ϕ3) as ϕ→ 0,

and we get

ϕ(x) v αexp(−|x|
√
F ′′(0)) as |x| → +∞, (3.19)

for some constant α. Thus ϕ→ 0 exponentially as |x| → ∞.
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Case 3. If ϕ approaches a simple pole ϕ(x0) = c
σ (when σ 6= 1). Then

ϕ(x)− c

σ
= β1|x− x0|2/3 +O((x− x0)4/3) as x→ x0, (3.20)

and

ϕx =


2

3
β1|x− x0|−1/3 +O((x− x0)1/3) as x ↓ x0,

−2

3
β1|x− x0|−1/3 +O((x− x0)1/3) as x ↑ x0,

(3.21)

for some constant β1 > 0. In particular, whenever F (ϕ) has a pole, the solution ϕ has a cusp.
Case 4. Peaked solitary waves occur when ϕ suddenly changes direction: ϕx → −ϕx according

to (3.16).
When σ = 0, similar conclusions in Case 1 and Case 2 are also valid for G(ϕ).
From looking at the forms of G and F , cf. (3.10) and (3.16), we see that the only term that

remains complicated is f(ϕ) in the numerator. The following discussion enlists all possible distri-
bution of the roots of f .
(a) f(ϕ) has no zeros: If{

c > 1
2Ω − 2Ω > 0,

4Ω− 2
√

4Ω2 + 2Ωc− 1 < A < 4Ω + 2
√

4Ω2 + 2Ωc− 1,
(3.22)

where we have used the fact that 0 < Ω < 1
4 , then

f(ϕ) > 0.

And a simple calculation shows that
2c+A

2
> c+ 2Ω−

√
4Ω2 + 2Ωc− 1 > 0. (3.23)

(b) f(ϕ) has a double zero: If {
c ≥ 1

2Ω − 2Ω > 0,

A = 4Ω± 2
√

4Ω2 + 2Ωc− 1,
(3.24)

then
A2 − 8ΩA+ 4(1− 2Ωc) = 0.

Hence

f(ϕ) =

(
ϕ− 2c+A

2

)2

, (3.25)

with
2c+A

2
> 0. (3.26)

(c) f(ϕ) has two simple zeros: If

c <
1

2Ω
− 2Ω, (3.27)

or {
c > 1

2Ω − 2Ω,

A < 4Ω− 2
√

4Ω2 + 2Ωc− 1, or A > 4Ω + 2
√

4Ω2 + 2Ωc− 1,
(3.28)

then
A2 − 8ΩA+ 4(1− 2Ωc) > 0.
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Hence
f(ϕ) = (ϕ−M1)(ϕ−M2), (3.29)

where

M1 =
(2c+A)−

√
A2 − 8ΩA+ 4(1− 2Ωc)

2
, (3.30)

M2 =
(2c+A) +

√
A2 − 8ΩA+ 4(1− 2Ωc)

2
, (3.31)

and M1 < M2.

4. CLASSIFICATION OF SOLITARY WAVES WHEN 1− 2ΩA− 2Ωc 6= 0

With the results established in the previous section, we are in position to classify all solitary
waves of system (1.1) for various σ, under the assumption that 1− 2ΩA− 2Ωc 6= 0.

4.1. The case σ = 0. From the discussion in Section 3 Case A, we know that all solitary waves
are smooth in this case. As ϕ = 0 is a double zero of G(ϕ), we know from the Section 3 Case 2
that the solitary waves decay exponentially to 0 as |x| → ∞. Hence there must exist

mϕ = min
x∈R

ϕ(x), Mϕ = max
x∈R

ϕ(x),

with mϕMϕ < 0, and we have ϕx → 0 as ϕ → mϕ or Mϕ. Hence (3.10) shows that G(mϕ) =

G(Mϕ) = 0. Thus f(ϕ) must have two simple zeros or a double zero.
On the other hand, combining (3.10) with the decay property of ϕ at infinity and ϕ < c, we

know that necessarily

M1M2 = c2 +Ac− (1− 2ΩA− 2Ωc) = (c−K1)(c−K2) ≥ 0, (4.1)

where M1, M2 are defined by (3.30) and (3.31) and

K1 =
−(A+ 2Ω) +

√
(A− 2Ω)2 + 4

2
=
−(A+ 2Ω) +

√
(A+ 2Ω)2 + 4(1− 2ΩA)

2
,

K2 =
−(A+ 2Ω)−

√
(A− 2Ω)2 + 4

2
=
−(A+ 2Ω)−

√
(A+ 2Ω)2 + 4(1− 2ΩA)

2

(4.2)

are the two roots of the equation c2 +Ac− (1− 2ΩA− 2Ωc) = 0. Since 1− 2ΩA > 0, we know
K1 > 0 > K2.

Combining (4.1) with ϕ 6= c and M1 < M2, the fact that 0 is the double zero of G(ϕ), and the
conclusion in Section 2 Case 2, we have that

(i) if c > 0, then 0 ≤M1 < c or M2 ≤ 0;
(ii) if c < 0, then 0 ≥M2 > c or M1 ≥ 0.

