Lecture 7: Chapter 5, Sections 2-3 Relationships (Two Categorical Vars; begin Two Quantitative Vars.)

- Two-Way Tables
- Summarizing and Displaying
- Comparing Proportions or Counts
- Confounding Variables
- □Display, Summarize 2 Quan. Vars; Correlation

Looking Back: Review

- □ 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-3)
 - Displaying and Summarizing
 - □ Single variables: 1 cat,1 quan (discussed Lectures 3-6)
 - □ Relationships between 2 variables:
 - Categorical and quantitative (discussed in Lecture 6)
 - Two categorical
 - Two quantitative
 - Probability
 - Statistical Inference

Single Categorical Variables (Review)

- □ Display:
 - Pie Chart
 - Bar Graph
- **□** Summarize:
 - Count or Proportion or Percentage

Add categorical explanatory variable \rightarrow display and summary of categorical responses are **extensions** of those used for single categorical variables.

Example: Two Single Categorical Variables

■ **Background**: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- **Question:** What parts of the table convey info about the individual variables gender and lenswear?
- □ Response:
 - is about gender.
 - is about lenswear.

Example: Relationship between Categorical Variables

■ **Background**: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- □ **Question:** What part of the table conveys info about the *relationship* between gender and lenswear?
- □ **Response:** ______ is about relationship.

Summarizing and Displaying Categorical Relationships

- Identify variables' roles (explanatory, response)
- □ Use rows for explanatory, columns for response
- Compare proportions or percentages in response of interest *(conditional proportions or percentages)* for various explanatory groups.
- □ Display with bar graph:
 - Explanatory groups identified on horizontal axis
 - Conditional percentages or proportions in response(s) of interest graphed vertically

Definition

□ A **conditional** percentage or proportion tells the percentage or proportion in the response of interest, given that an individual falls in a particular explanatory group.

Example: Comparing Counts vs. Proportions

■ **Background**: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- Question: Since 129 females and 85 males wore no lenses, should we report that fewer males wore no lenses?
- □ Response:
 - proportion of females with no lenswear:
 - proportion of males with no lenswear:

Example: Displaying Categorical Relationship

■ **Background**: Counts and conditional percentages produced

with software:

Rows: G	ender	Columns: I	Lenswear	
	contacts	glasses	none	All
female	121	32	129	282
	42.91	11.35	45.74	100.00
male	42	37	85	164
	25.61	22.56	51.83	100.00
All	163	69	214	446

□ **Question:** How can we display this information?

□ Response:

□ contacts□ glasses■ none

Caution: If we made lenswear explanatory, we'd compare 129/214 = 60% with no lenses female, 85/214 = 40% with no lenses male, etc. Why is this not useful?

Example: Interpreting Results

Background: Counts and conditional percentages produced

with software:

Rows: G	andar -	Columns: I	anguar	
ILOWS. G	ender	OOTUMIES.	remamear	
	contacts	glasses	none	All
female	121	32	129	282
	42.91	11.35	45.74	100.00
male	42	37	85	164
	25.61	22.56	51.83	100.00
All	163	69	214	446

- **Questions:** Are you convinced that, in general,
 - all females wear contacts more than males do?
 - all males are more likely to wear no lenses?
- **Responses:** Consider how different sample percentages are:
 - Contacts:
 - No lenses:

Looking Ahead: Inference will let us judge if sample differences are large enough to suggest a general trend. For now, we can guess that the first difference is "real", due to different priorities for importance of appearance.

Example: Comparing Proportions

■ **Background**: An experiment considered if wasp larvae were less likely to attack an embryo if it was a brother:

	Attacked	Not attacked	Total
Brother	16	15	31
Unrelated	24	7	31
Total	40	22	62

- **Question:** What are the relevant proportions to compare?
- □ Response:
 - Brother: were attacked
 - Unrelated: were attacked
 - → likely to attack a brother wasp

Another Comparison in Considering Categorical Relationships

□ Instead of considering how different are the *proportions* in a two-way table, we may consider how different the *counts* are from what we'd expect if the "explanatory" and "response" variables were in fact unrelated.

Example: Expected Counts

Background: Experiment considered if wasp larvae were less likely to attack embryo if it was a brother:

	Attacked	Not attacked	Total
Brother	16	15	31
Unrelated	24	7	31
Total	40	22	62

- **Question:** What counts would we expect to see, if being a brother had no effect on likelihood of attack?
- **Response:** Overall 40/62 attacked → expect

brothers, unrelated to be attacked; expect brothers and unrelated not to be attacked. remaining

Example: Comparing Counts

■ **Background**: Tables of observed and expected counts in wasp aggression experiment:

Obs	A	NA	T
В	16	15	31
U	24	7	31
Т	40	22	62

Exp	A	NA	T
В	20	11	31
U	20	11	31
Т	40	22	62

- □ **Question:** How do the counts compare?
- Response:

Looking Ahead: Inference (Part 4) will help decide if these differences are large enough to provide evidence that kinship and aggression are related.

Example: Expected Counts in Lenswear Table

■ **Background**: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	С	G	N	Total
F	121	32	129	282
M	42	37	85	164
Total	163	69	214	446

- **Question:** What counts would we expect to wear glasses, if there were no relationship between gender and lenswear?

males with glasses.

Example: Observed vs. Expected Counts

Background: If gender and lenswear were unrelated, we'd expect 44 females and 25 males with glasses.

	С	G	N	Total
F	121	32	129	282
M	42	37	85	164
Total	163	69	214	446

- **Question:** How different are the observed and expected counts of females and males with glasses?
- **Response:** Considerably females and wore glasses, compared to what would be expected if there were no relationship.

