Lecture 1: Chapters 1-3.2 Intro, Sampling, Surveys

- □Variable Types and Roles
- □Summarizing Variables
- □4 Processes of Statistics
- □Data Production; Sampling
- □Various Study Designs; Surveys

©2011 Brooks/Cole, Cengage

Elementary Statistics: Looking at the Big Picture

Example: What Statistics Is All About

■ **Response (to both questions):** Statistics is all about...

Looking Ahead: Identifying what kind of variables are involved is the key to classifying statistics problems and choosing the right solution tool.

©2011 Brooks/Col Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.4

Example: What Statistics Is All About

- **Background**: Statistics teacher has a large collection of articles and reports of a statistical nature.
- □ **Question:** How to classify them?
- **Background:** Statistics students are faced with a collection of exam problems at the end of the semester.
- □ **Question:** How to choose the right procedures to solve them?

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L1.2

2

The Five Variable Situations

- □ When studying relationships between two variables, we often think of one as explanatory and the other as response.
- □ Depending on the variables' types and roles, we consider five possible situations.

One categorical variable One quantitative variable categorical and one quantitative variable

Two categorical variables

C→C

Two quantitative variables

Q→Q

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

Example: *Identifying Types of Variables*

- □ **Background**: Consider these headlines...
 - Dark chocolate might reduce blood pressure
 - Half of moms unaware of children having sex
 - Vampire bat saliva researched for stroke
- □ **Question:** What type of variable(s) does each article involve?
- **□** Response:
 - Dark chocolate or not is blood pressure is
 - Being aware or not of children having sex is
 - Bat saliva or not is _____stroke recovery is probably _____

©2011 Brooks/Cole, Cengage Learning L1.8

Q

Example: Categorical Variable Giving Rise to Quantitative Variable

□ **Background:** Percentages of teenagers using marijuana or hard drugs are recorded for a sample of countries.

Country	% Marijuana	% Harder Drugs
#1	22	4
#1 #2	37	16
#3 #4	7	3
#4	23	14

- □ **Question:** What type of variable(s) does this involve?
- □ Response:
 - percentage using marijuana is
 - percentage using harder drugs is _____

©2011 Brooks/Cole Cengage Learning L1.12

Example: Categorical Variable Giving Rise to Quantitative Variable

□ **Background:** Individual teenagers were surveyed about drug use.

Teenager	Marijuana?	Harder Drugs?						
#1	Yes	Yes						
#2	No	No						
#3 #4	No	No						
#4	Yes	No						
		• • •						

- **Question:** What type of variable(s) does this involve?
- **□** Response:
 - marijuana or not is
 - harder drugs or not is

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 1.6a p.12

L1.10

10

Example: Categorical Variable Giving Rise to Quantitative Variable

■ **Background:** Percentages of teenagers using marijuana or hard drugs are recorded for a sample of countries.

	% Marijuana	% Harder Drugs
#1	22	4
#2	37	16
#1 #2 #3 #4	7	3
#4	23	14

- □ **Question:** What type of variable(s) does this involve?
- □ **Response:** (another perspective)
 - type of drug (marijuana or harder drugs) is _____
 - % using the drugs is _____

©2011 Brooks/Cole Cengage Learning mentary Statistics: Looking at the Big Pictur

Example: Quantitative Variable Giving Rise to Categorical Variable

- □ **Background**: Researchers studied effects of dental X-rays during pregnancy.
 - First approach: X-rays or not; baby's weight
 - Second approach: X-rays or not; classify baby's wt. as at least 6 lbs. (considered normal) or below 6 lbs.
- **Question:** What type of variable(s) does each approach involve?
- **□** Response:
 - X-rays or not is ; baby's weight is
 - X-rays or not is baby's wt. at least 6 lbs. or below 6 lbs. is

©2011 Brooks/Cole,

Elementary Statistics: Looking at the Big Picture Practice: 1.8 p.12

16

Summarizing Data

- □ **Categorical** data:
 - **Count:** number of individuals in a category
 - **Proportion:** count in category divided by total number of individuals considered
 - Percentage: proportion as decimal × 100%
- □ Quantitative data: mean is sum of values divided by total number of values

Cengage Learning

Elementary Statistics: Looking at the Big Picture

Definitions

- □ **Data**: recorded values of categorical or quantitative variables
- □ Statistics: science concerned with
 - gathering data about a group of individuals
 - displaying and summarizing the data
 - using info from data to draw conclusions about larger group

(All these skills are essential in both academic and professional settings.)