Furthermore, one can prove that:

Theorem 4.1. Suppose that 1− 2ΩA− 2Ωc 6= 0. When σ = 0, and
(I) if {

c ≥ 1
2Ω − 2Ω > 0,

A = 4Ω± 2
√

4Ω2 + 2Ωc− 1,

i.e., from Section 3 case (b), f(ϕ) has a double zero, then (3.1) does not admit a solitary solution
ϕ < 0. Besides, (3.1) also does not admit a solitary solution ϕ > 0 for A > 0.
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(II) if

c <
1

2Ω
− 2Ω, (4.3)

or {
c > 1

2Ω − 2Ω,

A < 4Ω− 2
√

4Ω2 + 2Ωc− 1, or A > 4Ω + 2
√

4Ω2 + 2Ωc− 1,
(4.4)

i.e., from Section 3 case (c), f(ϕ) has two simple zeros, then (3.1) admits a solitary solution if and
only if

(i) c > M1 > 0 or M2 < 0, when c > 0, or

(ii) 0 > M2 > c or M1 > 0, when c < 0.

Moreover, all solitary waves are smooth.

Proof. The regularity has been discussed in Section 3 Case A. So we will just focus on the exis-
tence part.

First, we consider the case (I). In this case, we have

ϕ2
x =

ϕ2(ϕ− 2c+A
2 )2

c(c− ϕ)
= G(ϕ) (4.5)

and

G′(ϕ) =
cϕ(2c+A

2 − ϕ)
(
3ϕ2 − (4c+ 2c+A

2 )ϕ+ c(2c+A)
)

c2(c− ϕ)2
. (4.6)

From (4.5), we know that ϕ cannot oscillate around zero near infinity. Consider the following
two cases:
Case 1: ϕ(x) < 0 near −∞. Then there is some x0 sufficiently negative so that ϕ(x0) = −ε < 0,

with ε > 0 sufficiently small, and ϕx(x0) < 0. From standard ODE theory, we can generate a
unique local solution ϕ(x) on [x0 − L, x0 + L] for some L > 0. By (4.6), we have G′(ϕ) < 0

for ϕ < 0. Therefore G(ϕ) decreases for ϕ < 0. Because ϕx(x0) < 0, ϕ decreases near x0, so
G(ϕ) increases near x0. Hence by (4.6), ϕx decreases near x0, and then ϕ and ϕx both decrease
on [x0 − L, x0 + L]. Since

√
G(ϕ) is local Lipschitz in ϕ for ϕ < 0, we can continue the local

solution to all of R and obtain that ϕ(x) → −∞ as x → ∞, which fails to be in H1. Thus there
is no solitary wave in this case.
Case 2: ϕ(x) > 0 near −∞. Then there is some x0 sufficiently negative so that ϕ(x0) = ε > 0,

with ε > 0 sufficiently small, and ϕx(x0) > 0. From standard ODE theory, we can generate a
unique local solution ϕ(x) on [x0 − L, x0 + L] for some L > 0. If A > 0, then 2c+A

2 > c. Thus
G(ϕ) = ϕ2

x > 0 for 0 < ϕ < c, which contradicts the fact that for the smooth solitary waves there
must exist some points such that G(mϕ) = G(Mϕ) = 0. Thus there are no solitary waves in this
case.

Now we turn our attention to the case (II). Then we need to show that

M1M2 = (c−K1)(c−K2) > 0, (4.7)

where f(ϕ) and K1,K2 are defined by (3.11) and (4.2) respectively.
If c = K1, then (3.10) becomes

ϕ2
x =
−ϕ3(2K1 +A− ϕ)

K1(K1 − ϕ)
=
−ϕ3(K1 −K2 − 2Ω− ϕ)

K1(K1 − ϕ)
:= G1(ϕ), (4.8)
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where

2K1 +A =
√

(A− 2Ω)2 + 4− 2Ω ≥ 2− 2Ω > 0.

Hence we see that ϕ(x) < 0 near −∞. Because ϕ(x) → 0 as x → −∞, there is some x0

sufficiently negative so that ϕ(x0) = −ε < 0, with ε > 0 sufficiently small, and ϕx(x0) < 0.

From standard ODE theory, we can generate a unique local solution ϕ(x) on [x0 − L, x0 + L] for
some L > 0. Since K1 > 0 > K2, we have[

−ϕ3(2K1 +A− ϕ)

(K1 − ϕ)

]′
=
ϕ2[−3ϕ2 + 2(4K1 +A)ϕ− 3K1(2K1 +A)]

(K1 − ϕ)2
< 0, (4.9)

for ϕ < 0. Therefore G1(ϕ) decreases for ϕ < 0. A similar argument as Case 1 shows there is no
solitary wave in this case.

