Lecture 22: Chapter 12, Section 2 Two Categorical Variables More About Chi-Square

- □Variable Roles; Sample Sizes, Confidence Int.
- □Hypotheses about Variables or Parameters
- Computing Chi-square Statistic
- □Details of Chi-square Test
- Confounding Variables

©2011 Brooks/Cole, Cengage

Explanatory/Response: 2 Categorical Variables

- Roles impact what summaries to report
- Roles do *not* impact χ^2 statistic or *P*-value

Elementary Statistics: Looking at the Big Picture

Looking Back: Review

□ 4 Stages of Statistics

- Data Production (discussed in Lectures 1-3)
- Displaying and Summarizing (Lectures 4-8)
- Probability (discussed in Lectures 9-14)
- Statistical Inference
 - 1 categorical (discussed in Lectures 14-16)
 - 1 quantitative (discussed in Lectures 16-18)
 - acat and quan: paired, 2-sample, several-sample (Lectures 19-21)
 - □ 2 categorical
 - □ 2 quantitative

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L22.2

Example: Summaries Impacted by Roles

Background: Compared proportions alcoholic (resp) for smokers and non-smokers (expl).

	Alcoholic	Not Alcoholic	Total	30 0.100
Smoker	30	200	230	$\hat{p}_1 = \frac{30}{230} = 0.130$
Nonsmoker	10	760	770	$\hat{p}_2 = \frac{10}{770} = 0.013$
Total	40	960	1,000	12 110

$$\frac{30}{40} = 0.75$$
 $\frac{200}{960} = 0.21$

- Question: What summaries would be appropriate if alcoholism is explanatory variable?
- **Response:** Compare proportions (resp) (expl).

Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 5.98a,c p.215 L22.5

Example: Comparative Summaries

Background: Calculated proportions for table:

	Alcoholic	Not Alcoholic	Total	20
Smoker	30	200	230	$\hat{p}_1 = \frac{30}{230} = 0.130$
Nonsmoker	10	760	770	$\hat{p}_2 = \frac{10}{770} = 0.013$
Total	40	960	1,000	12 //0
3	30 _ 0.75	200 _ 0.21		

 $\frac{30}{40} = 0.75$ $\frac{200}{960} = 0.21$

- **Question:** How can we express the higher risk of alcoholism for smokers and the higher risk of smoking for alcoholics?
- **Response:** Smokers are times as likely to be alcoholics compared to non-smokers. Alcoholics times as likely to be smokers compared to non-alcoholics.

©2011 Brooks/Cole,

Elementary Statistics: Looking at the Big Picture Practice: 5.98b,d p.215 L22.7

Rule of Thumb for Sample Size in Chi-Square

Sample sizes must be large enough to offset nonnormality of distributions.

Require expected counts all at least 5 in 2×2 table (Requirement adjusted for larger tables.)

Looking Back: Chi-square statistic follows chi-square distribution only if individual counts vary normally. Our requirement is extension of requirement for single categorical variables $np \ge 10, n(1-p) \ge 10$ with 10 replaced by 5 because of **summing** several components.

Elementary Statistics: Looking at the Big Picture

Guidelines for Use of Chi-Square Procedure

- Need random samples taken independently from several populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L22.8

8

Example: Role of Sample Size

Background: Suppose counts in smoking and alcohol two-way table were 1/10th the originals:

	Alcoholic	Not Alcoholic	Total
Smoker	3	20	23
Nonsmoker	1	76	77
Total	4	96	100

- **Question:** Find chi-square; what do we conclude?
- **Response:** Observed counts $1/10^{th} \rightarrow$ expected counts 1/10th →chi-square instead of 64. But the statistic does **not** follow χ^2 distribution because

expected counts (0.92, 22.08, 3.08, 73.92) are

; individual distributions are **not** normal.

Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 12.12m p.609 L22.11

Confidence Intervals for 2 Categorical Variables

Evidence of relationship→ to what extent does explanatory variable affect response?

Focus on **proportions**: 2 approaches

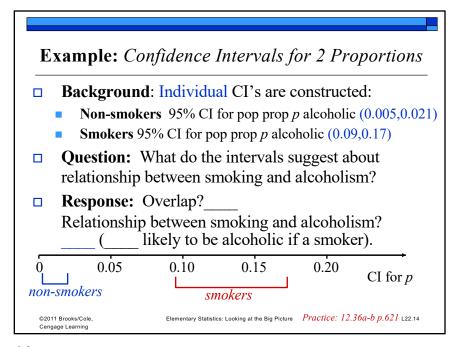
- Compare confidence intervals for population proportion in response of interest (one interval for each explanatory group)
- Set up confidence interval for difference between population proportions in response of interest, 1st group minus 2nd group

