# Lecture 19: Chapter 11 Sects. 1 & 2 Categorical & Quantitative Variables Inference in Paired & 2-Sample Design

- □Cat→Quan Relations: Hypotheses, 3 Designs
- Inference for Paired Design
- □Paired vs. Ordinary, t vs. z
- □2-Sample *t* Sampling Distribution and Statistic
- □2-Sample *t* test and CI, Ordinary and Pooled

#### Looking Back: Review

- 4 Stages of Statistics
  - Data Production (discussed in Lectures 1-3)
  - Displaying and Summarizing (Lectures 3-8)
  - Probability (discussed in Lectures 9-14)
  - Statistical Inference
    - □ 1 categorical (discussed in Lectures 14-16)
    - □ 1 quantitative (discussed in Lectures 16-18)
    - acat and quan: paired, 2-sample, several-sample
    - □ 2 categorical
    - □ 2 quantitative

#### Inference for Relationships: Two Approaches

- $\blacksquare$   $H_0$  and  $H_a$  about variables: not related or related
  - $\square$  Applies to all three  $C \rightarrow Q$ ,  $C \rightarrow C$ ,  $Q \rightarrow Q$
- $\blacksquare$   $H_0$  and  $H_a$  about parameters: equality or not
  - $\Box$  C $\rightarrow$ Q: pop means equal? (mean diff=0? for paired)
  - $\Box$  C $\rightarrow$ C: pop proportions equal?
  - $\square$  Q $\rightarrow$ Q: pop slope equals zero?

Either way, often do test before confidence interval.

- 1. Are variables related?
- 2. If so, quantify: how different are the parameters?

#### **Example:** C \rightarrow Q Test Relationship or Parameters

- **Background**: Research question: "For all students at a university, are their Math SATs related to what year they're in?"
- **Question:** How can we formulate this in terms of parameters?
- **Response:**

Looking Ahead: This is a several-sample design, to be discussed after paired and two-sample.

#### Design for Cat \(\rightarrow\) Quan Relationship (Review)

- Paired
- Two-Sample
- Several-Sample

Looking Ahead: Inference procedures for population relationship will differ, depending on which of the three designs was used.

#### Inference Methods for Cat \( \rightarrow \) Quan Relationship

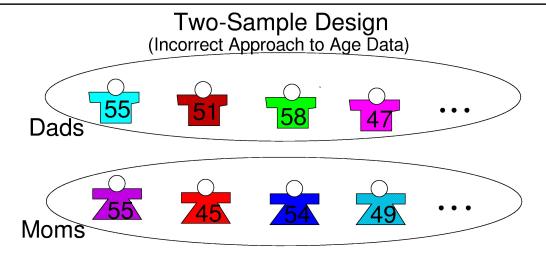
- Paired: reduces to 1-sample *t* (already covered)
- Two-Sample: 2-sample t (similar to 1-sample t)
- $\blacksquare$  Several-Sample: need new distribution (F)

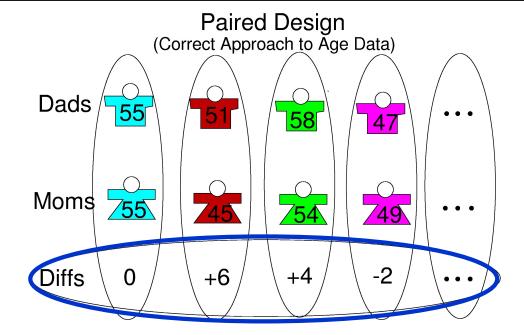
# **Example:** Paired vs. Two-Sample Data

- **Background**: Research Question: "Are 'age of parent' and 'sex of parent' related for population of students at a university?"
- **Question:** How can this data set be used to answer the П research question?
- **Response:**

| DadAge | MomAge |
|--------|--------|
| 55     | 55     |
| 51     | 45     |
| 58     | 54     |
| 47     | 49     |
| • • •  | • • •  |