Similarly we can prove that when c = K2 there is no solitary wave. The proof of this theorem
is thus completed. �

4.2. The case σ 6= 0. Now we give the following theorem on the existence of solitary waves of
(3.1) for σ 6= 0.

Theorem 4.2. Suppose 1− 2ΩA− 2Ωc 6= 0. For σ 6= 0 we have
(I) If {

c > 1
2Ω − 2Ω > 0,

4Ω− 2
√

4Ω2 + 2Ωc− 1 < A < 4Ω + 2
√

4Ω2 + 2Ωc− 1,

i.e., from Section 3 Case (a), f(ϕ) has no zeros, then we have:

I-1. If σ > 1, then there is cusped solitary wave ϕ > 0 with maxx∈R ϕ(x) = c
σ .

I-2. If σ < 0, then there is anticusped (the solution profile has a cusp pointing downward)
solitary wave ϕ < 0 with minx∈R ϕ(x) = c

σ .

(II) If {
c ≥ 1

2Ω − 2Ω > 0,

A = 4Ω± 2
√

4Ω2 + 2Ωc− 1,

i.e., from Section 3 Case (b), f(ϕ) has a double zero, we have

II-1. If σ > 1, then there is a smooth solitary wave with maxx∈R ϕ(x) = c
σ = 2c+A

2 and a
cusped solitary wave ϕ > 0 with maxx∈R ϕ(x) = c

σ <
2c+A

2 .

II-2. If 0 < σ ≤ 1, there is no solitary wave ϕ < 0, and no solitary wave ϕ > 0 when A ≥ 0.
II-3. If σ < 0, then there is an anticusped solitary wave ϕ < 0 with minx∈R ϕ(x) = c

σ and
there is no solitary wave ϕ > 0 when A ≥ 0.

(III) If

c <
1

2Ω
− 2Ω, or

{
c > 1

2Ω − 2Ω,

A < 4Ω− 2
√

4Ω2 + 2Ωc− 1 or A > 4Ω + 2
√

4Ω2 + 2Ωc− 1

i.e., from Section 3 Case (c), f(ϕ) has two simple zeros, then we have
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III-1. When c = K1 and σ < 0, there is an anticusped solitary waveϕ < 0 with minx∈R ϕ(x) =
K1
σ .

III-2. When c = K2 and σ < 0, there is a cusped solitary wave ϕ > 0 with maxx∈R ϕ(x) =
K2
σ .

III-3. When M1 < M2 < 0 < c,
(1) if σ < 0, then ϕ < 0. Moreover, we have the following.
If M2 >

c
σ , then there is a smooth solitary wave with minx∈R ϕ(x) = M2;

if M2 = c
σ , then there is a peaked solitary wave with minx∈R ϕ(x) = M2 = c

σ ;
if M2 <

c
σ , then there is an anticusped solitary wave with minx∈R ϕ(x) = c

σ ;
(2) if 0 < σ ≤ 1, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = M2;
(3) if σ > 1, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = M2 and a cusped

solitary wave ϕ > 0 with maxx∈R ϕ(x) = c
σ .

III-4. When 0 < M1 < M2 < c or 0 < M1 < c < M2,
(1) if σ < 0, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = M1 and an anticusped

solitary wave ϕ < 0 with minx∈R ϕ(x) = c
σ ;

(2) if 0 < σ ≤ 1, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = M1;
(3) if σ > 1, then ϕ > 0. Moreover, we have the following.
If M1 <

c
σ , then there is a smooth solitary wave with maxx∈R ϕ(x) = M1;

if M1 = c
σ , then there is a peaked solitary wave with maxx∈R ϕ(x) = M1 = c

σ ;
if M1 >

c
σ , then there is a cusped solitary wave with maxx∈R ϕ(x) = c

σ .

III-5. When 0 < c < M1 < M2,
(1) if σ > 1, then there is a cusped solitary wave ϕ > 0 with maxx∈R ϕ(x) = c

σ ;
(2) if σ < 0, then there is an anticusped solitary wave ϕ < 0 with minx∈R ϕ(x) = c

σ .

III-6. When M1 < M2 < c < 0,
(1) if σ > 1, then there is an anticusped solitary wave ϕ < 0 with minx∈R ϕ(x) = c

σ ;
(2) if σ < 0, then there is a cusped solitary wave ϕ < 0 with minx∈R ϕ(x) = c

σ .

III-7. When M1 < c < M2 < 0 or c < M1 < M2 < 0,
(1) if σ < 0, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = M2 and a cusped solitary

wave ϕ > 0 with maxx∈R ϕ(x) = c
σ ;

(2) if 0 < σ ≤ 1, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = M2;
(3) if σ > 1, then ϕ < 0. Moreover, we have the following.
If M2 >

c
σ , then there is a smooth solitary wave with minx∈R ϕ(x) = M2;

if M1 = c
σ , then there is a peaked solitary wave with minx∈R ϕ(x) = M2 = c

σ ;
if M1 <

c
σ , then there is a cusped solitary wave with minx∈R ϕ(x) = c

σ .

