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Abstract: Understanding the dynamics of volcanic activity is crucial for volcano observatories in their
efforts to forecast volcanic hazards. Satellite imager data hold promise in offering crucial insights
into the thermal behavior of active volcanoes worldwide, facilitating the assessment of volcanic
activity levels and identifying significant changes during periods of volcano unrest. The Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor, aboard NASA’s Terra and Aqua satellites,
provides invaluable data with high temporal and spectral resolution, enabling comprehensive thermal
monitoring of eruptive activity. The accuracy of volcanic activity characterization depends on the
quality of models used to relate the relationship between volcanic phenomena and target variables
such as temperature. Under these circumstances, machine learning (ML) techniques such as decision
trees can be employed to develop reliable models without necessarily offering any particular or
explicit insights. Here, we present a ML approach for quantifying volcanic thermal activity levels
in near real time using thermal infrared satellite data. We develop an unsupervised Isolation Forest
machine learning algorithm, fully implemented in Google Colab using Google Earth Engine (GEE)
which utilizes MODIS Land Surface Temperature (LST) data to automatically retrieve information
on the thermal state of volcanoes. We evaluate the algorithm on various volcanoes worldwide
characterized by different levels of volcanic activity.

Keywords: machine learning; volcano monitoring; thermal anomaly; thermal activity level; satellite
remote sensing; MODIS LST

1. Introduction

Volcanic eruptions can generate a variety of products that contribute to thermal anoma-
lies detected by satellite observations. These products include lava flows, pyroclastic flows,
ash plumes/clouds, and volcanic gases, each exhibiting distinct thermal characteristics [1].
The cooling of lava flows following an eruption can result in decreasing sur-face tem-
peratures over time, leading to identifiable thermal anomaly behavior [1]. Pyro-clastic
flows, consisting of hot volcanic ash, gases, and fragmented rock, generate intense thermal
signatures due to their high temperatures and rapid movement downslope [2]. Addition-
ally, the presence of volcanic ash plumes/clouds in the atmosphere can alter the Earth’s
radiation balance, influencing surface temperatures and producing thermal anomalies near
the vent [3]. Furthermore, volcanic gases, such as sulfur dioxide (SO2) and carbon dioxide
(CO2), can contribute to thermal anomalies through their interactions with the atmosphere,
affecting infrared radiation absorption and emission processes [4].

Nowadays, satellite remote sensing is widely employed for monitoring volcanic
thermal activity globally [5–21]. Numerous volcanic hotspot monitoring satellite platforms
have been developed for the near real-time monitoring of thermal anomalies, such as
MODVOLC [22], HOTVOLC [23], FIRMS [24], MIROVA [25] and LAV@HAZARD [26]. In
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particular, MIROVA and MODVOLC use images acquired from the Moderate Resolution
Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua polar satellites,
providing data four times per day with a spatial resolution from 250 to 1000 m. These
platforms employ the combination of MidInfrared (MIR) and Thermal Infrared (TIR) bands
to detect thermal anomalies at high temperatures, from about 600 K upwards. Thermal
Infrared (TIR) remote sensing measurements of high-temperature volcanic features offer
unique insights into the dynamic behavior of volcanic systems. The emission of thermal
energy from volcanic systems plays a crucial role in monitoring volcanic activity. Detecting
thermal anomalies within volcanic regions can indicate potential changes in volcanic
systems. The emergence of intense hotspots commonly signifies that the magmatic system
is breaching the surface, whereas subtle anomalies can indicate movement of magma or
changes in the overlying hydrothermal system [27]. Extreme temperatures are typically
observed during eruptive activity and in lava lakes, whereas lower temperatures are
recorded in fumarole fields and during the formation or destruction of lava domes.

Rapid identification of thermal anomalies is essential for understanding the long-term
dynamics and unrest of volcanic systems, typically complemented by other geophysical
parameters, which can prompt alert level changes. Monitoring these changes relative to
normal conditions is crucial for assessing volcanic hazards. The effectiveness of satellite-
based techniques in detecting subtle to high thermal anomalies associated with volcanic
activity has been widely demonstrated [28,29]. Moussallam et al. [28] utilized TIR data
from MODIS to detect and monitor thermal emissions from volcanoes in the East African
Rift. Similarly, Wright et al. [29] employed TIR remote sensing data to identify changes in
surface temperature associated with volcanic unrest at Mount Erebus in Ant-arctica. Land
Surface Temperature (LST) measurements, as derived from MODIS, have proven effective
in capturing thermal changes [30], thereby highlighting surface warming processes [31–33].

From this perspective, various data processing methods have been proposed to detect
thermal anomalies indicative of significant volcanic changes compared to “normal” con-
ditions. A commonly adopted strategy relies on temporal information, where anomalies
are identified as deviations from long-term average values [34–36]. Thus, the anomaly is
the difference between what is happening and what is expected over a long-term average
trend. However, uncertainties persist due to seasonal variations, local weather patterns,
topography, and surface heterogeneity. The robust satellite technique (RST) has been widely
employed for thermal anomaly detection, utilizing multi-temporal statistical methods for
analyzing long-term satellite records under similar observation conditions (e.g., same
month, same time of day, and same sensor data) [37–40]. RST considers the statistical
characteristics of the historical data to discriminate possible abnormal behavior of current
thermal signals. However, RST may struggle to eliminate short-term meteorological warm-
ing impacts. Hill et al. [41] proposed another approach based on modeling the signal under
“normal” conditions and considering anomalies as portions of the signal that the model
fails to reconstruct accurately, which has been used across various fields. This method
fits the time series under normal conditions, minimizing reconstruction errors. Where
anomalies are present, deviations from expected patterns trigger anomaly detection based
on reconstruction statistics.

We adopt a comparable approach utilizing an unsupervised machine learning (ML)
model for anomaly detection capable of finding structure in the MODIS Land Surface Tem-
perature (LST) data and clustering the detections based on data similarity. The ML model
reconstructs error time series to automatically retrieve significant changes without external
bias and a priori choices. Data drive the anomaly detection process. Specifically, we employ
an Isolation Forest (IF) machine learning algorithm, an unsupervised decision tree-based
algorithm originally designed for outlier detection in tabular data. The Isolation Forest tech-
nique randomly splits sub-samples of the data according to attributes/features/columns,
with rarer observations more likely to be isolated quickly, indicating outlier status, i.e.,
fewer splits are needed to isolate an outlier (create a partition in which only one point
is present). Furthermore, we exploit the capability of the Isolation Forest algorithm to
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recognize anomalies to distinguish the activity levels. We determine different activity
levels based not only on intensity differences but also on the difficulty of isolating sample
points belonging to the time series using the Isolation Forest technique. We establish a
framework on Google Colaboratory, commonly referred to as Colab, designed to automate
the processing of MODIS LST datasets. This framework enables the extraction of detected
anomalies and various activity levels, thereby facilitating global monitoring of volcanic
thermal activity.

2. Materials
Volcanoe Selection

We investigated six volcanoes located in different areas around the world (Figure 1) in
order to account for heterogeneity in our dataset: Etna and Stromboli (Italy), Klyuchevskoy
(Kamchatka, Russia), Lascar (Chile), Popocatépetl (Mexico), Fuego (Guatemala). These
volcanoes were selected for their wide variety of eruptive styles and time recurrence of
eruptions between 2000 and 2023. With the exception of Stromboli, these same volcanoes
were also investigated by Ramsey et al. [42] using higher-spatial-resolution Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data.

• Mt. Etna is a large basaltic composite volcano located on the east coast of Sicily (Italy).
Although Etna is a prevalently effusive volcano, since 1986, there has been a clear
increase in explosive eruptions of medium intensity from the summit craters, better
known as paroxysmal events. These events are characterized by the development of
several km high ash plumes and lava overflows from the crater rim [43].

• Klyuchevskoy is an active and relatively young volcano located in the northern part
of the Central Kamchatka Depression (Russia). Its recent activity is characterized by
the effusion of voluminous basaltic andesite lava flows, commonly associated with
moderate to violent explosive activity [44].

• Lascar volcano is a composite active stratovolcano located in the Antofagasta Region
of Chile. The activity of the Lascar volcano is characterized by the persistent fumarolic
activity, occasional small steam explosions with phreatic characteristics, the formation
of lava flows, and explosive events [45,46]. Dome building and collapse have also
been observed [47].