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L1.17

17

Example: Summarizing Variables

- **Background**: Recent research unearthed evidence that for a short period of time, a few women voted in America (specifically, New Jersey) around 1800: "...In total, the lists include 163 unique women's names, with women casting about 208 of the 2,695 documented votes. Overall, they found, about 7.7% of total votes recorded were cast by women..."
- **Question:** What type of variable is involved, and how is it summarized?
- **Response**: gender of voters is , summarized with

Hint: think about who or what are the individuals. What information is recorded for each of them?

@2011 Brooks/Cole Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 1.10 p.12

Example: Summarizing Variables

- □ **Background**: A 2019 lawsuit alleged inequities in average pay by the software giant Oracle: "Oracle's ... female, Black, and Asian employees with years of experience are paid as much as 25% less than their peers."
- □ **Question:** What type of variable is considered, and how is it summarized?
- □ Response: ______, summarized with

A Closer Look: When comparing quantitative values for two or more categorical groups, we sometimes quantify the difference by reporting what percentage higher or lower one mean is compared to the other.

©2011 Brooks/Cole,

22

Example: *Identifying Types and Roles*

- □ **Background:** Consider these headlines---
 - Men twice as likely as women to be hit by lightning
 - Do Oscar winners live longer than less successful peers?
- **Questions:** What types of variables are involved? For relationships, what roles do the variables play?
- □ Responses:
 - Gender is and Hit by lightning or not is and
 - Winning an Oscar or not is

Life span is and

Cengage Learning

Roles of Variables

When studying relationships between two variables, we often think of one as explanatory and the other as response.

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L1.23

23

Example: More Identifying Types and Roles

- □ **Background:** Consider these headlines---
 - 35% of returning troops seek mental health aid
 - Smaller, hungrier mice
 - Average rent for an apartment in Pittsburgh is \$1256 (March 2021)
- **Questions:** What types of variables are involved? For relationships, what roles do the variables play?
- □ Responses:
 - Seeking mental health aid or not is
 - Size is and Appetite is and

Cengage Learning

Definitions

- □ A **random** occurrence is one that happens by chance alone, and not according to a preference or an attempted influence.
- □ **Probability:** formal study of the chance of occurring in a random situation.
- □ **Statistical Inference**: drawing conclusions about population based on sample.

Looking Ahead: Probability and Inference are linked through their roles in the 4-stage process of Statistics.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

11.28

28

Statistics as Four-Stage Process

- **□** Data Production
- □ Displaying and Summarizing
- □ Probability
- **□** Statistical Inference

Looking Ahead: Besides the word "probability", a Probability statement may use the word "chance" or "likelihood" (the only synonyms available).

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.29

29

Data Production

- □ Use a good sampling design to get an unbiased sample so we can ultimately generalize from sample to population (Part 4)
- □ Create a good **study design** so what we learn is unbiased summary of what's true about the variables in our sample (Part 2)

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

Sampling: First Step in Data Production

Each student chooses a whole number at random from 1 to 20.

Are the selections truly unbiased? A show of hands may indicate that certain numbers are favored over others...

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.37

37

Example: Bias in Sampling

- **Background**: Professor seeks opinions of 5 from 50 class members about textbook...
- 1. Have students raise hand if they'd like to give an opinion
- 2. Sample the next 5 students coming to office hours
- 3. Pick 5 names "off the top of his head"
- **Questions:** Is each sampling method biased? If so, how?
- **□** Responses:
- 1.
- 2.
- 3.

