Lecture 4: 4.1 Finish Categorical; 4.2 Begin Quantitative Variables (Displays, Begin Summaries)

- □Details about Categorical Displays, Summaries
- □Quan: Summarize with Shape, Center, Spread
- □Displays: Stemplots, Histograms
- □Five Number Summary, Outliers, Boxplots

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

rning

_

Two or More Possible Values

Looking Ahead: In Probability and Inference, most categorical variables discussed have just **two** possibilities.

Still, we often summarize and display categorical data with **more than two** possibilities.

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.3

Looking Back: Review

- **□** 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-3)
 - Displaying and Summarizing
 - □ Single variables: 1 cat. (Lectures 3-4), 1 quantitative
 - Relationships between 2 variables
 - Probability
 - Statistical Inference

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.2

Example: Proportions in Three Categories

- □ **Background**: Student wondered if she should resist changing answers in multiple choice tests. "Ask Marilyn" replied:
 - 50% of changes go from wrong to right
 - 25% of changes go from right to wrong
 - 25% of changes go from wrong to wrong
- □ **Question:** How to display information?
- **□** Response:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

Definition

□ **Bar graph:** shows counts, percents, or proportions in various categories (marked on horizontal axis) with bars of corresponding heights

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.6

5

Overlapping Categories

If more than two categorical variables are considered at once, we must note the possibility that categories overlap.

Looking Ahead: In Probability, we will need to distinguish between situations where categories do and do not overlap.

2011 Brooks/Cole engage Learning Elementary Statistics: Looking at the Big Picture

L4.9

Example: Bar Graph

- □ **Background**: Instructor can survey students to find proportion in each program.
- Questions:
 - How can we display the information?
 - What should we look for in the display?
- **□** Responses:

Look for

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture Practice: 4.6a p.80

L4

8

Example: Overlapping Categories

- **Background**: Report by ResumeDoctor.com on over 160,000 resumes:
 - 13% said applicant had "communication skills"
 - 7% said applicant was a "team player"
- □ **Question:** Can we conclude that 20% claimed communication skills or team player?
- **□** Response:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

Processing Raw Categorical Data

Small categorical data sets are easily handled without software.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.12

12

Looking Back: Review

□ 4 Stages of Statistics

- Data Production (discussed in Lectures 1-3)
- Displaying and Summarizing
 - □ Single variables: 1 cat. (Lectures 3-4), 1 quantitative
 - □ Relationships between 2 variables
- Probability
- Statistical Inference

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.16

Example: Proportion from Raw Data

□ **Background**: Harvard study claimed 44% of college students are binge drinkers. Agree on survey design and have students self-report: on one occasion in past month, alcoholic drinks more than 5 (males) or 4 (females)? *Or use these data*:

yes	no	yes	no	no	yes	
no	yes	yes	no	yes	no	
yes	yes	no	no	yes	yes	
yes	no	yes	yes	no	no	
yes	no	yes	yes	yes	yes	
no	no	yes	no	yes	no	
no	yes	no	no	yes	no	
no	no	no	no	yes	yes	
yes	no	no	no	no	no	
no	no	no	no	no	no	
no	ves	ves	no	no	ves	

- Question: Are data consistent with claim of 44%?
- □ Response:

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.7a p.80

L4.15

15

Example: Issues to Consider

- **Background**: Intro stat students' earnings (in \$1000s) previous year: 12, 3, 7, 1, ... [survey was anonymous].
- Questions:
 - What population do the data represent?
 - Were responses unbiased?
- **□** Responses:
 - All students at that university, if sample was representative in terms of
 - Probably unbiased because

Looking Back: These are data production issues.

©2011 Brooks/Cole, Cengage Learning

ementary Statistics: Looking at the Big Picture Practice: 4.17 p.92

/2 L4.1

Example: More Issues to Consider

- **Background**: Intro stat students' earnings (in \$1000s) previous year: 12, 3, 7, 1, ... [survey was anonymous].
- Ouestions:
 - How do we summarize the data?
 - Sample average was \$3776. Can we conclude population average was less than \$5000?
- **□** Responses:
 - Mean and other summaries are the focus of this part.
 - _____

Looking Ahead: This is an inference question, to be addressed in Part Four.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.29c p.104

1420

20

Definitions

- □ **Symmetric distribution**: balanced on either side of center
- □ Skewed distribution: unbalanced (lopsided)
- □ **Skewed left:** has a few relatively low values
- □ **Skewed right:** has a few relatively high values
- □ **Outliers:** values noticeably far from the rest
- □ Unimodal: single-peaked
- □ **Bimodal:** two-peaked
- □ Uniform: all values equally common (flat shape)
- **Normal:** a particular symmetric bell-shape

©2011 Brooks/Cole, Cengage Learning lementary Statistics: Looking at the Big Picture

L4.22

Definitions

□ **Distribution**: tells all possible values of a variable and how frequently they occur

Summarize distribution of a quantitative variable by telling shape, center, spread.