III-8. When c < 0 < M1 < M2,
(1) if σ < 0, then ϕ > 0. Moreover, we have the following.
If M1 <

c
σ , then there is a smooth solitary wave with maxx∈R ϕ(x) = M1;

if M1 = c
σ , then there is a peaked solitary wave with maxx∈R ϕ(x) = M1 = c

σ ;
if M1 >

c
σ , then there is a cusped solitary wave with maxx∈R ϕ(x) = c

σ ;
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(2) if 0 < σ ≤ 1, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = M1;
(3) if σ > 1, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = M1 and an anticusped

solitary wave ϕ < 0 with minx∈R ϕ(x) = c
σ .

Note that f(ϕ), M1,M2 andK1,K2 are defined by (3.11), (3.30), (3.31) and (4.2) respectively.
Each kind of the above solitary waves is unique and even up to translation and all solitary waves
decay exponentially to zero at infinity.

Proof. We will discuss the cases (I), (II) and (III) respectively.
(I) First, we deal with the case (I), i.e., f(ϕ) > 0 for all ϕ(x) ∈ R. In this case

ϕ2
x =

ϕ2f(ϕ)

(c− ϕ)(c− σϕ)
= F (ϕ), (4.10)

The discussion in the beginning of Section 4.1 shows that there are no smooth solitary waves in
this case and since f(ϕ) has no zeros for ϕ ∈ R, there can only exist cuspons or anticuspons.
From (4.10) we see that ϕ cannot oscillate around zero near infinity.

(i) If ϕ(x) > 0 near −∞. Then there is some x0 sufficiently negative so that ϕ(x0) = ε > 0,

with ε sufficiently small, and ϕx(x0) > 0. If σ > 1,
√
F (ϕ) is locally Lipschitz in ϕ for 0 ≤ ϕ ≤

c
σ < c, then c

σ becomes a pole of F (ϕ). And for σ ≤ 1, cσ is not a pole of F (ϕ). Thus we obtain
we obtain a solitary wave with a cusp at ϕ = c

σ for σ > 1 by using (3.20) and (3.21).
(ii) For the case ϕ(x) < 0 near −∞, we obtain a solitary wave with an anticusp at ϕ = c

σ for
σ < 0 by using (3.20) and (3.21).

(II) Next, we deal with the case (II), i.e., f(ϕ) has a double zero. In this case

ϕ2
x =

ϕ2(ϕ− 2c+A
2 )2

(c− ϕ)(c− σϕ)
= F (ϕ). (4.11)

From (4.11) we see that ϕ cannot oscillate around zero near infinity. We will only consider the
case ϕ(x) > 0 near −∞, the case ϕ(x) < 0 near −∞ can be handled in a similar way

If ϕ(x) > 0 near −∞. Then there is some x0 sufficiently negative so that ϕ(x0) = ε > 0, with
ε sufficiently small, and ϕx(x0) > 0.

(i) If σ > 1,
√
F (ϕ) is locally Lipschitz in ϕ for 0 ≤ ϕ ≤ c

σ < c. If c
σ = 2c+A

2 , then

ϕ2
x = ϕ2(c−σϕ)

σ2(c−ϕ)
. Hence the smooth solution can be constructed with the maximum height ϕ =

2c+A
2 = c

σ . Since ϕ = 0 is still a double zero of F (ϕ), we still have the exponential decay here.
If c

σ < 2c+A
2 , then c

σ becomes a pole of F (ϕ). Using (3.20) and (3.21), we obtain a solitary
wave with a cusp at ϕ = c

σ and decays exponentially.
(ii) In the case σ ≤ 1, one can use the arguments similar as the proof of Theorem 4.1 to get

there would be no solitary wave in the case A ≥ 0.

(III) Finally, we deal with the case (III), i.e., f(ϕ) has two simple zero. In this case

ϕ2
x =

ϕ2(ϕ−M1)(ϕ−M2)

(c− ϕ)(c− σϕ)
= F (ϕ). (4.12)

From (4.12) and the decay of ϕ(x) at infinity, we know that solitary waves exist if condition
(4.1) holds. First we deal with the case M1M2 = (c − K1)(c − K2) = 0, where M1,M2 and
K1,K2 are defined by (3.30), (3.31) and (4.2) respectively.
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If c = K1, then (4.12) becomes

ϕ2
x =

−ϕ3(2K1 +A− ϕ)

(K1 − ϕ)(K1 − σϕ)
:= F1(ϕ). (4.13)

Then we find that ϕ(x) < 0 near −∞. Hence we can find some x0 sufficiently negative
with ϕ(x0) = −ε < 0 and ϕx(x0) < 0, and we can construct unique local solution ϕ(x) on
[x0 − L, x0 + L] for some L > 0.

