Lecture 5: Chapter 4, Sections 3-4 Quantitative Variables (Summaries, Begin Normal)

- □Mean vs. Median
- ■Standard Deviation
- □Normally Shaped Distributions
- □68-95-99.7 Rule for Normal Distributions
- ■Normal Histogram Approximated by Curve
- □z-scores

©2011 Brooks/Cole, Cengage

Elementary Statistics: Looking at the Big Picture

Ways to Measure Center and Spread

- □ Five Number Summary (already discussed)
- Mean and Standard Deviation

2011 Brooks/Cole, Elementary Statistics: Looking at the Big Picture

Looking Back: Review

- **□** 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-3)
 - Displaying and Summarizing
 - □ Single variables: 1 categorical, 1 quantitative
 - Relationships between 2 variables
 - Probability
 - Statistical Inference

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.2

2

Definition

■ **Mean**: the arithmetic average of values. For *n* sampled values, the mean is called "x-bar":

$$\bar{x} = \frac{x_1 + \dots + x_n}{n}$$

 \Box The mean of a population, to be discussed later, is denoted " μ " and called "mu".

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

Example: Calculating the Mean

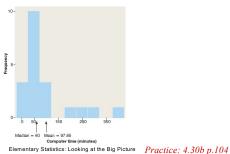
- **Background**: Credits taken by 14 "other" students: 4 7 11 11 11 13 13 14 14 15 17 17 17 18
- **Question:** How do we find the mean number of credits?
- **□** Response:

Example: Mean vs. Median (Skewed Right)

Background: Output for students' computer times:

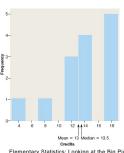
45 45 60 90 100 120 200 240 300 420 Variable Median TrMean StDev computer 60.0 85.4 109.7 24.5

- **Question:** Why is the mean (97.9) more than the median (60)?
- **Response:**



Cengage Learning

- **Background**: Credits taken by 14 "other" students: 4 7 11 11 11 13 13 14 14 15 17 17 17 18
- **Question:** Why is the mean (13) less than the median (13.5)?
- **Response:**



©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture Practice: 4.26d-e p.103 L5.8

Role of Shape in Mean vs. Median

□ Symmetric:

mean approximately equals median

□ Skewed left / low outliers:

mean less than median

□ Skewed right / high outliers:

mean greater than median

Cengage Learning

Elementary Statistics: Looking at the Big Picture

Mean vs. Median as Summary of Center

- □ Pronounced skewness / outliers → Report median.
- □ Otherwise, in general →
 Report mean (contains more information).

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.12

12

Definition

□ **Standard deviation**: square root of "average" squared distance from mean \bar{x} . For n sampled values the standard deviation is

$$s = \sqrt{\frac{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}}$$

Looking Ahead: Ultimately, squared deviation from a sample is used as estimate for squared deviation for the population. It does a better job as an estimate if we divide by n-1 instead of n.

s refers to sample, σ (sigma) refers to population

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.14

Ways to Measure Center and Spread

- □ Five Number Summary
- Mean and Standard Deviation

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

13

Interpreting Mean and Standard Deviation

- □ Mean: typical value
- □ **Standard deviation:** typical distance of values from their mean

(Having a feel for how standard deviation measures spread is much more important than being able to calculate it by hand.)

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Pictu

L5.15

Example: Guessing Standard Deviation

- **Background:** Household size in U.S. has mean approximately 2.5 people.
- Question: Which is the standard deviation?
 (a) 0.014 (b) 0.14 (c) 1.4 (d) 14.0
- □ Response:

Sizes vary; they differ from ____ by about ___

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.36d p.106

15 17

17

Example: Estimating Standard Deviation

- **Background:** Consider ages of students...
- **Question:** Guess the standard deviation of...
 - 1. Ages of all students in a high school (mean about 16)
 - 2. Ages of high school seniors (mean about 18)
 - 3. Ages of all students at a university (mean about 20.5)
- **□** Responses:
 - 1. standard deviation
 - 2. standard deviation _____
 - 3. standard deviation

Looking Back: What distinguishes this style of question from an earlier one that asked us to choose the most reasonable standard deviation for household size? Which type of question is more challenging?

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.21

Example: Standard Deviations from Mean

- **Background:** Household size in U.S. has mean 2.5 people, standard deviation 1.4.
- Question: About how many standard deviations above the mean is a household with 4 people?
- **□** Response:

Looking Ahead: For performing inference, it will be useful to identify how many standard deviations a value is below or above the mean, a process known as "standardizing".