- Shape: tells which values tend to be more or less common
- □ **Center**: measure of what is typical in the distribution of a quantitative variable
- □ **Spread:** measure of how much the distribution's values vary

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.21

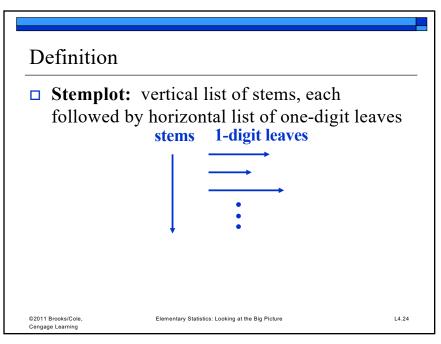
21

Displays of a Quantitative Variable

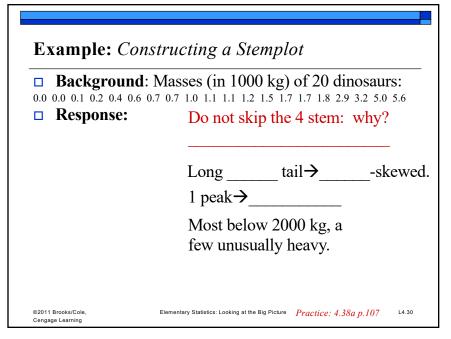
Displays help see the shape of the distribution.

□ Stemplot

- Advantage: most detail
- Disadvantage: impractical for large data sets


□ Histogram

- Advantage: works well for any size data set
- Disadvantage: some detail lost


Boxplot

- Advantage: shows outliers, makes comparisons C→Q
- Disadvantage: much detail lost

©2011 Brooks/Cole Cengage Learning ementary Statistics: Looking at the Big Picture

24

Example: Constructing a Stemplot

□ Background: Masses (in 1000 kg) of 20 dinosaurs:
0.0 0.0 0.1 0.2 0.4 0.6 0.7 0.7 1.0 1.1 1.1 1.2 1.5 1.7 1.7 1.8 2.9 3.2 5.0 5.6
□ Question: Display with stemplot; what does it tell us about the shape?

25

Modifications to Stemplots

- □ Too few stems? **Split...**
 - Split in 2: 1st stem gets leaves 0-4, 2nd gets 5-9
 - Split in 5: 1st stem gets leaves 0-1, 2nd gets 2-3, etc.
 - **Split in 10:** 1st gets 0, ..., 10th gets 9.
- □ *Too many stems?* **Truncate** last digit(s).

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

Example: Splitting Stems

□ **Background**: Credits taken by 14 "other" students:

4 7 11 11 11 13 13 14 14 15 17 17 17 18

- □ **Questions:** What shape do we guess for non-traditional (other) students? How to construct stemplot to make shape clear?
- □ Responses:
 - Expect shape -skewed due to
 - Stemplot: 1st attempt has too few stems

0 | 4 7

1 | 1 1 1 3 3 4 4 5 7 7 7 8 so split 2 ways:

©2011 Brooks/Cole,

Elementary Statistics: Looking at the Big Picture

L4.33

33

Displays of a Quantitative Variable

- **□** Stemplot
- □ Histogram
- **□** Boxplot

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.36

Example: Truncating Digits

□ **Background**: Minutes spent on computer day before

0 10 20 30 30 30 30 45 45 60 60 60 67 90 100 120 200 240 300 420

- **Question:** How to construct stemplot to make shape clear?
- **Response:** Stems 0 to 42 too many: *truncate* last digit, work with 100's (stems) and 10's (leaves):

Skewed _____: most times less than 100 minutes, but a few had unusually long times.

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture $Practice: 4.25b \ p.92$

142

35

Definition

- ☐ **Histogram:** to display quantitative values...
 - Divide range of data into intervals of equal width.
 - 2. Find count or percent or proportion in each.
 - Use horizontal axis for range of data values, vertical axis for count/percent/proportion in each.