©2011 Brooks/Cole, Cengage Learning L1.40

Definition

□ **Bias:** tendency of an estimate to deviate in one direction from a true value

Some sources of bias:

selection bias: due to unrepresentative sample, rather than to flawed study design

- sampling frame doesn't match population
- self-selected (volunteer) sample
- □ haphazard sample
- □ convenience sample
- □ non-response

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.38

38

Example: More Bias in Sampling

- **Background**: Professor seeks opinions of 5 from 80 class members about textbook...
- 1. Assign each student in classroom a number (1, 2, 3, ...), then use software to select 5 at random...
- 2. Take a random sample from the roster of students enrolled; mail them anonymous questionnaire...
- **Questions:** Is each sampling method biased? If so, how?
- □ Responses:

2. _____

©2011 Brooks/Cole, Cengage Learning

Elementary Statistics: Looking at the Big Pictu

Definitions

- □ **Probability sampling plan** incorporates randomness in the selection process so rules of probability apply.
- □ **Simple random sample** is taken at random and without replacement.
- □ Stratified random sample takes separate random samples from groups of similar individuals (strata) within the population.

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.43

43

Four Processes of Statistics 1. Data Production: Take sample data from the population, with sampling and study designs that POPULATION avoid bias. Displaying and Summarizing: SAMPLE Use appropriate displays and summaries of the sample data, according to variable types PROBABILITY . Probability: Assume we know what's true for the population: INFERENCE how should random samples 4. Statistical Inference: Assume we only know what's true about sampled values of a single variable or relationship; what can we infer about the larger The Data Production stage entails not only selecting a sample, but also

designing a study to learn about the variables of interest for that sample.

Definitions

- □ Cluster sample selects small groups (clusters) at random from within the population (all units in each cluster included).
- Multistage sample stratifies in stages, randomly sampling from groups that are successively more specific.
- **Systematic sampling plan** uses methodical but non-random approach (select individuals at regularly spaced intervals on a list).

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.44

44

Definitions

- □ **Observational study**: researchers record variables' values as they naturally occur (can be retrospective or prospective).
- □ Sample survey: observational study with self-reported values, often opinions
- □ **Experiment:** researchers manipulate explanatory variable, observe response
- □ **Anecdotal evidence:** personal accounts by one or a few individuals selected haphazardly or by convenience. (*To be avoided.*)

©2011 Brooks/Cole Cengage Learning ementary Statistics: Looking at the Big Picture

L1.46

©2011 Brooks/Cole

Cengage Learning

One Possible Study Design: Sample Surveys

- **□** Types of Study Design
 - Experiment: researchers control explanatory variable
 - Observational study: values occur naturally
 - □ Special case: sample surveys (often self-reported).
- □ Two steps in Data Production
 - Obtain an unbiased sample.
 - Assess variables' values to obtain unbiased summary of sample.
 - □ Design survey questions to assess values without bias.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.47

47

Sample Survey Design: Issues to Consider

- □ Open vs. closed questions
- □ Unbalanced response options
- □ Leading questions or planting ideas with questions
- Complicated questions
- □ Sensitive questions
- □ Hard-to-define concepts

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.49

Example: Formulating a Survey Question

- **Background:** A popular 2005 movie sparked speculation: how common is it for a 40-year-old male to be a virgin?
- □ **Question:** Assuming you had a representative sample of 40-year-old males, what survey question would you ask to find out what proportion are virgins?

Students can jot down question & discuss after covering issues in survey question design.

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L1.48

48

Example: Open vs. Closed Questions

- **Background:** An exam may feature these...
- Ouestions:
- What kind of question is this?(a) open (b) closed
- 2. What is an open question?
- **□** Responses:
- (Choose one) (a) open (b) closed
- 2.