If σ < 0, we see that 1
K1−σϕ is decreasing when K1/σ < ϕ ≤ 0. Combining this with (4.9) we

know that F1(ϕ) decreases for ϕ < 0. Because ϕx(x0) < 0, ϕ(x) decreases near x0, so that F1(ϕ)

increases near x0. Hence from (4.13), ϕx(x) decreases near x0. Then ϕ and ϕx both decreases on
[x0 − L, x0 + L]. Since

√
F1(ϕ) is locally Lipschitz in ϕ for K1/σ < ϕ ≤ 0, we can easily

continue the local solution to (−∞, x0 − L] with ϕ(x)→ 0 as x→ −∞. As for x ≥ x0 + L, we
can solve the initial valued problem{

ψx = −
√
F1(ϕ),

ψ(x0 + L) = ϕ(x0 + L)

all the way until ψ = K1/σ, which is a simple pole of F1(ϕ). By (3.20) and (3.21), we deduce
that we can construct an anticusped solution with a cusp singularity at ϕ = K1/σ.

If σ > 0, then a direct computation shows

F ′1(ϕ) =
(2K1 +A− ϕ)

(
−σϕ2 + 2K1(1 + σ)ϕ− 3K2

1

)
(K1 − ϕ)2(K1 − σϕ)2

+
ϕ(K1 − ϕ)(K1 − σϕ)

(K1 − ϕ)2(K1 − σϕ)2
< 0

(4.14)

for ϕ < 0. A similar argument as Theorem 4.1 shows that there is no solitary wave in this case.
Similarly, we conclude that when c = K2, there is no solitary wave when σ > 0. When σ < 0,

there is an cusped solution with a cusp singularity at K2/σ.

Now we deal with the case M1M2 = (c − K1)(c − K2) > 0. Recalling that M1 < M2, 8
cases are there we will consider. We will only look at 0 < M1 < M2 < c. The other cases can be
handled in a very similar way. Applying (4.12), we know that ϕ can not oscillate around zero near
infinity. Let us consider the following two cases.
Case 1: ϕ(x) > 0 near −∞. Then there is some x0 sufficiently negative so that ϕ(x0) = ε > 0,

with ε sufficiently small, and ϕx(x0) > 0.

(i) When σ ≤ 1,
√
F (ϕ) is locally Lipschitz in ϕ for 0 ≤ ϕ < M1 < c. Hence there is a local

solution to {
ϕx =

√
F (ϕ),

ϕ(x0) = ε

on [x0 − L, x0 + L] for some L > 0. Therefore by (3.18), we obtain a smooth solitary wave with
maximum height ϕ = M1 and an exponential decay to zero at infinity

ϕ(x) = O

(
exp

(
−
√
c2 +Ac− (1− 2ΩA− 2Ωc)

c
|x|

))
as |x| → ∞. (4.15)

(ii) When σ > 1,
√
F (ϕ) is locally Lipschitz in ϕ for 0 ≤ ϕ < c

σ . Thus if M1 <
c
σ , it becomes

the same as (i) and we can obtain smooth solitary waves with exponential decay.
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If M1 = c
σ , then the smooth solution can be constructed until ϕ = M1 = c

σ . However at
ϕ = M1 = c

σ it can make a sudden turn and so gives rise to a peak. Since ϕ = 0 is still a double
zero of F (ϕ), we still have the exponential decay here.

If M1 >
c
σ , then ϕ = c

σ becomes a pole of F (ϕ). Using (3.20) and (3.21), we obtain a solitary
wave with a cusp at ϕ = c

σ and decays exponentially.
Case 2: ϕ(x) < 0 near −∞. In this case we are solving{

ϕx = −
√
F (ϕ),

ϕ(x0) = −ε

for some x0 sufficiently negative and ε > 0 sufficiently small.
When σ > 0 we see that F ′(ϕ) < 0, for ϕ < 0. Therefore in this case there is no solitary wave.
If σ < 0, then ϕ = c/σ < 0 is a pole of F (ϕ). Argue as before, we obtain an anticusped

solitary wave with minx∈R = c/σ, which decays exponentially.
Finally, by the standard ODE theory and the fact that the equation (3.8) is invariant under the

transformation x −→ −x, we conclude that the solitary waves obtained above are unique and up
to translations. �

We conclude this section by providing an implicit formula for the peaked solitary waves. Let
us consider only the case c > M1 > 0. Denote

Ã1 =
−A+

√
A2 − 8ΩA+ 4(1− 2Ωc)

2
,

and

Ã2 =
−A−

√
A2 − 8ΩA+ 4(1− 2Ωc)

2
,

then

M1 = c− Ã1, M2 = c− Ã2.

By Theorem 4.2 we know that peaked solitary waves exist only when M1 = c
σ . In this case we

have

ϕ2
x =

ϕ2(M2 − ϕ)

c− ϕ
.

Since ϕ is positive, even with respect to some x0 and decreasing on (x0,∞), so for x > x0 we
have

ϕx = −ϕ

√
1− Ã2

c− ϕ
.