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.38b p.107

1 5 10

19

Example: Calculating a Standard Deviation

- □ **Background**: Hts (in inches) 64, 66, 67, 67, 68, 70 have mean 67.
- **Question:** What is their standard deviation?
- \square **Response:** Standard deviation *s* is sq. root of "average" squared deviation from mean:

mean=67

deviations=

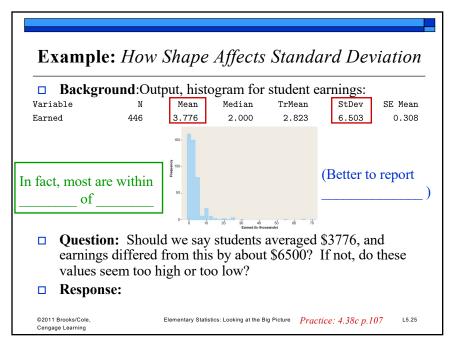
squared deviations=

"average" sq. deviation=

s=sq. root of "average" sq. deviation =

(This is the typical distance from the average height 67.)

©2011 Brooks/Cole, Cengage Learning ementary Statistics: Looking at the Big Picture



25

Focus on Area of Histogram

Can adjust vertical scale of any histogram so it shows percentage by areas instead of heights.

Then total area enclosed is 1 or 100%.

©2011 Brooks/Cole, Elementary Statistics: Looking at the Big Picture L5.27 Cengage Learning

Focus on Particular Shape: Normal

□ **Symmetric:** just as likely for a value to occur a certain distance below as above the mean.

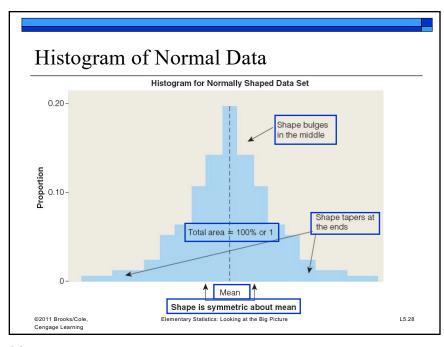
Note: if shape is normal, mean equals median

□ **Bell-shaped:** values closest to mean are most common; increasingly less common for values to occur farther from mean

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

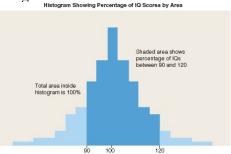
L5.26

26



Example: Percentages on a Normal Histogram

□ **Background**: IQs are normal with a mean of 100, as shown in this histogram.



- □ **Question:** About what percentage are between 90 and 120?
- □ Response:

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.46 p.119

L5.30

L5.32

30

Values of a **normal** data set have 68% within 1 standard deviation of mean 95% within 2 standard deviations of mean 99.7% within 3 standard deviations of mean

95% of values

mean+1sd

mean+2sd

mean-2sd mean-1sd

What We Know About Normal Data

If we know a data set is normal (shape) with given mean (center) and standard deviation (spread), then it is known what percentage of values occur in *any* interval.

Following rule presents "tip of the iceberg", gives general feel for data values:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.31

31

68-95-99.7 Rule for Normal Data

If we denote mean \overline{x} and standard deviation s then values of a **normal** data set have

• 68% in $(\bar{x}-1s,\bar{x}+1s)$

• 95% in $(\bar{x} - 2s, \bar{x} + 2s)$

• 99.7% in $(\bar{x} - 3s, \bar{x} + 3s)$

©2011 Brooks/Cole Cengage Learning

lementary Statistics: Looking at the Big Picti

L5.33

Cengagemean-3sd

Example: Using Rule to Sketch Histogram □ **Background**: Shoe sizes for 163 adult males normal

with mean 11, standard deviation 1.5.

Question: How would the histogram appear?

□ Response:

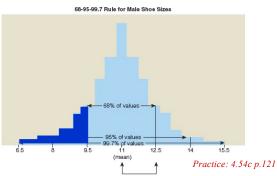


Practice: 4.54a p.121 ©2011 Brooks/Cole, Cengage Learning

35

Example: Using Rule for Tail Percentages

- **Background**: Shoe sizes for 163 adult males normal with mean 11, standard deviation 1.5.
- **Question:** What percentage are less than 9.5?
- Response:



Example: Using Rule to Summarize

- **Background**: Shoe sizes for 163 adult males normal with mean 11, standard deviation 1.5.
- **Question:** What does the 68-95-99.5 Rule tell us about those shoe sizes?
- □ Response:
 - 68% in _____
 - 95% in _____
 - 99.7% in ____

©2011 Brooks/Cole

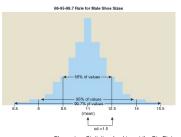
Elementary Statistics: Looking at the Big Picture

L5.37

37

Example: Using Rule for Tail Percentages

- **Background**: Shoe sizes for 163 adult males normal with mean 11, standard deviation 1.5.
- **Question:** The bottom 2.5% are below what size?
- **Response:**



©2011 Brooks/Cole Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 4.54d p.121

Cengage Learning

From Histogram to Smooth Curve

□ Start: quantitative variable with infinite possible values over continuous range.