#### Paired Data: Incorrect vs. Correct Approach





#### **Example:** Paired vs. Two-Sample Summary

- **Background**: Research Question: "Are 'age of parent' and П 'sex of parent' related for population of students at a university?"
- **Question:** Which output has enough info to do inference? Descriptive Statistics: DadAge MomAge

| Depertion | Duduibuich. | Dadinge, 110  | mrgc   |        |                |              |
|-----------|-------------|---------------|--------|--------|----------------|--------------|
| Variable  | N           | $\mathbb{N}*$ | Mean   | Median | ${\tt TrMean}$ | ${	t StDev}$ |
| DadAge    | 431         | 15            | 50.831 | 50.000 | 50.491         | 6.167        |
| MomAge    | 441         | 5             | 48.406 | 48.000 | 48.166         | 5.511        |

| pescriptive s | tatistics: | Agentii |       |        |                |              |
|---------------|------------|---------|-------|--------|----------------|--------------|
| Variable      | N          | N*      | Mean  | Median | ${\tt TrMean}$ | ${	t StDev}$ |
| AgeDiff       | 431        | 15      | 2.448 | 2.000  | 2.171          | 3.877        |

#### **Response:**

Looking Ahead: We will standardize with the StDev of the differences, which cannot be found from the individual StDevs because of dependence.

#### Example: Consider Summaries in Paired Design

Background: To see if 'age of parent' and 'sex of parent' are related for population of students at a university, took sampled DadAge minus MomAge.

Descriptive Statistics: AgeDiff
Variable N N\* Mean Median TrMean StDev
AgeDiff 431 15 2.448 2.000 2.171 3.877

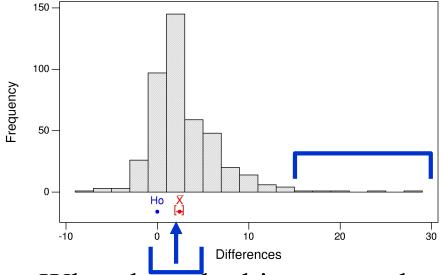
- **Question:** Which parent tended to be older in the sample?
- **□** Response:

# Example: Display in Paired Design

- **Background**: To see if 'age of parent' and 'sex of parent' are related for population of students at a university, took sampled DadAge minus MomAge.
- Question: How do we display the data?
- Response:

# **Example:** Display in Paired Design

**Background**: Histogram of age differences:



- **Question:** What does the histogram show?
- **Response:** Age differences have П
  - Center: around (dads tend to be about yrs older)
  - Spread: most diffs within yrs or mean)
  - Shape: (a few dads much older than wife)

# Notation in Paired Study

- Differences have
  - $\square$  Sample mean  $x_d$
  - $\square$  Population mean  $\mu_d$
  - $\square$  Sample standard deviation  $S_d$
  - $\square$  Population standard deviation  $\sigma_d$

### Test Statistic in Paired Study

- Start with ordinary 1-sample statistic  $t = \frac{x \mu_0}{s / \sqrt{n}}$
- Substitute  $\bar{x}_d$ ,  $s_d$  for ordinary summaries  $\bar{x}$ , s
- Substitute 0 for  $\mu_0$  ( $H_0$  will claim  $\mu_d = 0$ )
- Result is paired t statistic:  $t = \frac{x_d 0}{s_d / \sqrt{n}}$

### **Example:** Paired t Test

**Background**: Paired test on students' parents' ages:

Paired T for DadAge - MomAge

|            | N   | Mean   | ${	t StDev}$ | SE Mean |
|------------|-----|--------|--------------|---------|
| DadAge     | 431 | 50.831 | 6.167        | 0.297   |
| MomAge     | 431 | 48.383 | 5.258        | 0.253   |
| Difference | 431 | 2.448  | 3.877        | 0.187   |

95% CI for mean difference: (2.081, 2.815)

T-Test of mean difference = 0 (vs not = 0): T-Value = 13.11 P-Value = 0.000

- **Question:** What does output tell about formal test?
- **Response:** Testing
  - Unbiased? n=431 large? Pop $\geq 10(431)$ ?
  - $\bar{x}_d$ = \_\_\_\_\_, t = \_\_\_\_\_ Large? \_\_\_\_\_
  - P-value = Small?
  - Conclude pop mean diff =0? Sex and age related?

### **Example:** One- or Two-Sided $H_a$ in Paired Test

**Background**: Paired test on students' parents' ages:

```
Paired T for DadAge - MomAge
                    Mean
                           StDev SE Mean
DadAge 431 50.831
                           6.167 0.297
     431 48.383 5.258 0.253
MomAge
Difference 431 2.448 3.877 0.187
95% CI for mean difference: (2.081, 2.815)
T-Test of mean difference = 0 (vs not = 0): T-Value = 13.11 P-Value = 0.000
```

- **Response:** Replace  $H_a: \mu_d \neq 0$  with
  - *P*-value would be
  - Conclude fathers in general are older?

