Lecture 11: Chapter 7, Secs. 2-3 Binomial and Normal Random Variables

- Definition
- What if Events are Dependent?
- □Center, Spread, Shape of Counts, Proportions
- Normal Approximation
- ■Normal Random Variables

Looking Back: Review

- □ 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-3)
 - Displaying and Summarizing (Lectures 3-8)
 - Probability
 - □ Finding Probabilities (discussed in Lectures 9-10)
 - Random Variables (introduced in Lecture 10)
 - Binomial
 - Normal
 - Sampling Distributions
 - Statistical Inference

Definition (Review)

Discrete Random Variable: one whose possible values are finite or countably infinite (like the numbers 1, 2, 3, ...)

Looking Ahead: To perform inference about categorical variables, need to understand behavior of sample proportion. A first step is to understand behavior of sample counts. We will eventually shift from discrete counts to a normal approximation, which is continuous.

Definition

Binomial Random Variable counts sampled individuals falling into particular category;

- Sample size *n* is fixed
- Each selection independent of others
- Just 2 possible values for each individual
- Each has same probability *p* of falling in category of interest

Example: A Simple Binomial Random Variable

- lacksquare **Background**: The random variable *X* is the count of tails in two flips of a coin.
- **Questions:** Why is X binomial? What are n and p?
- Responses:
 - Sample size *n* fixed?
 - Each selection independent of others?
 - Just 2 possible values for each?
 - Each has same probability p?

Example: A Simple Binomial Random Variable

- lacksquare **Background**: The random variable *X* is the count of tails in two flips of a coin.
- \square **Question:** How do we display *X*?
- Response:

Looking Back: We already discussed and displayed this random variable when learning about probability distributions.

- □ **Background**: Consider following R.V.:
 - Pick card from deck of 52, replace, pick another.
 X=no. of cards picked until you get ace.
- \square **Question:** Is X binomial?
- **□** Response:

- □ **Background**: Consider following R.V.:
 - Pick 16 cards without replacement from deck of
 52. X=no. of red cards picked.
- \square **Question:** Is X binomial?
- **□** Response:

- □ **Background**: Consider following R.V.:
 - Pick 16 cards with replacement from deck of 52. W=no. of clubs, X=no. of diamonds, Y=no. of hearts, Z=no. of spades. Goal is to report how frequently each suit is picked.
- \square Question: Are W, X, Y, Z binomial?
- Response:

- □ **Background**: Consider following R.V.:
 - Pick with replacement from German deck of 32 (doesn't include numbers 2-6), then from deck of 52, back to deck of 32, etc. for 16 selections altogether. *X*=no. of aces picked.
- \square **Question:** Is *X* binomial?
- **□** Response:

- □ **Background**: Consider following R.V.:
 - Pick 16 cards with replacement from deck of 52.
 X=no. of hearts picked.
- \square **Question:** Is X binomial?
- **□** Response:
 - fixed n = 16
 - selections independent (with replacement)
 - just 2 possible values (heart or not)
 - same p = 0.25 for all selections
 - \rightarrow

Requirement of Independence

Snag:

- Binomial theory requires independence
- Actual sampling done without replacement so selections are dependent

Resolution: When sampling without replacement, selections are approximately independent if population is at least 10n.

Example: A Binomial Probability Problem

- **Background**: The proportion of Americans who are left-handed is 0.10. Of 46 presidents, 8 have been left-handed (proportion 0.17).
- □ **Question:** How can we establish if being left-handed predisposes someone to be president?
- Response: Determine if 8 out of 46 (0.17) is when sampling at random from a population where 0.10 fall in the category of interest.

Solving Binomial Probability Problems

- Use binomial formula or tablesOnly practical for small sample sizes
- Use softwareWon't take this approach until later
- Use normal approximation for count X
 Not quite: more interested in proportions
- Use normal approximation for proportion
 Need mean and standard deviation...

Example: Mean of Binomial Count, Proportion

- **Background**: Based on long-run observed outcomes, probability of being left-handed is approx. 0.1. Randomly sample 100 people.
- □ Questions: On average, what should be the
 - **count** of lefties?
 - proportion of lefties?
- □ **Responses:** On average, we should get
 - **count** of lefties _____
 - proportion of lefties _____

Mean and S.D. of Counts, Proportions

Count X binomial with parameters n, p has:

- Mean np
- Standard deviation $\sqrt{np(1-p)}$

Sample proportion $\hat{p} = \frac{X}{n}$ has:

- Mean p
- Standard deviation $\sqrt{\frac{p(1-p)}{n}}$

Looking Back: Formulas for s.d. require independence: population at least 10n.

Example: Standard Deviation of Sample Count

- **Background**: Probability of being left-handed is approx. 0.1. Randomly sample 100 people. Sample **count** has mean 100(0.1) = 10, standard deviation $\sqrt{100(0.1)(1-0.1)} = 3$
- □ **Question:** How do we interpret these?
- **Response:** On average, expect sample count = lefties.

Counts vary; typical distance from 10 is _____.

Example: S.D. of Sample Proportion

- **Background**: Probability of being left-handed is approx. 01. Randomly sample 100 people. Sample **proportion** has mean 0.1, standard deviation $\sqrt{\frac{0.1(1-0.1)}{100}} = 0.03$
- □ **Question:** How do we interpret these?
- Response: On average, expect
 sample proportion = ____ lefties.
 Proportions vary; typical distance from 0.1 is

Example: Role of Sample Size in Spread

- **Background**: Consider proportion of tails in various sample sizes *n* of coinflips.
- □ **Questions:** What is the standard deviation for
 - n=1? n=4? n=16?
- **□** Responses:
 - *n*=1: s.d.=
 - **n=4:** s.d.=
 - *n*=16: s.d.=

A Closer Look: Due to n in the denominator of formula for standard deviation, spread of sample proportion _____ as n increases.

Shape of Distribution of Count, Proportion

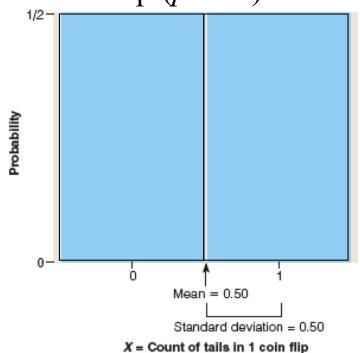
Binomial count X or proportion $\widehat{p} = \frac{X}{n}$ for repeated random samples has shape approximately normal if samples are large enough to offset underlying skewness.

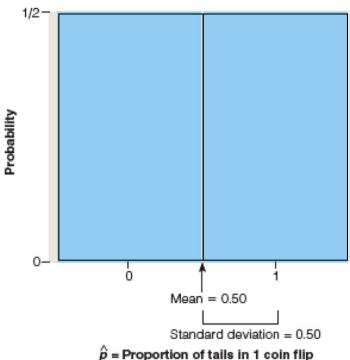
(Central Limit Theorem)

For a given sample size *n*, shapes are identical for count and proportion.

Example: Underlying Coinflip Distribution

■ **Background**: Distribution of count or proportion of tails in n=1 coinflip (p=0.5):

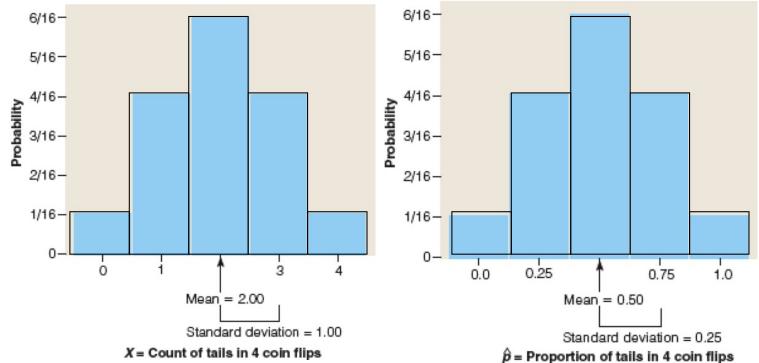




- Question: What are the distributions' shapes?
- Response:

Example: Distribution for 4 Coinflips

Background: Distribution of count or proportion of tails in n=4 coinflips (p=0.5):



- □ Question: What are the distributions' shapes?
- Response:

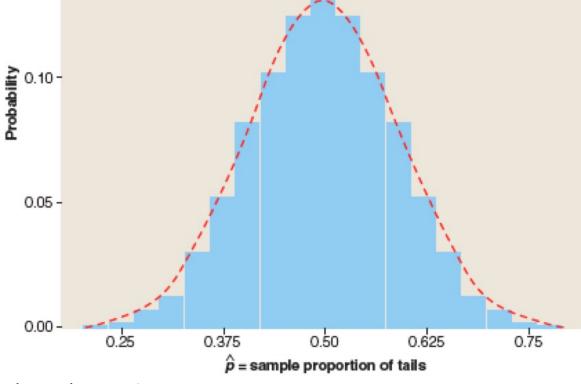
Shift from Counts to Proportions

- Binomial Theory begins with counts
- Inference will be about proportions

Example: Distribution of \widehat{p} for 16 Coinflips

■ **Background**: Distribution of **proportion** of tails in n=16

coinflips (p=0.5):

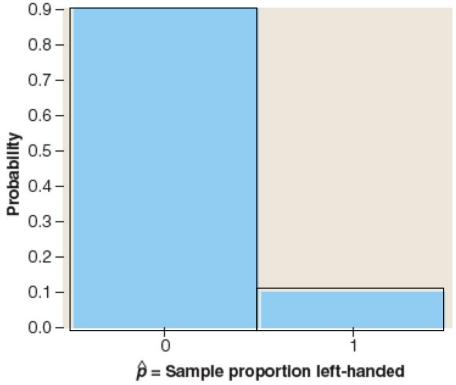


- □ **Question:** What is the shape?
- □ Response:

Example: Underlying Distribution of Lefties

Background: Distribution of **proportion** of lefties (p=0.1)

for samples of n=1:

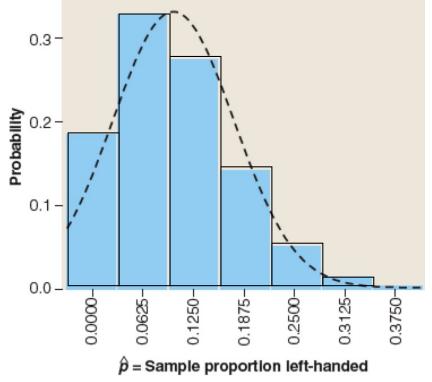


- Question: What is the shape?
- □ Response:

Example: Dist of \widehat{p} of Lefties for n = 16

Background: Distribution of proportion of lefties (p=0.1) for

n=16:

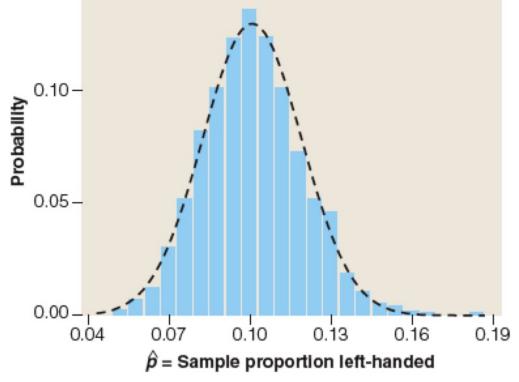


- □ **Question:** What is the shape?
- Response:

Example: Dist of \hat{p} of Lefties for n=100

■ **Background**: Distribution of proportion of lefties (p=0.1) for

n=100:



- □ **Question:** What is the shape?
- Response:

Rule of Thumb: Sample Proportion Approximately Normal

Distribution of \hat{p} is approximately normal if sample size n is large enough relative to shape, determined by population proportion p.

Require
$$np > 10$$
 and $n(1-p) \ge 10$

Together, these require us to have larger *n* for *p* close to 0 or 1 (underlying distribution skewed right or left).

Example: Applying Rule of Thumb

■ **Background**: Consider distribution of sample proportion for various *n* and *p*:

$$n=4$$
, $p=0.5$; $n=20$, $p=0.5$; $n=20$, $p=0.1$; $n=20$, $p=0.9$; $n=100$, $p=0$.

- □ **Question:** Is shape approximately normal?
- □ **Response:** Normal?
 - n=4, p=0.5 [np=4(0.5)=2<10]
 - n=20, p=0.5 [np=20(0.5)=10=n(1-p)]

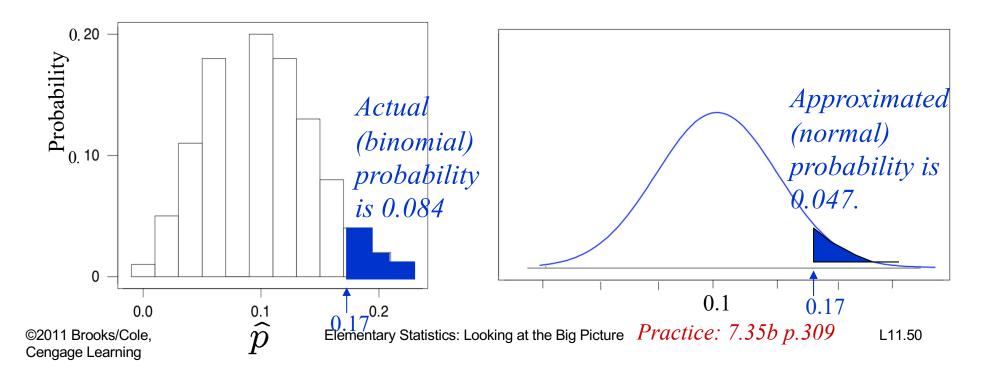
 - n=20, p=0.9 No [_____]
 - *n*=100, *p*=0.1 _____

$$[np=100(0.1)=10, n(1-p)=100(0.9)=90 \text{ both } \ge 10]$$

Example: Solving the Left-handed Problem

- **Background**: The proportion of Americans who are lefties is 0.1. Consider P($\hat{p} \ge 8/46 = 0.17$) for a sample of 46 presidents.
- **Question:** Can we use a normal approximation to find the probability that at least 8 of 46 (0.17) are left-handed?

□ Response:



Example: From Count to Proportion and Vice Versa

- **Background**: Consider these reports:
 - In a sample of 87 assaults on police, 23 used weapons.
 - 0.44 in sample of 25 bankruptcies were due to med. bills
- **Question:** In each case, what are n, X, and \widehat{p} ?
- **Response:**
 - First has $n = \underline{\hspace{1cm}}, X = \underline{\hspace{1cm}}, \widehat{p} = \underline{\hspace{1cm}}$ Second has $n = \underline{\hspace{1cm}}, \widehat{p} = \underline{\hspace{1cm}}, X = \underline{\hspace{1cm}}$

Looking Back: Review

- □ 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-3)
 - Displaying and Summarizing (Lectures 3-8)
 - Probability
 - □ Finding Probabilities (discussed in Lectures 9-10)
 - □ Random Variables (introduced in Lecture 10)
 - Binomial (just discussed in Lecture 11)
 - Normal
 - Sampling Distributions
 - Statistical Inference

Role of Normal Distribution in Inference

- Goal: Perform inference about unknown population proportion, based on sample proportion
- Strategy: Determine behavior of sample proportion in random samples with known population proportion
- Key Result: Sample proportion follows normal curve for large enough samples.

Looking Ahead: Similar approach will be taken with means.

Discrete vs. Continuous Distributions

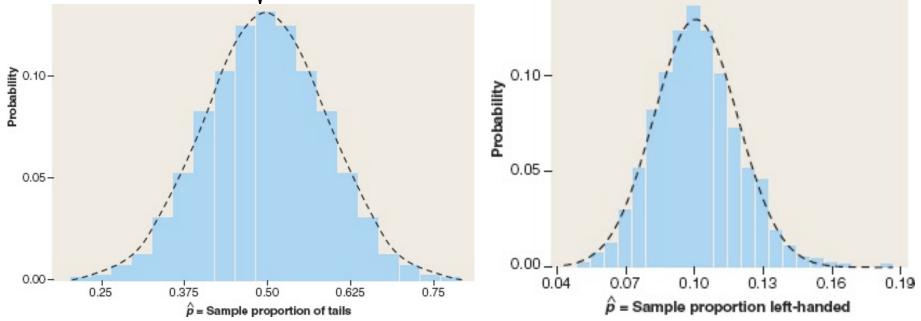
Binomial Count X

- discrete (distinct possible values like numbers 1, 2, 3, ...)
- Sample Proportion $\widehat{p} = \frac{X}{n}$
 - □ also discrete (distinct values like count)
- Normal Approx. to Sample Proportion
 - **continuous** (follows normal curve)
 - □ Mean p, standard deviation $\sqrt{\frac{p(1-p)}{n}}$

Sample Proportions Approx. Normal (Review)

- Proportion of tails in n=16 coinflips (p=0.5) has $\mu = 0.5, \sigma = \sqrt{\frac{0.5(1-0.5)}{16}} = 0.125$, shape approx normal
 - Proportion of lefties (p=0.1) in n=100 people has

 $\mu = 0.1, \sigma = \sqrt{\frac{0.1(1-0.1)}{100}} = 0.03$, shape approx normal



Example: Variable Types

■ **Background**: Variables in survey excerpt:

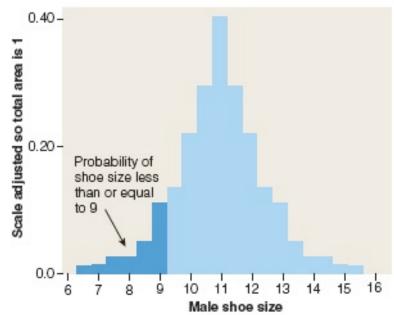
age	breakfast?	comp	credits	
19.67	no	120	15	
20.08	no	120	16	
19.08	yes	40	14	
• • •	• • •	• • •	• • •	

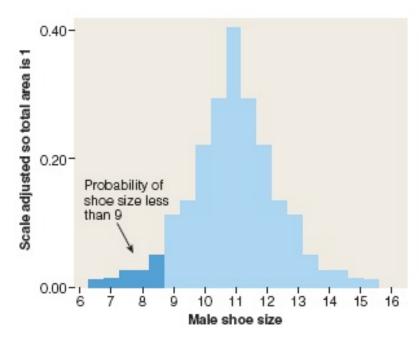
- Question: Identify type (cat, discrete quan, continuous quan)
 - Age? Breakfast? Comp (daily min. on computer)? Credits?
- □ Response:
 - Age:
 - Breakfast:
 - Comp (daily time in min. on computer):
 - Credits:

Probability Histogram for Discrete R.V.

Histogram for male shoe size *X* represents probability by area of bars

- $P(X \le 9) \text{ (on left)}$
- P(X < 9) (on right)



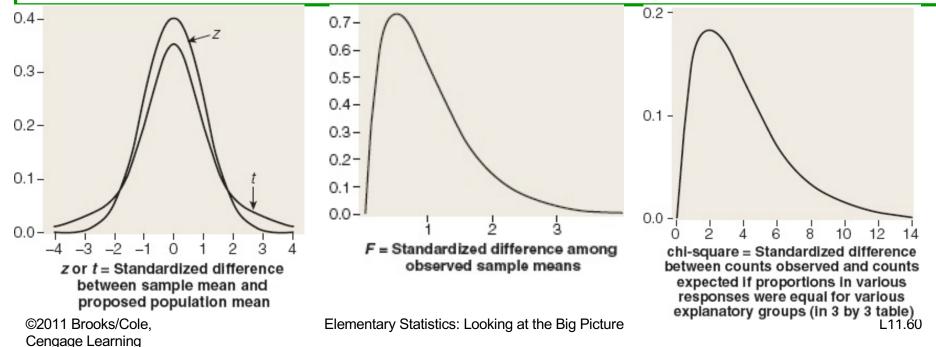


For discrete R.V., strict inequality or not matters.

Definition

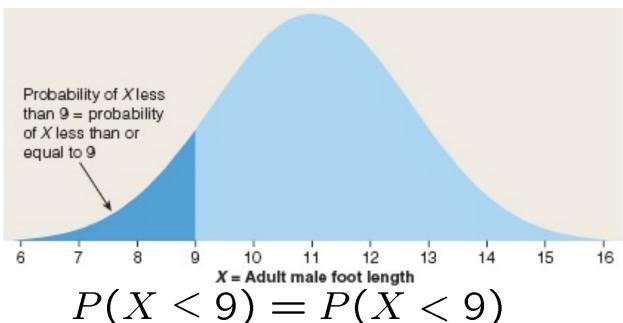
Density curve: smooth curve showing prob. dist. of continuous R.V. Area under curve shows prob. that R.V. takes value in given interval.

Looking Ahead: Most commonly used density curve is normal z but to perform inference we also use t, F, and chi-square curves.



Density Curve for Continuous R.V.

Density curve for male foot length X represents probability by area under curve.



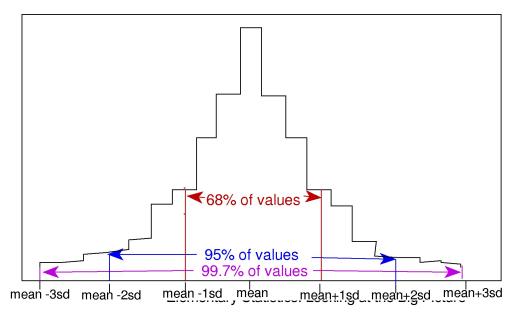
Continuous RV: strict inequality or not doesn't matter.

A Closer Look: Shoe sizes are discrete; foot lengths are continuous.

68-95-99.7 Rule for Normal Data (Review)

Values of a normal data set have

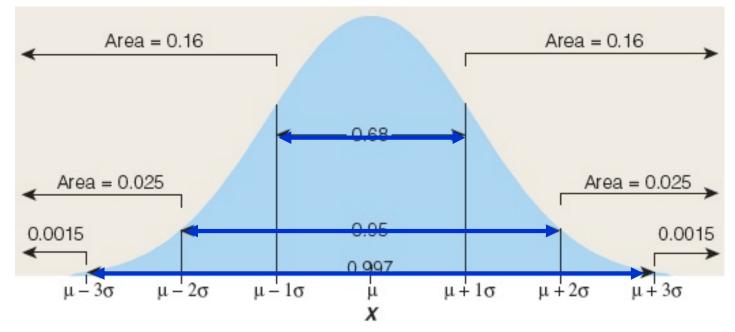
- □ 68% within 1 standard deviation of mean
- □ 95% within 2 standard deviations of mean
- 99.7% within 3 standard deviations of mean 68-95-99.7 Rule for Normal Distributions



68-95-99.7 Rule: Normal Random Variable

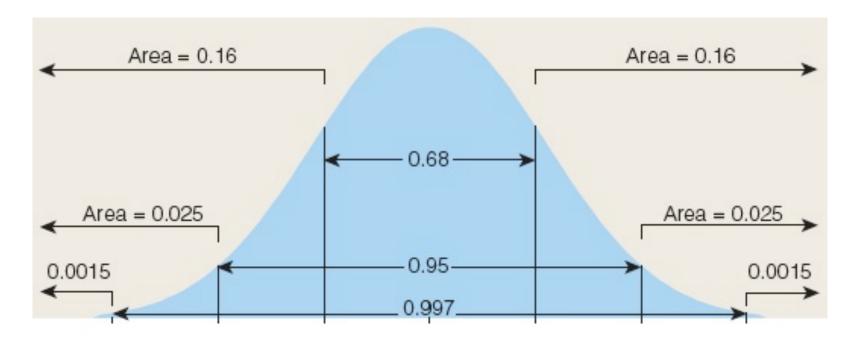
Sample at **random** from normal **population**; for sampled value *X* (a R.V.), probability is

- \square 68% that X is within 1 standard deviation of mean
- \square 95% that X is within 2 standard deviations of mean
- \square 99.7% that X is within 3 standard deviations of mean



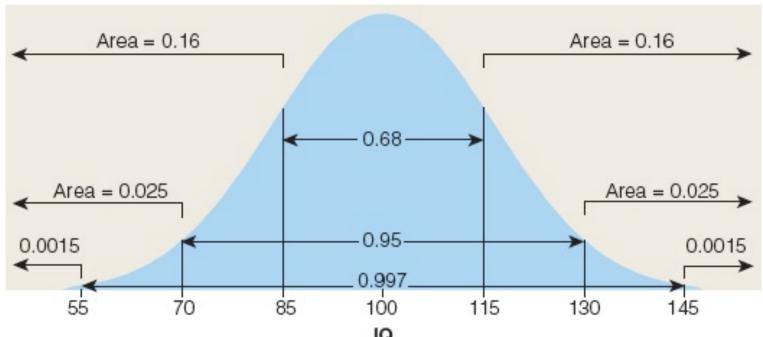
Example: *68-95-99.7 Rule for Normal R.V.*

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu = 100$, $\sigma = 15$
- \square **Question:** What does Rule tell us about distribution of X?
- \square **Response:** We can sketch distribution of X:



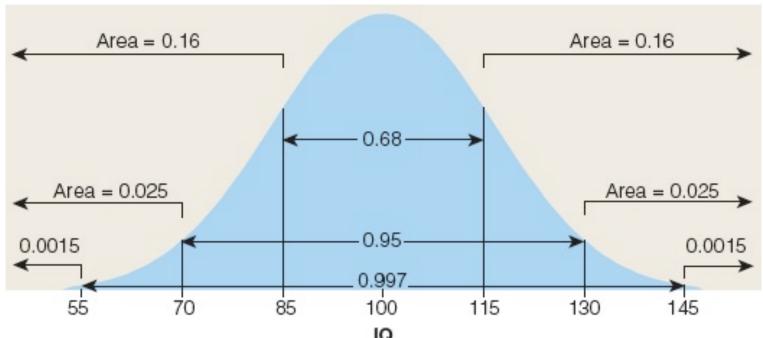
Example: Finding Probabilities with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100$, $\sigma=15$
- **Question:** Prob. of IQ between 70 and 130 = ?
- Response:



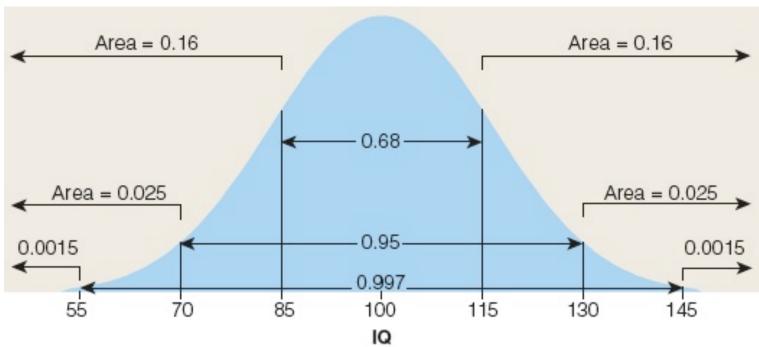
Example: Finding Probabilities with Rule

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu=100$, $\sigma=15$
- **Question:** Prob. of IQ less than 70 = ?
- □ Response:



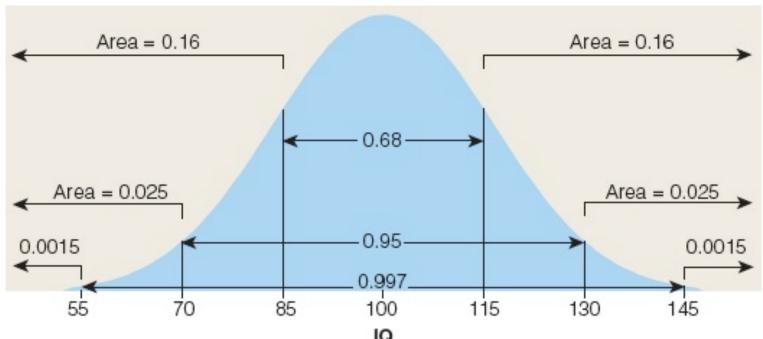
Example: Finding Probabilities with Rule

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu=100$, $\sigma=15$
- **Question:** Prob. of IQ less than 100 = ?
- Response:



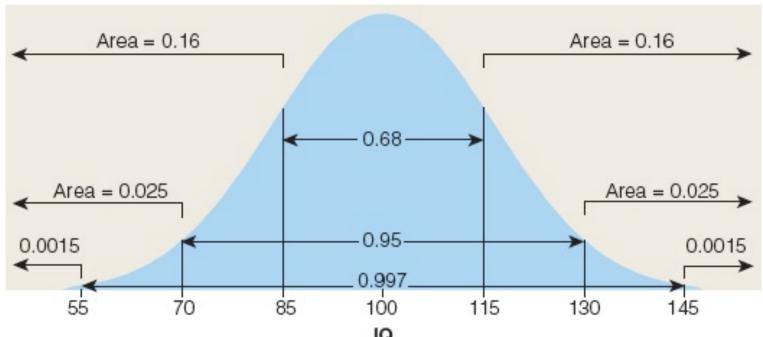
Example: Finding Values of X with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100$, $\sigma=15$
- **Question:** Prob. is 0.997 that IQ is between...?
- Response:



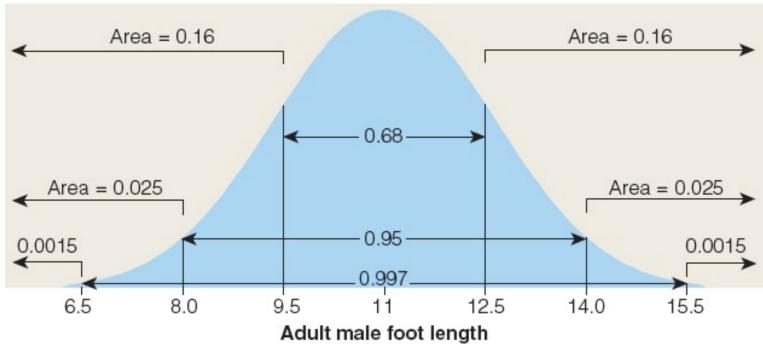
Example: Finding Values of X with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100$, $\sigma=15$
- **Question:** Prob. is 0.025 that IQ is above...?
- Response:



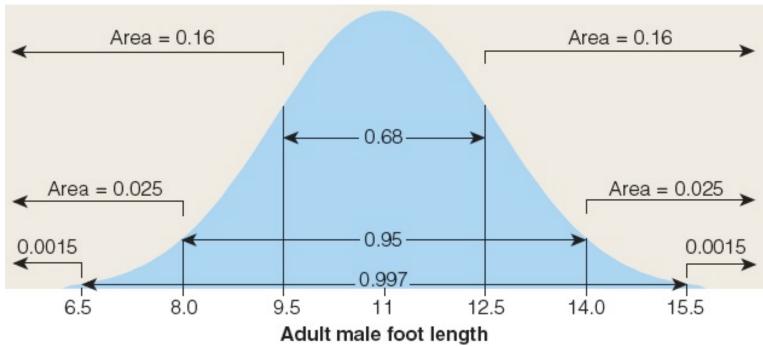
Example: Using Rule to Evaluate Probabilities

- **Background**: Foot length of randomly chosen adult male is normal R.V. X with $\mu = 11$, $\sigma = 1.5$ (in.)
- **Question:** How unusual is foot less than 6.5 inches?
- □ Response:



Example: Using Rule to Estimate Probabilities

- **Background**: Foot length of randomly chosen adult male is normal R.V. X with $\mu = 11$, $\sigma = 1.5$ (in.)
- **Question:** How unusual is foot more than 13 inches?
- □ Response:



Lecture Summary

(Binomial Random Variables)

- Definition; 4 requirements for binomial
- R.V.s that do or don't conform to requirements
- Relaxing requirement of independence
- Binomial counts, proportions
 - Mean
 - Standard deviation
 - Shape
- Normal approximation to binomial

Lecture Summary

(Normal Random Variables)

- Relevance of normal distribution
- Continuous random variables; density curves
- □ 68-95-99.7 Rule for normal R.V.s