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Pictu

Example: Constructing a Histogram

□ **Background**: Prices of 12 used upright pianos:

100 450 500 650 695 1100 1200 1200 1600 2100 2200 2300

- **Question:** Construct a histogram for the data; what does it tell us about the shape?
- **□** Response:

We opted to put 500 as left endpoint of 2nd interval; be consistent (a price of 1000 would go in 3rd interval, not 2nd).

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture Practice: 4.27a p.103 L4.40

40

Definitions

- ☐ **Median:** a measure of center:
 - the middle for odd number of values
 - average of middle two for even number of values
- □ Quartiles: measures of spread:
 - 1st Quartile (O1) has one-fourth of data values at or below it (middle of smaller half)
 - 3rd Quartile (O3) has three-fourths of data values at or below it (middle of larger half)

(By hand, for odd number of values, omit median to find quartiles.)

Cengage Learning

Elementary Statistics: Looking at the Big Picture

L4.42

Definitions (Review)

- □ Shape: tells which values tend to be more or less common
- □ Center: measure of what is typical in the distribution of a quantitative variable
- □ **Spread:** measure of how much the distribution's values vary

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L4.41

41

Definitions

Percentile: value at or below which a given percentage of a distribution's values fall

A Closer Look: Q1 is 25th percentile, Q3 is 75th percentile.

- Range: difference between maximum and minimum values
- Interquartile range: tells spread of middle half of data values, written IQR=Q3-Q1

@2011 Brooks/Cole Cengage Learning

Ways to Measure Center and Spread

- **□** Five Number Summary:
 - 1. Minimum
 - 2. Q1
 - 3. Median
 - 4. Q3
 - 5. Maximum
- Mean and Standard Deviation (more useful but less straightforward to find)

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L4.44

44

Definition The 1.5-Times-IQR Rule identifies outliers: below Q1-1.5(IQR) considered low outlier above Q3+1.5(IQR) considered high outlier 1.5-Times-IQR Rule to Identify Outliers IQR=Q3-Q1 1.5*IQR 1.5*IQR 1.5*IQR 1.5*IQR 1.5*IQR 1.5*IQR 1.5*IQR 1.5*IQR 1.5*IQR 1.5*IQR

Background : Credits taken by 14 non-traditional students: 4 7 11 11 11 13 13 14 14 15 17 17 17 18
Question: What are Five Number Summary, range, and IQRS
Response:
1. Minimum:
2. Q1:
3. Median:
4. Q3:
5. Maximum:

46

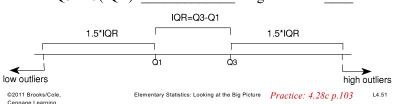
Displays of a	isplays of a Quantitative Variable					
□ Stemplot						
□ Histogram						
Boxplot						
_						
©2011 Brooks/Cole, Cengage Learning	Elementary Statistics: Looking at the Big Picture	L4.48				

Definition

A **boxplot** displays median, quartiles, and extreme values, with special treatment for outliers:

- 1. Bottom whisker to minimum non-outlier
- 2. Bottom of box at Q1
- 3. Line through box at median
- 4. Top of box at Q3
- 5. Top whisker to maximum non-outlier

Outliers denoted "*".


©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L4.49

49

Example: Constructing Boxplot □ Background: Credits taken by 14 non-traditional students had 5 No. Summary: 4, 11, 13.5, 17, 18 □ Question: How is the boxplot constructed? □ Response: Typical credits about 13.5, middle half between 11 and 17, shape is left-skewed Maximum=18→ Q3=17→ Median=13.5→ Q1=11→ 89 9 Minimum 4→ 4 ©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.28c p.108 L4.53

- **Background**: Credits taken by 14 non-traditional students had 5 No. Summary: 4, 11, 13.5, 17, 18
- □ **Questions:** Are there outliers?
- Responses: Q1=___, Q3=___
 - IQR=_____
 - 1.5×IQR=
 - Q1-1.5(IQR)=____: Low outliers? ____.
 - Q3+1.5(IQR)= : High outliers?

51

Lecture Summary

(Finish Cat.; Quantitative Displays, Begin Summaries)

- □ **Issues about Categorical Variables:** Two or more possibilities? Categories overlap? Handle raw data?
- **□** Quantitative Variables
 - **Display:** stemplot, histogram
 - **Shape:** Symmetric or skewed? Unimodal? Normal?
 - Center and Spread
 - □ median and range, IQR
 - identify outliers
 - display with boxplot

©2011 Brooks/Cole Cengage Learning

mentary Statistics: Looking at the Big Pictur