(Such as foot lengths, not shoe sizes.)

☐ Imagine infinitely large data set.

(Infinitely many college males, not just a sample.)

□ Imagine values measured to utmost accuracy.

(Record lengths like 9.7333..., not just to nearest inch.)

- □ Result: histogram turns into smooth curve.
- ☐ If shape is normal, result is normal curve.

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

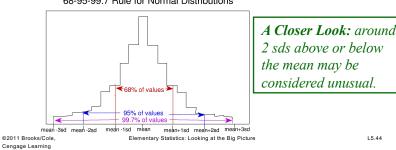
L5.42

42

68-95-99.7 Rule (Review)

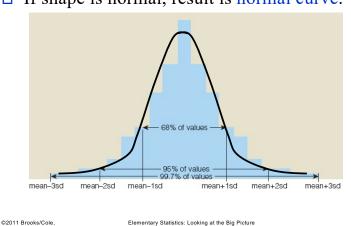
If we know the shape is normal, then values have

- □ 68% within 1 standard deviation of mean
- 95% within 2 standard deviations of mean
- □ 99.7% within 3 standard deviations of mean 68-95-99.7 Rule for Normal Distributions



From Histogram to Smooth Curve

☐ If shape is normal, result is normal curve.



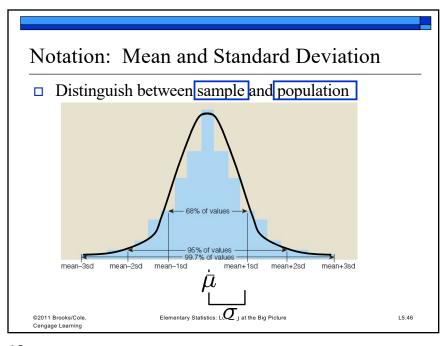
43

Quantitative Samples vs. Populations

- □ Summaries for sample of values
 - lacksquare Mean \bar{x}
 - Standard deviation S
- ☐ Summaries for population of values
 - Mean μ (called "mu")
 - Standard deviation σ (called "sigma")

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.45



46

Example: Notation for Sample or Population

■ **Background:** Adult male foot lengths are normal with mean 11, standard deviation 1.5. A sample of 9 male foot lengths had mean 11.2, standard deviation 1.7.

□ Questions:

- What notation applies to sample?
- What notation applies to population?
- **□** Responses:
 - If summarizing sample:
 - If summarizing population:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.55a-b p.121 L5.49

49

Example: When Rule Does Not Apply

- **Background:** Ages of all undergrads at a university have mean 20.5, standard deviation 2.9 (years).
- □ **Question:** How could we display the ages?
- Response:

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.62 p.122

Standardizing Normal Values

We count distance from the mean, in standard deviations, through a process called **standardizing**.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.54

54

Example: Standardizing a Normal Value

- **Background:** Ages of mothers when giving birth is approximately normal with mean 27, standard deviation 6 (years).
- Question: Are these mothers unusually old to be giving birth? (a) Age 35 (b) Age 43
- **□** Response:
 - (a) Age 35 is _____ sds above mean: Unusually old? ____
 - (b) Age 43 is _____ sds above mean: Unusually old? __

©2011 Brooks/Col Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 4.48a p.119

L5.57

68-95-99.7 Rule (Review)

If we know the shape is normal, then values have

- □ 68% within 1 standard deviation of mean
- 95% within 2 standard deviations of mean
- □ 99.7% within 3 standard deviations of mean

Note: around 2 sds above or below mean may be considered "unusual".

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

L5.55

55

Definition

z-score, or **standardized value**, tells how many standard deviations below or above the mean the original value *x* is:

$$z = \frac{\text{value-mean}}{\text{standard deviation}}$$

- □ Notation:
 - Sample: $z = \frac{x \bar{x}}{s}$
 - Population: $z = \frac{x-\mu}{\sigma}$
- □ Unstandardizing z-scores:

Original value x can be computed from z-score.

Take the mean and add z standard deviations:

$$x = \mu + z\sigma$$

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

Lecture Summary

(Quantitative Summaries, Begin Normal)

- ☐ **Mean:** typical value (average)
- □ Mean vs. Median: affected by shape
- □ Standard Deviation: typical distance from mean
- **Mean and Standard Deviation:** affected by outliers, skewness
- □ **Normal Distribution:** symmetric, bell-shape
- □ **68-95-99.7 Rule:** key values of normal dist.
- □ Sketching Normal Histogram & Curve
- □ **Notation:** sample vs. population
- □ **Standardizing:** z=(value-mean)/sd

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture