Lecture 17: more 10.1 Inference for Quantitative Variable: *z* Tests; begin 10.2: *t* Confidence Intervals

- □z Test about Population Mean: 4 Steps
- □Examples: 1-sided or 2-sided Alternative
- □Relating Test and Confidence Interval
- □Factors in Rejecting Null Hypothesis
- □Inference Based on t vs. z
- □Begin Confidence Intervals with *t*

Looking Back: Review

□ 4 Stages of Statistics

- Data Production (discussed in Lectures 1-3)
- Displaying and Summarizing (Lectures 3-8)
- Probability (discussed in Lectures 9-14)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures 14-16)
 - □ 1 quantitative: conf. ints. L16, z hypothesis tests
 - categorical and quantitative
 - □ 2 categorical
 - □ 2 quantitative

Three Types of Inference Problem

Mean yearly earnings for sample of 446 students at a particular university was \$3,776.

- What is our best guess for the mean earnings of all students at that university?
 (Point Estimate)
- 2. What interval should contain mean earnings for all the students?(Confidence Interval)
- 3. Is this convincing evidence that mean earnings for all the students is less than \$5,000?(Hypothesis Test)

Behavior of Sample Mean (Review)

For random sample of size n from population with mean μ and standard deviation σ , sample mean \bar{X} has

- \blacksquare mean μ
- standard deviation $\frac{\sigma}{\sqrt{n}}$
- shape approximately normal for large enough n
- \rightarrow If σ is known, standardized \bar{X} follows z (standard normal) distribution

Hypothesis Test About μ (with z)

Problem Statement
$$H_0: \mu = \mu_0$$
 vs. $H_a: \left\{ \begin{array}{l} \mu > \mu_0 \\ \mu < \mu_0 \\ \mu \neq \mu_0 \end{array} \right\}$

- 1. Consider sampling and study design.
- Summarize with \bar{x} , standardize to $z = \frac{\bar{x} \mu_o}{\sigma/\sqrt{n}}$ assuming $H_o: \mu = \mu_o$ is true; is z "large"?
- 3. Find *P*-value (prob. of *Z* this far above/below/away from 0); is it "small"?
- 4. Based on size of P-value, choose H_0 or H_a .

- 1. Consider sampling and study design.
- Summarize with \overline{x} , standardize to $z = \frac{\overline{x} + \mu \sigma}{\sigma / \sqrt{n}}$ assuming H_0 is true; is z "large"?
- Find prob. of z this far above/below/away from 0 (P-value); consider if it is "small".
- 4. Based on size of P-value, choose H_0 or H_a .
- If sample is biased, mean of \bar{X} is not μ_O .
- If pop<10*n*, s.d. of \bar{X} is not σ/\sqrt{n} .
- If n is too small, distribution of \bar{X} is not normal, won't standardize to z: graph data, see guidelines.

- 1. Consider sampling and study design
- Summarize with \overline{x} , standardize to $z = \frac{\omega}{\sigma/\sqrt{n}}$ assuming $H_o: \mu = \mu_o$ is true; is z "large"?
- Find prob. of z this far above/below/away from 0 (P-value); consider if it is "small".
- 4. Based on size of P-value, choose H_0 or H_a .
- Assess *P*-value based on form of alternative hypothesis (greater, less, or not equal)

Alternative ">": *P*-value is right-tailed probability

Alternative "<": *P*-value is <u>left-tailed</u> probability

Alternative " \neq ": P-value is two-tailed probability

Observed sample mean \bar{x} is either of these

Example: Assumptions for z Test

- Background: Earnings of 446 surveyed university students had mean \$3,776. The mean of earnings for the population of students is unknown. Assume we know population standard deviation is \$6,500.
- Question: What aspect of the situation is unrealistic?
- **□** Response:

Looking Ahead: In real-life problems, we rarely know the value of the population standard deviation. Eventually, we'll learn how to proceed when all we know is the sample standard deviation s.

Example: Test with One-Sided Alternative

- **Background**: Earnings of 446 surveyed university students П had mean \$3,776. Assume population s.d. \$6,500.
- **Question:** Are we convinced that μ is less than \$5,000?
- **Response:** State H_o : vs. H_a :

One-Sample Z: Earned Test of mu = 5 vs mu < 5The assumed sigma = 6.5

Variable N Mean StDev SE Mean Earned 446 3.776 6.503 0.308 Variable 95.0% Upper Bound Z P 4.282 -3.98 0.000 Earned

- Data production issues were discussed for confidence interval.
- Output shows sample mean and z =. Large?
- *P*-value = _____. Small? 3
- Conclude?