### **Example:** Paired vs. Ordinary t vs. z

- **Background**: Paired test on 431 students' parents' ages resulted in paired *t*-statistic +13.11.
- $\square$  **Question:** What does this tell us about the *P*-value?
- Response:

Paired t same as ordinary t distribution

- $\rightarrow$  Ordinary t basically same as z for large n
- $\rightarrow$ 13.11 sds above mean unusual?  $\_\_$
- → Evidence that mean age diff is non-zero in pop.? \_\_\_\_\_

**Note:** for extreme *t* statistics, software not needed to estimate *P*-value.

#### C.I. for Mean: $\sigma$ Unknown (Review)

95% confidence interval for  $\mu$  is

$$\bar{x} \pm \text{multiplier} \left( \frac{s}{\sqrt{n}} \right)$$

- multiplier from t distribution with n-1 degrees of freedom (df)
- multiplier at least 2, closer to 3 for *very* small *n*

### Confidence Interval in Paired Design

Confidence interval for  $\mu_d$  is

$$ar{x}_d \pm ext{multiplier} rac{s_d}{\sqrt{n}}$$

- Multiplier from *t* distribution with *n*-1 df
- Multiplier smaller for lower confidence
- Multiplier smaller for larger df

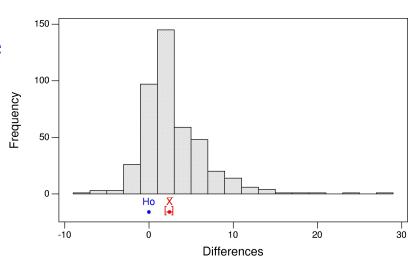
If *n* is small, diffs need to be approx. normal.

(Same guidelines as for 1-sample *t*)

# **Example:** Paired Confidence Interval

- **Background**: Sample of 431 students' parents' age differences have mean +2.45, s.d. 3.88.
- Question: What is a 95% confidence interval for population mean age difference?
- Response: Since *n* is so large, *t* multiplier \_\_\_\_\_ for 95% confidence. (Also, skewed hist. OK.)

Pretty sure population of fathers are older by about \_\_\_\_ to \_\_\_ years.



#### **Example:** Paired Confidence Interval by Hand

- **Background**: Mileage differences for 5 cars, city minus highway, had mean -5.40, s.d. 1.95.
- **Question:** What else is needed to set up a 95% confidence interval by hand for population mean difference?

Note: n very small  $\rightarrow t$  multiplier closer to 3 than to 2.

#### Looking Back: Review

- 4 Stages of Statistics
  - Data Production (discussed in Lectures 1-3)
  - Displaying and Summarizing (Lectures 3-8)
  - Probability (discussed in Lectures 9-14)
  - Statistical Inference
    - □ 1 categorical (discussed in Lectures 14-16)
    - □ 1 quantitative (discussed in Lectures 16-18)
    - acat and quan: paired, 2-sample, several-sample
    - □ 2 categorical
    - □ 2 quantitative

# Inference Methods for $C \rightarrow Q$ (Review)

- Paired: reduces to 1-sample *t* (already covered)
  - □ Focused on mean of differences
- Two-Sample: 2-sample *t* (similar to 1-sample *t*)
  - Focus on difference between means
- $\blacksquare$  Several-Sample: need new distribution (F)

#### Display & Summary, 2-Sample Design (Review)

- **□** Display: Side-by-side boxplots:
  - One boxplot for each categorical group
  - Both share same quantitative scale
- □ **Summarize:** Compare
  - Five Number Summaries (looking at boxplots)
  - Means and Standard Deviations

**Looking Ahead:** Inference for population relationship will focus on means and standard deviations.

#### Notation

- $\square$  Sample Sizes  $n_1$ ,  $n_2$
- **□** Sample
  - Means  $\bar{x}_1$ ,  $\bar{x}_2$
  - $\blacksquare$  Standard deviations  $s_1, s_2$
- Population
  - Means  $\mu_1$ ,  $\mu_2$
  - Standard deviations  $\sigma_1$ ,  $\sigma_2$

### Two-Sample Inference

Inference about  $\mu_1 - \mu_2$ 

- Test: Is it zero? (Suggests categorical explanatory variable does *not* impact quantitative response)
- **C.I.:** If diff  $\neq 0$ , how different are pop means?

**Looking Back:** Estimated  $\mu$  with  $\mathfrak{X}$ ; established the center, spread, and shape of  $\overline{X}$  relative to  $\mu$ .

Now estimate  $\mu_1 - \mu_2$  with  $\bar{x}_1 - \bar{x}_2$  ...

(Probability background) as R.V.,  $X_1 - X_2$  has what center, spread and shape?

#### Two-Sample Inference

#### Inference about $\mu_1 - \mu_2$

- Test: Is it zero? (Suggests categorical explanatory variable does *not* impact quantitative response)
- $\blacksquare$  C.I.: If diff  $\neq 0$ , how different are pop means?

Estimate  $\mu_1 - \mu_2$  with  $\bar{x}_1 - \bar{x}_2 \dots$ 

(Probability background) As R.V.,  $\bar{X}_1 - \bar{X}_2$  has

- **Center:** mean (if samples are unbiased)  $\mu_1 \mu_2$
- **Spread:** s.d. (if independent)  $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \approx \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- Shape: (if sample means are normal) normal

### Two-Sample Inference

Note: claiming that the difference between population means is zero (or not)

$$H_0: \mu_1 - \mu_2 = 0$$
 vs.  $H_a: \mu_1 - \mu_2 \neq 0$ 

is equivalent to claiming the population means are equal (or not).

$$H_0: \mu_1 = \mu_2 \text{ vs. } H_a: \mu_1 \neq \mu_2$$

### Two-Sample t Statistic

Standardize difference between sample means

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

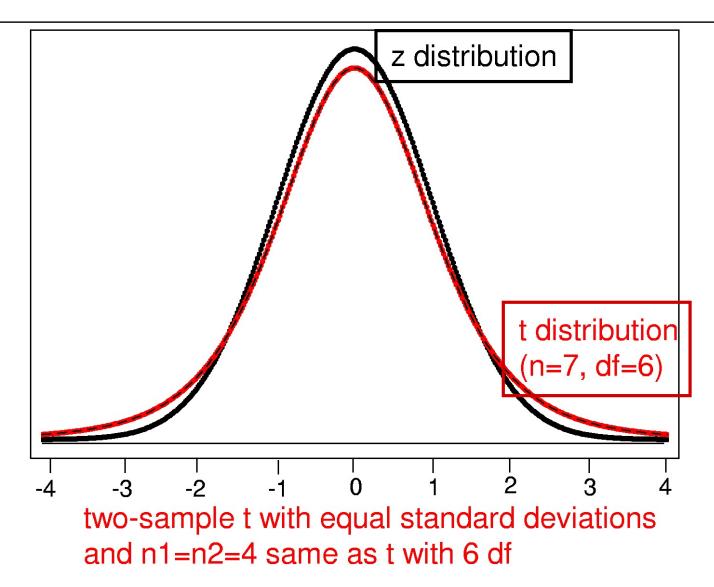
(assuming Ho true)

- Mean 0 if  $H_0: \mu_1 \mu_2 = 0$  is true
- s.d. > 1 but close to 1 if samples are large
- Shape: bell-shaped, symmetric about 0
   (but not quite the same as 1-sample t)

### Shape of Two-Sample t Distribution

- t follows "two-sample t" dist only if sample means are normal
- 2-sample t like 1-sample t; df somewhere between smaller  $n_i 1$  and  $n_1 + n_2 2$
- like z if sample sizes are large enough

# Shape of Two-Sample t Distribution



### What Makes One-Sample t Large (Review)

One-sample *t* statistic

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{(\bar{x} - \mu_0) \sqrt{n}}{s}$$

t large in absolute value if...

- Sample mean far from  $\mu_O$
- Sample size n large
- Standard deviation s small

#### What Makes Two-Sample t Large

Two-sample *t* statistic

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}}$$

large in absolute value if...