Integrating the above equation, there appears

−(x− x0) =

∫ ϕ

c−Ã1

ds

s

√
1− Ã2

c−s

.
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Let ω = 1− Ã2
c−s in the the above equation. Then

−(x− x0) =

∫ 1− Ã2
c−ϕ

1− Ã2
Ã1

−Ã2

[cω − (c− Ã2)](ω − 1)
√
ω
dω

=

∫ 1− Ã2
c−ϕ

1− Ã2
Ã1

1√
ω

[
c

cω − (c− Ã2)
− 1

ω − 1

]
dω

=

√ c

c− Ã2

ln

∣∣∣∣∣∣
√
cω −

√
c− Ã2

√
cω +

√
c− Ã2

∣∣∣∣∣∣− ln

∣∣∣∣√ω − 1√
ω + 1

∣∣∣∣
1− Ã2

c−ϕ

1− Ã2
Ã1

.

An implicit formula for the peaked solitary waves is thus established in the following.

−|x− x0| =

√ c

c− Ã2

ln

∣∣∣∣∣∣
√
cω −

√
c− Ã2

√
cω +

√
c− Ã2

∣∣∣∣∣∣− ln

∣∣∣∣√ω − 1√
ω + 1

∣∣∣∣
1− Ã2

c−ϕ

1− Ã2
Ã1

.

Below is a graph of a peaked solitary wave. The blue is the velocity profile and the red is the
surface profile.

'(x)

⌘(x)

FIGURE 1. The plot of a peakon with x0 = 0, A = 0,Ω =
3

16
, c = 2, σ =

4

3
.

5. TRAVELING-WAVE SOLUTIONS

Attention in this section is restricted to a unique x-symmetric weak solution of system (1.1).
We will prove that such a solution must be a traveling wave. First, we define what we mean by an
x-symmetric solution.

Definition 5.1. A function ~u(t, x) = (u(t, x), η(t, x)) is x-symmetric if there exists a function
b(t) ∈ C1(R+) such that

~u(t, x) = (u(t, 2b(t)− x), η(t, 2b(t)− x)),

for almost every x ∈ R. We say that b(t) is the symmetric axis of ~u(t, x).
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In the subsequent discussion, we will use 〈 , 〉 for distributions and we can rewrite (3.3) in
Definition 3.1 as follows

〈u, (1− ∂2
x)ψt〉+ Ω〈(1 + η)2, ψt〉

−〈Au− 3
2u

2 − σ
2u

2
x − 1−2ΩA

2 (1 + η)2, ψx〉 − 〈σ2u
2, ψxxx〉 = 0,

〈η, ψt〉+ 〈(1 + η)u, ψx〉 = 0.

(5.1)

Lemma 5.1. Assume that ~U(x) = (U(x), V (x)) ∈ H1(R)× L2(R) and satisfies


∫
R[cU(1− ∂2

x)φx + Ωc(1 + V )2φx
+(AU − 3

2U
2 − σ

2U
2
x − 1−2ΩA

2 (1 + V )2)φx + σ
2U

2φxxx]dx = 0,∫
R[−cV φx + (1 + V )Uφx]dx = 0

(5.2)

for all φ ∈ C∞0 (R). Then ~u given by

~u(t, x) = ~U(x− c(t− t0)) (5.3)

is a weak solution of system (1.1), for any fixed t0 ∈ R.

Proof. Without loss of generality, we can assume t0 = 0. Following the arguments in [18], we get
the ~u(t, x) belongs to C(R, H1(R)×L2(R)). For any ζ ∈ C∞0 (R+×R), letting ζc = ζ(t, x+ct),
it follows that {

∂x(ζc) = (ζx)c,

∂t(ζc) = (ζt)c + c(ζx)c.
(5.4)

Assume ~u(t, x) = ~U(x− ct). One can easily check that

{
〈u, ζ〉 = 〈U, ζc〉, 〈u2, ζ〉 = 〈U2, ζc〉, 〈u2

x, ζ〉 = 〈U2
x , ζc〉, 〈η, ζ〉 = 〈V, ζc〉,

〈(1 + η)2, ζ〉 = 〈(1 + V )2, ζc〉, 〈(1 + η)u, ζ〉 = 〈(1 + V )U, ζc〉,
(5.5)

where ~U = (U, V ) = (U(x), V (x)). In view of (5.4) and (5.5), we obtain

〈u, (1− ∂2
x)ζt〉 = 〈U,

(
(1− ∂2

x)∂tζ
)
c
〉 = 〈U, (1− ∂2

x)(∂tζc − c∂xζc)〉,

〈(1 + η)2, ζt〉 = 〈(1 + V )2, (ζt)c〉 = 〈(1 + V )2, ∂tζc − c∂xζc〉,

〈Au− 3

2
u2 − σ

2
u2
x −

1− 2ΩA

2
(1 + η)2, ζx〉

= 〈AU − 3

2
U2 − σ

2
U2
x −

1− 2ΩA

2
(1 + V )2, ∂xζc〉,〈σ

2
u2, ζxxx

〉
=
〈σ

2
U2, ∂3

xζc

〉
,

〈η, ζt〉 = 〈V, (ζt)c〉 = 〈V, ∂tζc − c∂xζc〉,
〈(1 + η)u, ζx〉 = 〈(1 + V )U, ∂xζc〉.