• Popocatépetl is an andesitic stratovolcano that lies ∼60 km SE of Mexico City (Mexico).
The ongoing eruptive activity of Popocatépetl volcano has been characterized by
vulcanian explosions, ash-poor “exhalations” of volcanic gas, and periodic lava dome
growth, subsidence, and explosive destruction [48].

• Volcán de Fuego (or Fuego) is the most active stratovolcano in Guatemala. Since 1999,
Fuego has been in a new period of eruptive activity characterized by persistent activity
consisting of slow lava effusion, discrete strombolian and ash-rich explosions, and
occasional higher-intensity explosive paroxysmal eruptions [49,50].

• Stromboli is the north-easternmost island of the Aeolian archipelago (Italy). The activ-
ity consists of intermittent mild explosions [51]. The ordinary activity is periodically
broken by the emission of lava flow and by two types of violent explosions known as
“major explosions” and “paroxysms” [52].



Remote Sens. 2024, 16, 2001 4 of 17Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 18 
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via Google Earth Pro [http://www.earth.google.com; accessed on 27 March 2024] and QGIS 
[https://qgis.org/it/site/; accessed on 27 March 2024]. 

3. Data 
The satellite images and derived Land Surface Temperature (LST) data were acquired 

from the MODIS sensor onboard both the Terra and Aqua satellites. MODIS provides Me-
dium Infrared (MIR) and Thermal Infrared (TIR) data at high temporal/low spatial reso-
lution, allowing the identification and monitoring of volcanic thermal activity with data 
available 2–4 times per day at most volcanoes. The LST measurements obtained from 
MODIS offer valuable insights into surface temperature variations, which are essential for 
detecting and quantifying thermal anomalies associated with volcanic eruptions. We uti-
lized data processing tools in Google Earth Engine (GEE) to access and analyze the MODIS 
LST data [53]. GEE is a cloud computing platform that makes it easy to access geospatial 
data for processing and visualizing, ideal for large-scale analysis of satellite observations. 
It is worth noting that this product is already masked for clouds, meaning that pixels con-
taining clouds are removed. MODIS LST satellite images are pre-processed by selecting 
the ROI (Region of Interest) around the targeted volcano and by filtering out images from 
the collection that contain more than 50% of clouds in the selected ROI. For each volcano, 
the entire time series from 2000 to 2023 was analyzed. 

4. Methods 
We fit the LST time series under “normal” conditions using the Non-linear Least 

Squares (NLS) Regression model and catch anomalies as portions of the signal that the 
model fails to reconstruct. Thus, we adopt the Isolation Forest model to detect anomalies 

Figure 1. Overview and representative image of the volcanoes studied. All images were captured
via Google Earth Pro [http://www.earth.google.com; accessed on 27 March 2024] and QGIS [https:
//qgis.org/it/site/; accessed on 27 March 2024].

3. Data

The satellite images and derived Land Surface Temperature (LST) data were acquired
from the MODIS sensor onboard both the Terra and Aqua satellites. MODIS provides
Medium Infrared (MIR) and Thermal Infrared (TIR) data at high temporal/low spatial
resolution, allowing the identification and monitoring of volcanic thermal activity with
data available 2–4 times per day at most volcanoes. The LST measurements obtained from
MODIS offer valuable insights into surface temperature variations, which are essential
for detecting and quantifying thermal anomalies associated with volcanic eruptions. We
utilized data processing tools in Google Earth Engine (GEE) to access and analyze the
MODIS LST data [53]. GEE is a cloud computing platform that makes it easy to access
geospatial data for processing and visualizing, ideal for large-scale analysis of satellite
observations. It is worth noting that this product is already masked for clouds, meaning
that pixels containing clouds are removed. MODIS LST satellite images are pre-processed
by selecting the ROI (Region of Interest) around the targeted volcano and by filtering out
images from the collection that contain more than 50% of clouds in the selected ROI. For
each volcano, the entire time series from 2000 to 2023 was analyzed.

4. Methods

We fit the LST time series under “normal” conditions using the Non-linear Least
Squares (NLS) Regression model and catch anomalies as portions of the signal that the

http://www.earth.google.com
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model fails to reconstruct. Thus, we adopt the Isolation Forest model to detect anomalies
from the reconstruction error time series. Finally, the scores of the detected anomalies are
used to categorize the thermal activity level. The workflow of the proposed three-step
approach is as follows (Figure 2):

1. Fit LST Time Series under “Normal” Conditions

• Use the Non-linear Least Squares (NLS) Regression model to fit the LST time
series under normal conditions.