L7.28

Confounding Variable in Categorical Relationships

☐ If data in two-way table arise from an observational study, consider possibility of confounding variables.

Looking Back: Sampling and Design issues should always be considered before reporting summaries of single variables or relationships.

Example: Confounding Variables

Background: Survey results for full-time students:

	On Campus	Off Campus	Total	Rate On Campus
Undecided	124	81	205	124/205=60%
Decided	96	129	225	96/225=43%

- **Question:** Is there a relationship between whether or not major is decided and living on or off campus?
- **Response:**

Example: Handling Confounding Variables

- **Background**: Year at school may be confounding variable in relationship between major decided or not and living situation.
- **Question:** How should we handle the data?

Response:

-				
Underclassmen	On Campus	Off Campus	Total	· '
Undecided	117	55	172	117/172=68%
Decided	82	37	119	82/119=69%
Upperclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	7	26	33	7/33=21%
Decided	14	92	106	14/106=13%

Underclassmen (1st&2nd yr):

proportions on campus are for those with major decided or not. Upperclassmen (3rd &4th yr):

proportions are

Simpson's Paradox

If the nature of a relationship changes, depending on whether groups are combined or kept separate, we call this phenomenon "Simpson's Paradox".

Looking Back: Review

- □ 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-3)
 - Displaying and Summarizing
 - □ Single variables: 1 cat,1 quan (discussed Lectures 3-6)
 - □ Relationships between 2 variables:
 - Categorical and quantitative (discussed in Lecture 6)
 - Two categorical (just discussed in Lecture 7)
 - Two quantitative
 - Probability
 - Statistical Inference

Review

- □ Single quantitative variables
 - Display with histogram
 - Summarize with mean and standard deviation

Example: Two Single Quantitative Variables

■ **Background**: Data on male students' heights and weights:

Variable	N	Mean	Median	${\tt TrMean}$	StDev	SE Mean
height	17	69.765	69.000	69.800	2.137	0.518
weight	17	170.59	175.00	169.33	28.87	7.00

- □ **Question:** What do these tell us about the relationship between male height and weight?
- **□** Response:

Definition

- □ **Scatterplot** displays relationship between 2 quantitative variables:
 - \blacksquare Explanatory variable (x) on horizontal axis
 - \blacksquare Response variable (y) on vertical axis

Example: Explanatory/Response Roles

- **Background**: We're interested in the relationship between male students' heights and weights.
- □ **Question:** Which variable should be graphed along the horizontal axis of the scatterplot?
- Response:

Definitions

- □ Form: relationship is linear if scatterplot points cluster around some straight line
- □ **Direction:** relationship is
 - positive if points slope upward left to right
 - negative if points slope downward left to right

Example: Form and Direction

Background: Scatterplot displays relationship between male students' heights and weights.

- **Question:** What are the form and direction of the relationship?
- **Response:** Form is direction is

Strength of a Linear Relationship

- **Strong:** scatterplot points tightly clustered around a line
 - Explanatory value tells us a lot about response
- Weak: scatterplot points loosely scattered around a line
 - Explanatory value tells us little about response

Example: Relative Strengths

- □ **Background**: Scatterplots display:
 - mothers' ht. vs. fathers' ht. (left)
 - males' wt. vs. ht. (middle)
 - mothers' age vs. fathers' age (right):

- Question: How do relationships' strengths compare?(Which is strongest, which is weakest?)
- Response: Strongest is on_____, weakest is on_____

Practice: 5.37a p.193

Example: Negative Relationship

Background: Scatterplot displays price vs. age for 14 used

Pontiac Grand Am's.

- **Questions:**
 - Why should we expect the relationship to be negative?
 - Does it appear linear? Is it weak or strong?
- **Responses:**

Definition

- □ Correlation r: tells direction and strength of linear relation between 2 quantitative variables
 - **Direction:** r is
 - positive for positive relationship
 - negative for negative relationship
 - zero for no relationship
 - **Strength:** r is between -1 and +1; it is
 - close to 1 in absolute value for strong relationship
 - close to 0 in absolute value for weak relationship
 - □ close to 0.5 in absolute value for moderate relationship

Example: Extreme Values of Correlation

- □ **Background**: Scatterplots show relationships...
 - (left) Price per kilogram vs. price per pound for groceries
 - (middle) Used cars' age vs. year made
 - (right) Students' final exam score vs. order handed in

- □ **Question:** Correlations (scrambled) are -1, 0, +1. Which goes with each scatterplot?
- Response: left r =; middle r =; right r =[Segmentary Statistics: Looking at the Big Picture] Practice: 5.40 p.194

Example: Relative Strengths

- **Background**: Scatterplots display:
 - mothers' ht. vs. fathers' ht. (left)
 - males' wt. vs. ht. (middle)
 - mothers' age vs. fathers' age (right):

- **Question:** Which graphs go with which correlation: r = 0.23, r = 0.78, r = 0.65?
 - **Response:** left r =; middle r =; right r =

Example: Imperfect Relationships

Background: For 50 states, % voting Republican vs. % Democrat in 2000 presidential election had r = -0.96.

- **Questions:** Why should we expect the relationship to be negative? Why is it imperfect?
- **□** Responses:
 - Negative:
 - Imperfect:

Lecture Summary

(Categorical Relationships)

- □ Two-Way Tables
 - Individual variables in margins
 - Relationship inside table
- □ **Summarize:** Compare (conditional) proportions.
- □ **Display:** Bar graph
- □ Interpreting Results: How different are proportions?
- Comparing Observed and Expected Counts
- Confounding Variables

Lecture Summary

(Quantitative Relationships; Correlation)

- Display with scatterplot
- Summarize with form, direction, strength
- \square Correlation *r* tells direction and strength