(5.6)
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Noting that ~U is independent of time, for T large enough such that it does not belong to the support
of ζc, we deduce that

〈U, (1− ∂2
x)∂tζc〉 =

∫
R
U(x)

∫
R+

∂t(1− ∂2
x)ζcdtdx

=

∫
R
U(x)[(1− ∂2

x)ζc(T, x)− (1− ∂2
x)ζc(0, x)]dx = 0,

〈U, ∂tζc〉 =

∫
R
U(x)

∫
R+

∂tζcdtdx

=

∫
R
U(x)[ζc(T, x)− ζc(0, x)]dx = 0,

〈V, ∂tζc〉 = 0.

(5.7)

Combining (5.6) with (5.7), it follows that

〈u, (1− ∂2
x)ψt〉+ Ω〈(1 + η)2, ψt〉 − 〈Au−

3

2
u2 − σ

2
u2
x −

1− 2ΩA

2
(1 + η)2, ψx〉 − 〈

σ

2
u2, ψxxx〉

= 〈U,−c(1− ∂2
x)∂xζc〉+ Ω〈(1 + V )2,−c∂xζc〉

− 〈AU − 3

2
U2 − σ

2
U2
x −

1− 2ΩA

2
(1 + 2V )2, ∂xζc〉 − 〈

σ

2
U2, ∂3

xζc〉

=

∫
R+

∫
R

[−cU(1− ∂2
x)∂xζc − Ωc(1 + V )2∂xζc

−
(
AU − 3

2
U2 − σ

2
U2
x −

1− 2ΩA

2
(1 + 2V )2

)
∂xζc −

σ

2
U2∂3

xζc]dxdt = 0,

and

〈η,ψt〉+ 〈(1 + η)u, ψx〉

= 〈V,−c∂xζc〉+ 〈(1 + V )U, ∂xζc〉 =

∫
R+

∫
R
−cV ∂xζc + (1 + V )U∂xζcdxdt = 0,

where we used (5.2) with φ(x) = ζc(t, x), which belongs to C∞0 (R), for every given t ≥ 0. This
completes the proof of Lemma 5.1. �

Finally, we give the main result of this section.

Theorem 5.1. If ~u(t, x) is a unique weak solution of system (1.1) and is x-symmetric, then ~u(t, x)

is a traveling wave.

Proof. Recalling Definition 3.1 and noting that C∞0 (R+×R) is dense in C1
0 (R+, C

3
0 (R)), we can

only consider the test functions ψ belong to C1
0 (R+, C

3
0 (R)). Let

ψb(t, x) = ψ(t, 2b(t)− x), b(t) ∈ C1(R).

Then we obtain that (ψb)b = ψ and{
∂xub = −(∂xu)b, ∂xψb = −(∂xψ)b,

∂tψb = (∂tψ)b + 2ḃ(∂xψ)b,
(5.8)
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where ḃ denote the time derivative of b. Moreover
〈ub, ψ〉 = 〈u, ψb〉, 〈u2

b , ψ〉 = 〈u2, ψb〉,
〈(∂xub)2, ψ〉 = 〈(∂xu)2, ψb〉, 〈(1 + ηb)

2, ψ〉 = 〈(1 + η)2, ψb〉,
〈ηb, ψ〉 = 〈η, ψb〉, 〈(1 + ηb)ub, ψ〉 = 〈(1 + η)u, ψb〉.

(5.9)

Since ~u is x-symmetric, by virtue of (5.8) and (5.7), we get

〈u, (1− ∂2
x)ψt〉 = 〈u,

(
(1− ∂2

x)∂tψ
)
b
〉 = 〈u, (1− ∂2

x)(∂tψb + 2ḃ∂xψb)〉,

Ω〈(1 + η)2, ψt〉 = Ω〈(1 + η)2, ∂tψb + 2ḃ∂xψb〉,

〈Au− 3

2
u2 − σ

2
u2
x −

1− 2ΩA

2
(1 + η)2, ψx〉

= −〈Au− 3

2
u2 − σ

2
u2
x −

1− 2ΩA

2
(1 + η)2, ∂xψb〉,

〈σ
2
u2, ψxxx〉 = 〈σ

2
u2,−∂3

xψb〉,

〈η, ψt〉 = 〈η, ∂tψb + 2ḃ∂xψb〉,
〈(1 + η)u, ψx〉 = 〈(1 + η)u,−∂xψb〉.