• Identify anomalies as portions of the signal that the model fails to reconstruct
accurately.

2. Detect Anomalies Using the Isolation Forest Model

• Adopt the Isolation Forest model to detect anomalies from the reconstruction
error time series.

• Utilize the Isolation Forest algorithm to efficiently identify outliers or anomalies
in the data.

3. Categorize Thermal Activity Level Based on Anomaly Scores

• Use the scores of the detected anomalies to categorize the thermal activity level.
• Assign higher scores to anomalies indicating more significant deviations from

the normal pattern, thereby prioritizing areas of heightened thermal activity.
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Figure 2. Workflow of the proposed three-step approach.

4.1. Fitting the “Normal” Thermal Trend: The NLS Algorithm

We expect that LST in normal conditions (without volcanic activity) exhibits seasonality
influenced by a sinusoidal trend described by Stallman [54] as follows:

LST(t) = LST0 +
∆LST

2
(2πtτ + ϕ) (1)

where LST0 represents the mean annual LST, ∆LST represents the amplitude between
maximal and minimal LST, τ represents the period of oscillation of LST, and ϕ represents
an offset needed to adjust the time (t) when LST(t) = LST0. Thus, we estimate the values of
LST0, ∆LST, τ, and ϕ that best fit the MODIS LST time series collected in the previous step.
This task is achieved by using the Levenberg–Marquardt algorithm [55], widely adopted as
an optimization method to solve non-linear least squares problems.

Once we find LST0, ∆LST, τ, and ϕ, we can estimate LST(t) that represents the average
normal values at time t in ideal conditions. By computing the difference between MODIS
LST and LST(t), we can estimate the reconstruction error, indicating how much the reality
differs from the ideal condition. If the prediction error is small, it is highly probable that the
current state is similar to the normal state, while a large prediction error suggests that the
current state is abnormal. This difference accounts for random errors due to the weather
variances, snow coverage, and external conditions affected by volcanic activity.
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4.2. Anomaly Detection: Isolation Forest

The goal is to detect thermal anomalies associated with volcanic activity from the time
series of the reconstructed error, filtering out random errors due to the weather variances
and snow coverage. While random errors are low in magnitude with respect to volcanic
activity, snow coverage may negatively affect negative reconstruction errors that are filtered
out because they are not related to volcanic activities. The latter ones, in fact, are shown by
the maximum positive values of reconstruction error. Thus, for each scene, we considered
the maximum values of the reconstruction error, and we built the time series from the entire
collection, which we inputted into an unsupervised machine learning algorithm to detect
anomalies in the time series.

We employed the isolation forest machine learning algorithm since it is a popular
unsupervised learning technique known for its effectiveness in detecting anomalies in
large datasets. The isolation forest algorithm [56] detects anomalies by isolating anomalies
from normal points using an ensemble of Isolation Trees. Each Isolation Tree is trained for
a subset of training observations, sampled without replacements. The algorithm grows
an Isolation Tree by choosing a split variable and split position at random until every
observation in a subset lands in a separate leaf node. Anomalies are few and different;
therefore, an anomaly lands in a separate leaf node closer to the root node and has a shorter
path length (the distance from the root node to the leaf node) than normal points. The
algorithm identifies anomalies using anomaly scores defined based on the average path
lengths over all Isolation Trees. Anomalies are identified as instances that require fewer
partitioning steps to isolate, reflecting their deviation from the norm. The Isolation Forest
algorithm computes the anomaly score s(x) of an observation x by normalizing the path
length h(x):

s(x) = 2−
E(x)
c(n) (2)

where E[h(x)] is the average path length over all Isolation Trees in the Isolation Forest,
and c(n) is the average path length of unsuccessful searches in a binary search tree of n
observations. For each sample, the Isolation Forest returns a score bound between 0 and 1.
The score approaches 1 as E[h(x)] approaches 0. Therefore, a score value close to 1 indicates
an anomaly. The score approaches 0 as E[h(x)] approaches n–1. Also, the score approaches
0.5 when E[h(x)] approaches c(n). Therefore, a score value smaller than 0.5 and close to 0
indicates a normal sample.

4.3. Classifying Volcanic Activity: Thermal Activity Levels

For each thermal anomaly detected, a score is associated with the Isolation Forest’s
readiness to isolate the anomalies, indicating how anomalous the sample was compared to
the closest observations. Based on the Isolation Forest score, we assign a thermal activity
level to each sample. This assignment depends not only on the instantaneous thermal value
but also on how much it differs from the other samples. To establish statistical thresholds,
we utilized two volcanoes as study cases characterized by thermal activity spanning from
low to high levels, namely Etna and Klyuchevskoy. We defined three thermal activity
levels closely related to the level of concern arising from the volcanic activity. The low
level is associated with baseline volcanic thermal activity leading to a low level of concern,
including intracrater activity, unrest thermal signals, and fumarolic activity. The statistical
threshold is score < mean + standard deviation (std). The moderate level associated with
volcanic activity leads to a moderate level of concern, such as active lava domes, small
overflow, and cooling lava flow. The statistical threshold is mean + std < score < mean +
2std. The high thermal activity level is associated with large overflows, active lava flows
or paroxysm events, indicating a high level of concern. The statistical threshold is score >
mean + 2std.
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5. Results

For each of the volcanoes investigated, we present the results obtained by applying
the proposed approach to the complete dataset covering the area of interest. Since the
reconstruction error, as defined, represents the temperature above the temporal average
(TAB), these two terms are used interchangeably. Figure 3 displays the results from the
NLS fitting step to the anomaly detection step for one of the targeted volcanoes, namely
Etna. Specifically, it includes the reconstructed signal over the real thermal signal (a), the
reconstructed error (b), the detected anomalies (c), and the real thermal signal identified
as anomalous (d). The temperature above average corresponds to the reconstructed error,
defined as the difference between the real and reconstructed temperature of the detected
anomalies. The time series of the temperature above average of the detected volcanic
anomalies for all the volcanoes are shown in Figures 4 and 5. Blue arrows indicate the start
of an eruption, while the gray shaded area indicates time windows characterized by an
increase in activity preceding the eruption. Thermal activity levels for each volcano are
displayed in Figure 6 in terms of low, moderate, and high levels.Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 18 
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anomalies (c), and the real thermal signal identified as anomalous over the real thermal signal (d).
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Figure 6. Time series of the temperature above average of the detected volcanic anomalies and the
activity levels low (green bars), moderate (orange bars) and high (red bars) for Etna, Klyuchevskoy,
Lascar, Fuego, Popocatépetl, and Stromboli.

6. Discussion
6.1. Thermal Anomaly Detection

The detection and monitoring of thermal anomalies play a crucial role in assessing
volcanic hazards and mitigating potential risks associated with volcanic activity. Land
surface temperature anomalies often indicate magma movement beneath the Earth’s surface,
which can lead to volcanic eruptions or other hazardous events [57]. For example, an
increase in surface temperature, as indicated by thermal anomalies, may suggest magma
ascent toward the volcano’s summit, potentially leading to eruption. Furthermore, the
persistence or intensification of thermal anomalies over time can signify sustained volcanic
activity, increasing the likelihood of imminent eruption [58].

The results demonstrate that the thermal information provided by MODIS Land Sur-
face Temperature (LST) combined with machine learning enables the detection of both pre-
eruptive increases and, when satellite scenes are clear, the eruption itself (Figures 4 and 5).
Etna is one of the most active volcanoes in the world located in a densely populated area,
which underscores the paramount importance of detecting and monitoring thermal anoma-
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lies. We explore multiple eruptive periods during which thermal anomalies were identified
prior to eruptions (Figure 4a).