©2011 Brooks/Cole Cengage Learning Elementary Statistics: Looking at the Big Picture

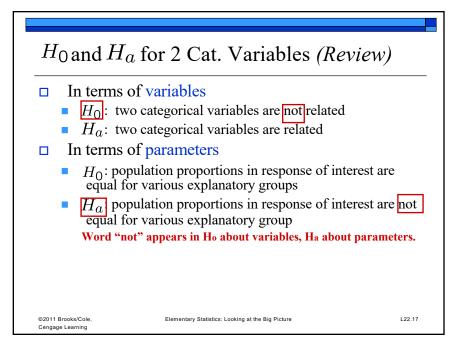
L22.12

12

Example: Difference between 2 Proportions (CI) Background: 95% CI for difference between population proportions alcoholic, smokers minus non-smokers is (0.088, 0.146) **Question:** What does the interval suggest about relationship between smoking and alcoholism? **Response:** Entire interval suggests significantly more likely to be smokers alcoholic → there a relationship. 0.05 0.10 0 0.15Elementary Statistics: Looking at the Big Picture Practice: 12.8 p.597 Cengage Learning



14



Chi-Square Statistic

Compute table of counts expected if H_0 true: each is

Expected = $\frac{\text{Column total} \times \text{Row total}}{\text{Table total}}$

- Same as counts for which proportions in response categories are equal for various explanatory groups
- Compute **chi-square** test statistic χ^2

(observed - expected) chi-square = sum of

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L22.18

18

Example: 2 Categorical Variables: Data

Background: We're interested in the relationship between gender and lenswear.

glasses All contacts none 121 32 129 282 female 11.35% 42.91% 45.74% 100.00% male 37 85 164 25.61% 22.56% 51.83% 100.00% A11 163 69 214 446

- **Question:** What do data show about sample relationship?
- **Response:** Females wear contacts more (vs.); males wear glasses more (proportions with none are close (

Elementary Statistics: Looking at the Big Picture Practice: 12.28a p.617 L22.21

"Observed" and "Expected"

Expressions "observed" and "expected" commonly used for chi-square hypothesis tests.

More generally, "observed" is our sample statistic, "expected" is what happens on average in the population when H_0 is true, and there is no difference from claimed value, or no relationship.

Variable(s)	Observed	Expected
1 Categorical	\widehat{p}	p_{O}
1 Quantitative	\bar{x}	μ_{O}
1 Cat & 1 Quan	\bar{x}_d	0
	$\bar{x}_1 - \bar{x}_2$	0
2 Categorical	Observed Counts	Expected Counts

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L22.19

19

Example: Table of Expected Counts

Background: We're interested in the relationship between gender and lenswear.

Expected	Contacts	Glasses	None	Total
Female				282
Male				164
Total	163	69	214	446

- **Question:** What counts are expected if gender and lenswear are not related?
- **Response:** Calculate each expected count as

©2011 Brooks/Cole Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 12.42b p.623 L22.23

Example: "Eyeballing" Obs. and Exp. Tables

Background: We're interested in the relationship between gender & lenswear.

> Chi-square procedure: Compare counts observed to counts expected if null hypothesis were true

Observed	Contacts	Glasses	None	Total	Expected	Contacts	Glasses	None	
Female	121	32	129	282	Female	103	44	135	
Male	42	37	85	164	Male	60	25	79	
Total	163	69	214	446	Total	163	69	214	4

- Question: Do observed and expected counts seem very different?
- **Response:**

Elementary Statistics: Looking at the Big Picture Practice: 12.12f p.609 L22.25

25

Example: Components for Comparison

Background: Components of chi-square are

 $\frac{(121 - 103)^2}{103} = 3.1 \qquad \frac{(32 - 44)^2}{44} = 3.3 \qquad \frac{(129 - 135)^2}{135} = 0.3$

Questions: Which contribute most and least to the chi-square statistic? What is chi-square? Is it large?

Responses:

largest: most impact from

smallest: least impact from

Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 12.13h p.610 L22.29

Example: Components for Comparison

Background: Observed and expected tables:

Observed	Contacts	Glasses	None	Total	Expected	Contacts	Glasses	None	Total
Female	121	32	129	282	Female	103	44	135	282
Male	42	37	85	164	Male	60	25	79	164
Total	163	69	214	446	Total	163	69	214	446

- **Question:** What are the components of chi-square?
- Response: Calculate each

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture Practice: 12.13g p.610 L22.27

27

Chi-Square Distribution (Review)

(observed - expected) f chi-square = sum of follows predictable pattern known as

chi-square distribution with df = $(r-1) \times (c-1)$

- r = number of rows (possible explanatory values)
- c = number of columns (possible response values)

Properties of chi-square:

- Non-negative (based on squares) [=0 when...?]
- Mean=df [=1 for smallest (2×2) table]
- Spread depends on df
- Skewed right

Cengage Learning

Elementary Statistics: Looking at the Big Picture

Example: Chi-Square Degrees of Freedom

Background: Table for gender and lenswear:

Observed	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- **Question:** How many degrees of freedom apply?
- **Response:** row variable (male or female) has r = 1, column variable (contacts, glasses, none) has c = ...df =

A Closer Look: Degrees of freedom tell us how many unknowns can vary freely before the rest are "locked in."