(5.10)

In view of (5.1), we get

〈u, (1− ∂2
x)ψt〉+ Ω〈(1 + η)2, ψt〉 − 〈Au−

3

2
u2 − σ

2
u2
x −

1− 2ΩA

2
(1 + η)2), ψx〉 − 〈

σ

2
u2, ψxxx〉

= 〈u, (1− ∂2
x)(∂tψb + 2ḃ∂xψb)〉+ Ω〈(1 + η)2, (∂tψb + 2ḃ∂xψb)〉

+ 〈Au− 3

2
u2 − σ

2
u2
x −

1− 2ΩA

2
(1 + η)2, ∂xψb〉+ 〈σ

2
u2, ∂3

xψb〉 = 0,

〈η, ψt〉+ 〈(1 + η)u, ψx〉

= 〈η, (∂tψb + 2ḃ∂xψb)〉+ 〈(1 + η)u,−∂xψb〉 = 0.
(5.11)

Noting that (ψb)b = ψ and substituting ψb in (5.11) for ψ, we obtain
〈u, (1− ∂2

x)(∂tψ + 2ḃ∂xψ)〉+ Ω〈(1 + η)2, (∂tψ + 2ḃ∂xψ)〉
+〈Au− 3

2u
2 − σ

2u
2
x − 1−2ΩA

2 (1 + η)2, ∂xψ〉+ 〈σ2u
2, ∂3

xψ〉 = 0,

〈η, (∂tψ + 2ḃ∂xψ)〉+ 〈(1 + η)u,−∂xψ〉 = 0.

(5.12)

Combining (5.12) with (5.1), we have
〈u,−2ḃ(1− ∂2

x)∂xψ〉+ Ω〈(1 + η)2,−2ḃ∂xψ〉
−2〈Au− 3

2u
2 − σ

2u
2
x − 1−2ΩA

2 (1 + η)2, ∂xψ〉 − 〈σu2, ∂3
xψ〉 = 0,

〈η,−2ḃ∂xψ〉+ 2〈(1 + η)u, ∂xψ〉 = 0.

(5.13)

We consider a fixed but arbitrary time t0 > 0. For any φ ∈ C∞0 (R), let ψε(t, x) = φ(x)ρε(t),
where ρε ∈ C∞0 (R+) is a mollifier with the property that ρε → δ(t− t0), the Dirac mass at t0, as
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ε→ 0. From (5.13), by using the test function φε(t, x), we have

∫
R

(
−2(1− ∂2

x)∂xφ
∫
R+
ḃuρε(t)dt

)
dx+ Ω

∫
R

(
−2∂xφ

∫
R+
ḃ(1 + η)2ρε(t)dt

)
dx

−
∫
R

(
2∂xφ

∫
R+

(Au− 3
2u

2 − σ
2u

2
x − 1−2ΩA

2 (1 + η)2)ρε(t)dt
)
dx

−
∫
R

(
σ∂3

xφ
∫
R+
u2ρε(t)dt

)
dx = 0,∫

R

(
−2∂xφ

∫
R+
ḃηρε(t)dt

)
dx+

∫
R

(
2∂xφ

∫
R+

(1 + η)uρε(t)dt
)
dx = 0.

(5.14)

Note that

lim
ε→0

∫
R+

ḃuρε(t)dt = ḃ(t0)u(t0, x), lim
ε→0

∫
R+

ḃηρε(t)dt = ḃ(t0)η(t0, x), in L2(R),

and

lim
ε→0

∫
R+

ḃ(1 + η)2ρε(t)dt = ḃ(t0)(1 + η(t0, x))2,

lim
ε→0

∫
R+

(Au− 3

2
u2 − σ

2
u2
x −

1− 2ΩA

2
(1 + η)2)ρε(t)dt

= Au(t0, x)− 3

2
u2(t0, x)− σ

2
(∂xu(t0, x))2 − 1− 2ΩA

2
(1 + η(t0, x))2,

lim
ε→0

∫
R+

u2ρε(t)dt = u2(t0, x),

lim
ε→0

∫
R+

(1 + η)uρε(t)dt = (1 + η(t0, x))u(t0, x)

in L1(R). Therefore, letting ε→ 0, (5.14) implies that

∫
R ḃ(t0)u(t0, x)(1− ∂2

x)∂xφdx+ Ω
∫
R ḃ(t0)(1 + η(t0, x))2∂xφdx

+
∫
R
(
Au(t0, x)− 3

2u
2(t0, x)− σ

2 (∂xu(t0, x))2 − 1−2ΩA
2 (1 + η(t0, x))2

)
∂xφdx

+
∫
R
σ
2u

2(t0, x)∂3
xφdx = 0,

−
∫
R ḃ(t0)η(t0, x)∂xφdx+

∫
R(1 + η(t0, x))u(t0, x)∂xφdx = 0.

(5.15)

Thus, we deduce that u(t0, x) satisfies (5.2) for c = ḃ(t0). Applying Lemma 5.1, we get ũ(t, x) =

u(t0, x− ḃ(t0)(t− t0)) is a traveling wave solution of system (1.1). Since ũ(t0, x) = u(t0, x), by
the uniqueness assumption of the solution of system (1.1), we obtain ũ(t, x) = u(t, x) for all time
t. This completes the proof of Theorem 5.1. �
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