From 14 November 2000, an increase in thermal anomalies was observed at Etna until
the end of July 2001. The initial anomaly corresponds to the activity of the Bocca Nuova
crater [INGV internal report]. On 3 May 2001, a notable increase in thermal anomalies was
evident (Figure 4a), aligning with heightened strombolian activity at the Sud Est crater
preceding the paroxysm of 9 May 2001 (INGV internal report [43]). The anomaly persisted
due to the ongoing effusive and explosive activity at the summit of Etna, reaching a peak
on 3 June 2001 (Figure 4a), ahead of the paroxysmal event of 6 June 2001 [43]. Subsequently,
eruptive activity continued with 16 lava fountains until 16 July. Lateral activity commenced
on 17 July 2001 [43,59,60], which was detected and continuously monitored (Figure 4a).
On 7 September 2004, significant lateral activity began, lasting until 8 March 2005 [43,61],
accompanied by an increase in thermal anomaly observed from late July 2004 (Figure 4a).
This thermal anomaly persisted throughout the development of the lava field until it
completely cooled. A new lateral activity commenced on 15 July 2006, lasting until 27 July
2006. A notable increase in thermal anomaly was observed from late March 2006 preceding
effusive activity (Figure 4a). Shortly after the conclusion of lateral effusive activity, another
thermal anomaly was detected from late August 2006 (Figure 4a). The thermal anomaly
intensified until peaking at the paroxysm of 16 November 2006, followed by a series of
lava fountains (nine in total) [43], until May 2007 (INGV internal report [43]). Thermal
anomalies were also identified throughout the period of paroxysmal events.

Klyuchevskoy volcano stands as one of the world’s most active volcanoes. Given the
extreme weather conditions in the region, monitoring infrastructure primarily relies on seis-
mic stations and webcams. Therefore, the study of thermal anomalies from satellites holds
fundamental importance in understanding the eruptive activity of Klyuchevskoy volcano.
We discuss the increase in thermal anomalies during two eruptive periods (Figure 4b). On
14 January 2005, following a year of quiescence, strombolian activity commenced from the
summit of Klyuchevskoy [44,62]. The activity evolved into effusive activity by the end of
January. The onset of this effusive activity was preceded by an increase in seismicity and
sightings of brilliance within the crater [63]. Satellite images from 5 January 2005 captured
an escalation in the thermal anomalies, peaking at the initiation of strombolian activity
and persisting until the conclusion of summit activity (Figure 4b). Following almost two
years of quiescence, the summit strombolian eruption on 18 March 2007 was preceded by
an increase in thermal anomaly recorded from 29 January 2007 until the termination of
the eruption (Figure 4b). Two days prior, luminescence and bomb ejections were observed
above the central crater [63]. The eruption proceeded with volcanic activity and lava flow
emission until 18 June 2007.

Lascar is considered the most active volcano in the Central Andean Volcanic Zone,
characterized by continuous degassing. We discuss two cases: one where the crescendo
of the thermal anomaly predicts an eruptive event and another where there is a thermal
anomaly without an eruptive event (Figure 4c). On 11 September 2019, a northwest
dispersing gas plume was identified on a satellite image, accompanied by a pronounced
peak in the thermal radiance [64]. An increase in the thermal anomaly was detected in
the days immediately preceding the eruption (Figure 4c), although there is no information
in the literature about signs preceding the eruption (e.g., an increase in seismic tremor).
In early January 2022, the satellite data showed a peak thermal anomaly not associated
with an eruption (Figure 4c). SERNAGEOMIN reports visible luminescence from the crater
starting on 11 January, which continued for the next few days ([63]; Servicio Nacional de
Geología y Minería https://www.sernageomin.cl/; accessed on 4 March 2024). At the same
time, a more frequent emission of gas and steam was detected than in previous months [63].

Fuego is currently the most active volcanic center of the Fuego–Acatenango massif.
Its eruptive activity has been characterized by strombolian and effusive events, as well as
some paroxysmal events, which have caused considerable inconvenience to surrounding
communities [65]. We discuss two paroxysmal events that were preceded by an increase

https://www.sernageomin.cl/
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in thermal anomalies (Figure 5a). Since the end of January 2002, an increase in thermal
anomaly has been detected. On 1 February, strombolian activity was observed, accompa-
nied by the production of ash, steam, and lava flow [63]. The peak of the anomaly coincides
with the paroxysmal event of 9 February 2002. The paroxysm of 13 September 2012 is
preceded and followed by a long period of no paroxysm [63,66]. This event was preceded
48 h earlier by an increase in seismic tremor and the emission of a lava flow. Additionally, a
thermal anomaly was detected from 7 August, which peaked on the day of the paroxysmal
event (Figure 5a).