Elementary Statistics: Looking at the Big Picture

Practice: 12.42a p.623 L22.32

32

Example: Assessing Chi-Square

- Background: In testing for relationship between gender and lenswear in 2×3 table, found $\chi^2 = 18.4$.
- **Question:** Is there evidence of a relationship in general between gender and lenswear (not just in the sample)?
- **Response:** For df = $(2-1)\times(3-1) = 2$, chi-square is considered "large" if greater than 6. Is 18.6 large?

Is the *P*-value small?

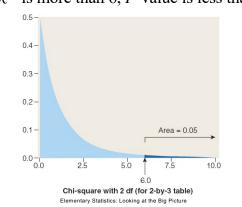
Is there statistically significant evidence of a relationship between gender and lenswear?

Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 12.42e-f p.624 L22.35

Chi-Square Density Curve

For chi-square with 2 df, $P(\chi^2 > 6) = 0.05$ \rightarrow If χ^2 is more than 6, *P*-value is less than 0.05.



33

©2011 Brooks/Cole

Example: Checking Assumptions

Background: We produced table of expected counts below right:

Observed	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

Expected	Contacts	Glasses	None	Total
Female	103	44	135	282
Male	60	25	79	164
Total	163	69	214	446

- **Question:** Are samples large enough to guarantee the individual distributions to be approximately normal, so the sum of standardized components follows a χ^2 distribution?
- **Response:**

Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 12.41c p.623 L22.37

L22.33

Example: Chi-Square with Software

■ **Background**: Some subjects injected under arm with Botox, others with placebo. After a month, reported if sweating had Expected counts are printed below observed counts decreased. Decreased NotDecreased Total

Botox 121 80.50 80.50 Placebo 121 161 40 80.50 80.50 161 161 Chi-Sq = 20.376 + 20.376 +20.376 + 20.376 = 81.503 DF = 1, P-Value = 0.000

Ouestion: What do we conclude?

□ **Response:** Sample sizes large enough? Proportions with reduced sweating Seem different? *P*-value = → diff significant?

Conclude Botox reduces sweating?

Elementary Statistics: Looking at the Big Picture Practice: 12.41a p.623 L22.39

39

Example: Confounding Variables

Background: Students of all years: $\chi^2 = 13.6, p = 0.000$

	On Campus	Off Campus	Total	Rate On Campus
Undecided	124	81	205	124/205=60%
Decided	96	129	225	96/225=43%

Underclassmen: $\chi^2 = 0.025, p = 0.873$

Underclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	117	55	172	117/172=68%
Decided	82	37	119	82/119=69%

Upperclassmen: $\chi^2 = 1.26, p = 0.262$

Upperclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	7	26	33	7/33=21%
Decided	14	92	106	14/106=13%

- **Question:** Are major (dec or not) and living situation related?
- **Response:**

Elementary Statistics: Looking at the Big Picture Practice: 12.49 p.626 L22.42

Guidelines for Use of Chi-Square (Review)

- Need random samples taken independently from two or more populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.

©2011 Brooks/Cole

Elementary Statistics: Looking at the Big Picture

L22.40

40

Activity

Complete table of total students of each gender on roster, and count those attending and not attending for each gender group. Carry out a chi-square test to see if gender and attendance are related in general.

90-707	Attend	Not Attend	Total
Female			
Male			
Total			

Cengage Learning

Elementary Statistics: Looking at the Big Picture

Lecture Summary

(Inference for Cat → Cat; Chi-Square)

- ☐ Explanatory/response roles in chi-square test
- ☐ Guidelines for use of chi-square
- □ Role of sample size
- □ Confidence intervals for 2 categorical variables

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L22.45

Lecture Summary

(Inference for Cat → Cat; More Chi-Square)

- ☐ Hypotheses about variables or parameters
- □ Computing chi-square statistic
 - Observed and expected counts
- □ Chi-square test
 - Calculations
 - Degrees of freedom
 - Chi-square density curve
 - Checking assumptions
 - Testing with software
- Confounding variables

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L22.46