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture Practice: 3.60 p.66

Definitions

- □ An **open question** does not have a fixed set of response options.
- □ A **closed question** either provides or implies a fixed set of possible responses.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.52

52

Example: Unbalanced Response Options

- **Background:** 91% of Americans surveyed rated their own health as good to excellent.
- Questions:
 - Is this result surprising to you?
 - If so, does it seem unexpectedly high or low?
- □ Responses:
 - ____

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.56

Example: Overly Restrictive Options

- **Background:** A neuroscientist asked survey respondents, "How often do you dream in color? Answer always/sometimes/never"
- Question: What is the most important improvement that should be made to this survey question?
- □ Response:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 3.11 p.44

L1.54

54

Example: Unbalanced Response Options

■ **Background:** 91% of Americans surveyed rated their own health as good to excellent. Options provided were

Excellent / Very Good / Good / Fair / Poor

- □ **Question:** Now is the result surprising?
- ☐ Response:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 3.14 p.44

Example: Deliberate Bias

- **Background:** The following question was posted on <u>www.a-human-right.com</u>: If my child or my spouse were assaulted, I would...(choose one)
 - 1. Run away and hope my kid or spouse can keep up
 - 2. Be a good witness so I can tell the cops what happened later
 - 3. Try to convince the attacker to stop through verbal persuasion
 - 4. Fight to stop the attack
- **Question:** Do we know what response the surveyor wants us to choose?
- **□** Response:

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 3.16 p.44

1160

60

Example: Complicated Question

- **Background:** A telephone surveyor asked a homemaker to agree or disagree with this:
 - "I don't go out of my way to purchase low-fat foods unless they're also low in calories."
- □ **Question:** How can this survey question be improved?
- □ Response:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 3.21d p.45

L1.63

Deliberate Bias

If it's clear what response the surveyor wants, then the results are not useful from a statistical standpoint.

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L1.61

61

Example: A Controversial Question

■ **Background:** Anonymous PA Youth Survey given to 6th-12th public school students asked:

How old were you when you first...

- got suspended from school
- got arrested
- carried a handgun...etc.

Choose: never have / 10 or younger / 11 / 12 / .../17

- Ouestions:
 - Why did parents object?
 - Why was the question worded this way?
- Responses:

©2011 Brooks/Cole,

Elementary Statistics: Looking at the Big Picture Practice: 3.25 p.45

Example: Keyboards for Sense of Anonymity

- **Background:** A stats computer tutor was piloted in a class where students consented to be identified by name. Still, one student filled in the text boxes with obscenities.
- Question: Why did the student write inappropriately in the computer lab, and not on his hard-copy homeworks or exams?
- □ Response:

A Closer Look: This tendency is used to researchers' advantage when seeking responses to sensitive questions.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 3.27 p.46

1168

68

Example: Formulating a Survey Question

- **Background:** Earlier we asked, "Assuming you had a representative sample of 40-year-old males, what survey question would you ask to find out what proportion are virgins?"
- □ **Question:** Are you satisfied with the phrasing of your question; if not, how would you rephrase it?
- □ **Response:** Consider
 - Open or closed?
 - If closed, what response options are provided?
 - Is question designed to elicit honest responses?
 - Is the concept well-defined?

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Pictur

1.71

Example: Hard-to-Define Concepts

- Background: A survey found 19% of Americans believe money can buy happiness.
 - R. Frost: "Happiness makes up in height for what it lacks in length."
 - A. Camus: "But what is happiness except the simple harmony between a man and the life he leads?"
- Questions:
 - By Frost's definition, can money buy happiness?
 - By Camus's definition, can money buy happiness?
 - What definition of happiness were respondents using?
- Responses:

Frost:						

- Camus:
- Respondents:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 3.28 p.46

11.70

70

Lecture Summary (Introduction, Sampling)

- Variables
 - Categorical or quantitative
 - Explanatory or response
- **□** Summaries
 - **Categorical:** count, proportion, percentage
 - Quantitative: mean
- □ **4 Processes:** Data Production, Displaying and Summarizing, Probability, Inference
- □ **Data Production:** need unbiased sampling and unbiased study design
- **□** Types of Bias
- **□** Types of Samples

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

Lecture Summary (Sample Surveys)

- □ Open vs closed questions
- □ Unbalanced response options
- Leading questions
- Complicated questions
- □ Sensitive questions
- □ Hard-to-define concepts

©2011 Brooks/Col Cengage Learning Elementary Statistics: Looking at the Big Picture