The ongoing eruptive activity of Popocatépetl volcano has been characterized by
emplacement and subsequent destruction of a succession of lava domes. We analyze two
cases in which the increase in thermal anomalies precedes the destruction of the lava
domes. On 28 February 2001, a new lava dome began to be emplaced at the bottom of the
crater floor [48]. Its growth was accompanied by an increase in seismic tremor and small
to moderate steam emissions [63]. A thermal anomaly was detected from early March,
increasing until the destruction of the lava dome (Figure 5b). Another thermal anomaly
was detected from early 2013 (Figure 5b). On 10 February 2023, a lava dome began to
form inside the crater, accompanied by an increase in seismic tremor [48,63]. The thermal
anomaly continued to grow until it reached its peak coinciding with the destruction of the
lava dome on 15 April 2015 [48] (Figure 5b). Additionally, eruptive activity was preceded
by an increase in seismic tremor and ash emissions [48,63].

The persistent normal activity of Stromboli is occasionally interrupted by sudden
and highly energetic explosive events called strombolian paroxysms. We analyze one
case in which the increase in thermal anomalies precedes effusive activity and another
case in which the increase in thermal anomalies does not precede any activity (Figure 5c).
A new effusive activity period at Stromboli started on 6 August 2014. This event was
preceded by two months of high-intensity eruptive activity, characterized by frequent and
strong explosions and overflows [67,68]. From the beginning of June, the first temperature
anomalies were detected, peaking on 7 August 2014 (Figure 5c). In April 2013, there was a
peak thermal anomaly (Figure 5c), although no paroxysmal or major activity is reported in
the literature. A significant increase in CO2 flux from the craters is reported by Inguaggiato
et al. [69].

6.2. Thermal Activity Levels

Results show that the combined use of LST measurements and unsupervised Isolation
Forest algorithm aids not only in monitoring volcanic eruptions but also in detecting subtle
thermal changes that may precede them, as shown in Figures 4 and 5. Four eruptions
at Etna showed a pre-eruptive change in trend (Figure 4a), the Klyuchevskoy eruption
exhibited six types of identifiable pre-eruptive changes in trend (Figure 4b), and three
periods of increased pre-eruption thermal anomaly were also identified in the case of Lascar
(Figure 4c). In addition, three pre-eruptive changes at Fuego were identified (Figure 5a),
and at Stromboli, four cases were identified in which the growth of the thermal anomaly
preceded an eruptive event (Figure 5c). Instead, at Popocatépetl, 18 changes in trend were
detected (Figure 5b). It was noted that in volcanoes subject to continuous outgassing
or persistent activity (e.g., Etna, Lascar, Fuego, Stromboli), the detection of pre-eruptive
thermal anomalies is limited. Thus, the analysis of thermal anomalies from satellite data
emerges as a crucial and reliable tool for predicting volcanic eruptions. A significant
increase in thermal anomalies was detected before the onset of eruptive activity, providing
a valuable window for early warning and forecasting volcanic hazards.

Thermal anomalies are valuable indicators of volcanic eruptive phenomena, such
as lava effusions, volcanic gas emissions, and the formation of volcanic domes or lava
lakes [70]. Ramsey et al. [42] successfully retrieved mean temperature, maximum tem-
perature, and heat flux from high-spatial-resolution satellite data using unsupervised
machine learning techniques. While medium spatial resolution data may lack the same
spatial accuracy, collecting more images over time enables gathering more information
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on a specific volcano. Each thermal anomaly sample incorporates both the intensity and
area information. Isolation Forest outcomes help filter significant changes in LST from
historical time series data, facilitating further investigation into the eruptive history and
associating each detected anomaly with a volcanic activity phase. By establishing statistical
thresholds from active volcanic study cases such as Etna and Klyuchevskoy, activity levels
(low, moderate, high) were estimated and applied to classify volcanic activity levels across
all studied volcanoes. Figure 6 illustrates the results of this analysis, demonstrating that
utilizing unsupervised Isolation Forest machine learning allows for not only detecting main
phases of volcanic eruptive history, but also automatically discriminating their volcanic
phases. Notably, the activity levels found for the investigated volcanoes align with previous
research [42]. Generally, Etna, Klyuchevskoy, Stromboli, and Fuego exhibit all three activity
levels, ranging from degassing (low level) to lava flows and paroxysmal activity (high
level), whereas Lascar and Popocatépet show mainly low and moderate levels due to
continuous degassing or dome formation [47,48].