Example: Notation

- Background: Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5.
- □ **Question:** How do we denote the numbers given?
- **□** Response:
 - 11.0 is proposed value of population mean _____
 - 11.222 is sample mean ____
 - 9 is sample size _____
 - 1.5 is population standard deviation _____

Example: Intuition Before Formal Test

- Background: Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5.
- **Question:** What conclusion do we anticipate, by "eye-balling" the data?
- **□** Response:

Sample mean (11.222) seems close to proposed μ_0 =11.0? ____

Sample size (9) small→

S.d. (1.5) not very small \rightarrow

Anticipate standardized sample mean z large?

- $\rightarrow P$ -value small? _____
- →conclude population mean may be 11.0?

Example: Test with Two-Sided Alternative

- **Background:** Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5.
- **Question:** What do we conclude from the output?
- **Response:** z = 0.44. Large? P-value (two-tailed) = 0.657. Small? Conclude population mean may be 11.0? One-Sample Z: Shoe

```
Test of mil = 11 vs mil not = 11
The assumed sigma = 1.5
Variable
                                  StDev
                                          SE Mean
                  N
                         Mean
Shoe
                       11.222
                                  1.698
                                            0.500
Variable
                     95.0% CI
                 10.242, 12.202)
                                      0.44 \quad 0.657
Shoe
```

P-value as Nonstandard Normal Probability

P-value is probability of sample mean as far from 11.0 (in either direction) as 11.222.

 H_0 : mu = 11.0 vs. H_a : mu \neq 11.0

P-value as Standard Normal Probability

P-value as probability of standardized sample mean z as far from 0 (in either direction) as 0.44.

Comparing P-value Based on \bar{x} vs. z

Same area under curve, just different scales on horizontal axis due to standardizing (below).

Example: Test Results and Confidence Interval

- **Background:** Tested if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assumed pop. s.d. 1.5. *P*-value was 0.657; didn't reject null.
- **Question:** Would we expect 11.0 to be contained in a confidence interval for μ ?
- Response: Test showed 11.0 to be plausible for $\mu \rightarrow$ _____ (In fact, 11.0 is _____ contained in the confidence interval.)

```
One-Sample Z: Shoe
Test of mu = 11 vs mu not = 11
The assumed sigma = 1.5
                                        SE Mean
Variable
                                StDev
                 N
                        Mean
                                1.698
Shoe
                      11.222
                                          0.500
                    95.0% CI
Variable
             (10.242, 12.202) 0.44 0.657
Shoe
```

Example: Test Results and Confidence Interval

- **Background:** Tested if mean earnings of all students at a university could be \$5,000, based on a sample mean \$3,776 for *n*=446. Assumed pop. s.d. \$6,500. *P*-value was 0.000; rejected null hypothesis.
- **Question:** Would 5,000 be contained in the confidence interval for μ ?
- □ Response: ____

Factors That Lead to Rejecting Ho

Statistically significant data produce P-value small enough to reject H_0 . z plays a role:

$$z = \frac{\bar{x} - \mu_o}{\sigma / \sqrt{n}} = \frac{(\bar{x} - \mu_o) \sqrt{n}}{\sigma}$$

Reject H_0 if P-value small; if |z| large; if...

- Sample mean far from μ_0
- Sample size *n* large
- Standard deviation σ small

Role of Sample Size *n*

Large n: may reject H_0 even if sample mean is not far from proposed population mean, from a practical standpoint.

Very small P-value \rightarrow strong evidence against Ho but \overline{x} not necessarily very far from μ_O .

Small n: may fail to reject H_0 even though it is false.

Failing to reject false Ho is 2nd type of error.

Definition (Review)

- Type I Error: reject null hypothesis even though it is true (false positive)
- Type II Error: fail to reject null hypothesis even though it's false (false negative)

Test conclusions determine possible error:

- Reject H_0 : correct or Type I
- Do not reject H_0 : correct or Type II

Example: Errors in a Medical Context

- **Background:** A medical test is carried out for a disease (HIV).
- Questions:
 - What does the null hypothesis claim?
 - What are the implications of a Type I Error?
 - What are the implications of a Type II Error?
 - Which type of error is more worrisome?

Responses:

Null hypothesis:		
False	conclude	
False	: conclude	
Type	is more worrisome.	

Example: Errors in a Legal Context

- **Background:** A defendant is on trial.
- Questions:
 - What does H_0 claim?
 - What does a Type I Error imply?
 - What does a Type II Error imply?
 - Which type is more worrisome?
- □ Responses:
 - *H*₀: _____
 - Type I: Conclude
 - Type II: Conclude _____
 - Type is more worrisome.

Behavior of Sample Mean (Review)

For random sample of size n from population with mean μ , standard deviation σ , sample mean \bar{X} has

- lacksquare mean μ
- standard deviation $\frac{\sigma}{\sqrt{n}}$
- shape approximately normal for large enough n

Sample Mean Standardizing to z

 \rightarrow If σ is known, standardized \bar{X} follows

z (standard normal) distribution:

$$\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}=z$$

If σ is unknown and n is large enough (20 or 30), then $s \approx \sigma$ and $\frac{\bar{x} - \mu}{s/\sqrt{n}} \approx z$

Can use z if σ is known or n is large.

What if σ is unknown and n is small?

Sample mean standardizing to *t*

For σ unknown and n small, $\frac{x-\mu}{s/\sqrt{n}} = t$

- t (like z) centered at 0 since \bar{X} centered at μ
- ullet t (like z) symmetric and bell-shaped if X normal
- t more spread than z (s.d.>1) [s gives less info]
 t has "n-1 degrees of freedom" (spread depends on n)

Inference About Mean Based on z or t

- σ known \rightarrow standardized \bar{x} is z (may use z if σ unknown but n large)
- σ unknown \rightarrow standardized \bar{x} is t

Inference by Hand Based on z or t

	σ known	σ unknown
small sample $(n < 30)$	$\frac{x-\mu}{\sigma/\sqrt{n}} = z$	$\frac{x-\mu}{s/\sqrt{n}} = t$
large sample $(n \ge 30)$	$\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}=z$	$rac{x-\mu}{s/\sqrt{n}}pprox z$

z used if σ known or n large

t used if σ unknown and n small

z vs. t: How the Sample Mean is Standardized

z vs. t: How the Sample Mean is Standardized

A Closer Look: We say t is "heavy-tailed" (compared to z).

t = sample mean standardized with s

Example: Distribution of t (6 df) vs. z

Background: For n=7, $\frac{x-\mu}{s/\sqrt{n}} = t$ has 6 df.

A Closer Look: In fact,

P(t > 2) is about 0.05;

P(z > 2) is about 0.025.

Question: How does P(t > 2) compare to P(z > 2)?

P(z > 2). Response: P(t > 2)Practice: 10.14 p.489

Example: Distribution of t (8 df) vs. z

Background: According to 90-95-98-99 Rule for z, P(z > 2) is between 0.01 and 0.025 because 2 is between 1.96 and 2.576. Consider the *t* curve for 8 df.

- **Question:** What is a range for P(t > 2) when t has 8 df?
- **Response:** P(t > 2) is between and

Looking Back: Review

□ 4 Stages of Statistics

- Data Production (discussed in Lectures 1-3)
- Displaying and Summarizing (Lectures 3-8)
- Probability (discussed in Lectures 9-14)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures 14-16)
 - \square 1 quantitative: z CI (L16), z test, t CI, t test
 - categorical and quantitative
 - □ 2 categorical
 - □ 2 quantitative

Confidence Interval for Mean (Review)

95% confidence interval for μ (σ known) is $\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}}$

multiplier 2 is from z distribution

(95% of normal values within 2 s.d.s of mean)

For n small, σ unknown can't say 95% C.I. is

Confidence Interval for Mean: σ Unknown

95% confidence interval for μ is

$$ar{x} \pm \mathrm{multiplier}\left(\frac{s}{\sqrt{n}}\right)$$

- multiplier from t distribution with n-1 degrees of freedom (df)
- multiplier at least 2, closer to 3 for *very* small *n*

Degrees of Freedom

- Mathematical explanation of df: not needed for elementary statistics
- Practical explanation of df: several useful distributions like *t*, *F*, chi-square are *families* of similar curves; df tells us which one applies (depends on sample size *n*).

z or t: Which to Concentrate On?

- For purpose of **learning**, start with z (know what to expect from 68-95-99.7 Rule, etc.) (only one z distribution)
- For **practical** purposes, t more realistic (usually don't know population s.d. σ)
- **Software** automatically uses appropriate t distribution with n-1 df: just enter data.

Example: Confidence Interval with t Curve

- **Background**: Random sample of shoe sizes for 9 college males: 11.5, 12.0, 11.0, 15.0, 11.5, 10.0, 9.0, 10.0, 11.0
- **Question:** What is 95% C.I. for population mean?
- **Response:** Mean 11.222, s = 1.698, n = 9, multiplier 2.31:

L17.54

Example: t Confidence Interval with Software

- **Background**: Random sample of shoe sizes for 9 college males: 11.5, 12.0, 11.0, 15.0, 11.5, 10.0, 9.0, 10.0, 11.0
- **Question:** How do we find a 95% C.I. for the population mean, using software?
- **□** Response:

```
One-Sample T: Shoe
```

```
Variable N Mean StDev SE Mean 95.0% CI
Shoe 9 11.222 1.698 0.566 ( 9.917, 12.527)
```

Example: Compare t and z Confidence Intervals

- **Background**: Random sample of shoe sizes for 9 college males: 11.5, 12.0, 11.0, 15.0, 11.5, 10.0, 9.0, 10.0, 11.0 We produced 95% *t* confidence interval:
 - $11.222\pm2.31\left(\frac{1.698}{\sqrt{9}}\right) = 11.222\pm1.307 = (9.92, 12.53)$

If 1.698 had been population s.d., would get z C.I.:

$$11.222\pm1.96\left(\frac{1.698}{\sqrt{9}}\right) = 11.222\pm1.109 = (10.11, 12.33)$$

- \square **Question:** How do the *t* and *z* intervals differ?
- \square **Response:** t multiplier is 2.31, z multiplier is 1.96:

t interval width about

z interval width about

 σ known \rightarrow info \rightarrow interval

Example: t vs. z Confidence Intervals, Large n

- Background: Earnings for sample of 446 students at a university averaged \$3,776, with s.d. \$6,500. The *t* multiplier for 95% confidence and 445 df is 1.9653.
- \square **Question:** How different are the *t* and *z* intervals?
- Response: The intervals will be ______ whether we use
 - *t* multiplier 1.9653
 - precise z multiplier 1.96
 - approximate z multiplier 2

Interval approximately

Behavior of Sample Mean (Review)

For random sample of size n from population with mean μ , standard deviation σ , sample mean \bar{X} has

- lacksquare mean μ
- standard deviation $\frac{\sigma}{\sqrt{n}}$
- shape approx. normal for large enough *n*
- \rightarrow If σ is unknown and n small,

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

Guidelines for \bar{X} Approx. Normal (Review)

Can assume shape of \bar{X} for random samples of size n is approximately normal if

- Graph of sample data appears normal; or
- Sample data fairly symmetric, *n* at least 15; or
- Sample data moderately skewed, n at least 30; or
- Sample data very skewed, *n* much larger than 30

If
$$\bar{X}$$
 is not normal, $\frac{x-\mu}{s/\sqrt{n}}$ is not t .

Example: Small, Skewed Data Set

- **Background**: Credits taken by 14 non-traditional students: 4, 7, 11, 11, 12, 13, 13, 14, 14, 17, 17, 17, 17, 18
- **Question:** What is a 95% confidence interval for population mean?
- \square **Response:** *n* small, shape of credits left-skewed

Looking Ahead:

Non-parametric methods can be used for small n, skewed data.

L17.64

Lecture Summary

(Inference for Means: z Hypothesis Tests; t Dist.)

- \Box z test about population mean: 4 steps
- Examples: 1-sided and 2-sided alternatives
- Relating test and confidence interval
- Factors in rejecting null hypothesis
 - Sample mean far from proposed population mean
 - Sample size large
 - Standard deviation small
- \square Inference based on z or t
 - Population sd known; standardize to z
 - Population sd unknown; standardize to t
- \Box Comparing z and t distributions

Lecture Summary

(Inference for Means: t Confidence Intervals)

- \Box t confidence interval for population mean
 - Multiplier from *t* distribution with *n*-1 df
 - When to perform inference with z or t
 - Constructing t CI by hand or with software
- \square Comparing z and t confidence intervals
- \square When neither z nor t applies