For example, on Etna, a series of paroxysmal events began on 16 November 2006,
with pre-eruptive changes detected and classified by the Isolation Forest machine learning
technique, identifying phases of moderate activity (strombolian activity) and high thermal
activity associated with a lava flow preceding the lava fountaining activity [INGV internal
report]. Similar pre-eruptive changes were observed during the January 2005 and March
2007 eruptions of Klyuchevskoy volcano (Figure 6), where the Isolation Forest algorithm
identified pre-eruptive changes and paroxysmal phases. While the 2007 pre-eruptive
changes were already identified in the work of Coppola et al. [62], it is noteworthy that
using Isolation Forest and LST data, changes were observed before the 16 January 2005
eruption, as early as 21 December 2004. Specifically, moderate-level activity was identified
on 8 January 2005. On the other hand, in the case of Lascar, the Isolation Forest recorded two
periods of moderate activity in July 2006 and April 2007. However, there is no information
on these periods of volcanic activity, likely due to the poor monitoring of the volcano. It
is therefore presumed that these periods were characterized by strombolian activity or
dome explosions, typical of Lascar volcano [47]. In the case of the eruption on 1 December
2005 at Popocatépetl (Figure 6), the Isolation Forest also successfully detected the main
pre-eruptive phases of dome-building activity before its destruction. Lastly, by observing
and comparing the charts of thermal anomalies (Figure 5c) and the Isolation Forest results
(Figure 6) at Stromboli, the Isolation Forest algorithm also identified the strombolian activity
preceding the paroxysm of 28 August 2019.

7. Conclusions

Satellite Land Surface Temperature (LST) measurements offer a valuable means of
continuously monitoring volcanic regions, providing insights into a range of volcanic
phenomena from subtle thermal changes due to gas emissions to active lava flows.

By leveraging the capabilities of GEE and the isolation forest algorithm, we were able
to efficiently detect and analyze thermal anomalies associated with volcanic activity. The ap-
proach proposed in this study demonstrated its effectiveness in capturing significant trends
from historical time series data. By employing an unsupervised machine learning (ML)
algorithm on these time series, significant temperature changes, including pre-eruptive
indicators and actual volcanic eruptions, can be automatically identified without external
bias. Utilizing Isolation Forest score parameters, we were able to classify the thermal
activity level, thereby associating the thermal state of the volcano with the level of concern
regarding ongoing volcanic activity.

The inclusion of six volcanoes with diverse characteristics in our analysis demonstrates
the versatility and applicability of our proposed approach on a global scale. This under-
scores the potential for widespread adoption and implementation of this methodology in
volcanic monitoring efforts worldwide. Furthermore, the scalability of our approach allows
for seamless integration into existing monitoring frameworks, enhancing their capabilities
and effectiveness in identifying and assessing volcanic hazards.
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The timely detection and characterization of thermal anomalies through satellite
observations play a crucial role in assessing volcanic hazards. Detecting pre-eruptive
thermal anomalies from satellites can be used for real-time monitoring, especially in areas
with little or no ground-based monitoring systems. This approach is a valuable tool to
integrate into existing warning systems operated by volcanic observatories to forecast
volcanic hazards. Despite limitations such as cloud cover and poor temporal resolution
(e.g., satellite passages may not coincide with short eruption events), the Isolation Forest
machine learning algorithm can maximize the utility of thermal infrared satellite data to
provide time-critical hazard information. This algorithm helps to identify and classify
anomaly thermal activity, improving the reliability and accuracy of volcanic monitoring.

Classifying the thermal activity level is critical for understanding the thermal state
of the volcano, enabling real-time hazard assessment. By providing early warning and
detailed insights into volcanic activity, these observations enable authorities to implement
appropriate measures for forecasting and monitoring volcanic hazards in affected areas.
This proactive approach enhances overall preparedness and resilience in regions susceptible
to volcanic activity, ultimately contributing to the safety and well-being of surrounding
communities. Moreover, continuous monitoring facilitated by satellite observations ensures
that authorities can dynamically adapt their response strategies, thereby minimizing the
potential impact of volcanic events on human lives and infrastructure.
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