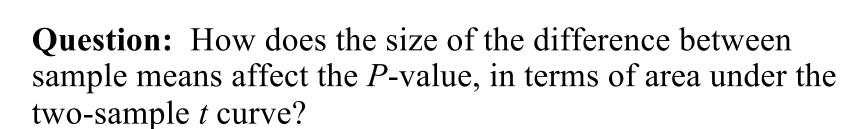
- $\bar{x}_1$  far from  $\bar{x}_2$
- Sample sizes  $n_1$ ,  $n_2$  large
- Standard deviations  $s_1$ ,  $s_2$  small

#### **Example:** Sample Means' Effect on P-Value

**Background**: A two-sample t statistic has been computed to test  $H_0$ :  $\mu_1 - \mu_2 = 0$  vs.  $H_a$ :  $\mu_1 - \mu_2 > 0$ .

Large difference between sample means P-value is small Two-sample t is large





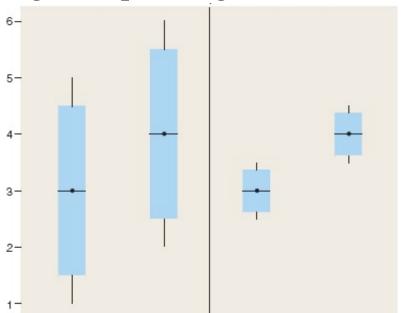
**Response:** If the difference isn't large, the *P*-value П As the difference becomes large, the *P*-value becomes

0 Two-sample t is not large t

П

#### **Example:** Sample S.D.s' Effect on P-Value

**Background**: Boxplots with  $\bar{x}_1 = 3, \bar{x}_2 = 4$  could appear as on left or right, depending on s.d.s.

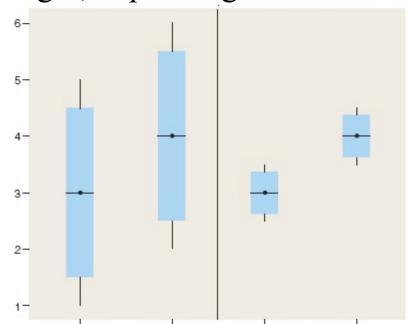


**Context:** sample mean monthly pay (in \$1000s) for females (\$3000) vs. males (\$4000)

- Question: For which scenario does the difference between П means appear more significant?
- **Response:** Difference between means appears more significant on

#### **Example:** Sample S.D.s' Effect on P-Value

**Background**: Boxplots with  $\bar{x}_1 = 3, \bar{x}_2 = 4$  could appear as on left or right, depending on s.d.s.



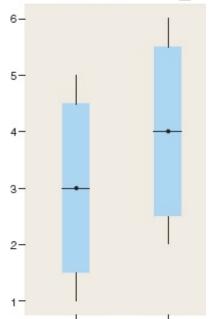
**Context:** sample mean monthly pay (in \$1000s) for females (\$3000) vs. males (\$4000)

- **Question:** For which scenario are we more likely to reject  $H_0: \mu_1 - \mu_2 = 0$ ?
- : s.d.s  $\rightarrow$  two-sample t Response: On

P-value  $\rightarrow$  rejecting  $H_0$  is more likely.

#### **Example:** Sample Sizes' Effect on Conclusion

**Background**: Boxplot has  $\bar{x}_1 = 3, \bar{x}_2 = 4$ .



Context: sample mean monthly pay (in \$1000s) for females (\$3000) vs. males (\$4000).

- **Question:** Which would provide more evidence to reject  $H_0$ and conclude population means differ: if the sample sizes were each 5 or each 12?
- **Response:** sample size ( ) provides more evidence to reject  $H_{\cap}$ .

# **Example:** Two-Sample t with Software

**Background**: Two-sample t procedure output based on survey data of students' age and sex.

Two-sample T for Age

```
Mean
Sex
            N
                         StDev SE Mean
female
          281
                 20.28 3.34
                                   0.20
                         1.96
          163
                 20.53
                                   0.15
male
Difference = mu (female) - mu (male )
```

Estimate for difference: -0.250

95% CI for difference: (-0.745, 0.245)

T-Test of difference = 0 (vs not =):

T-Value = -0.99 P-Value = 0.321 DF = 441

- **Questions:** Does a student's sex tell us something about age? If so, how do ages of male & female students differ in general?
- **Responses:** *P*-val=0.321 small?\_\_\_\_ Age and sex related?\_\_\_\_

Sample means "close"? Diff. between pop means=0?

# **Example:** Two-Sample t by Hand

- **Background**: Students' age and sex summaries:
- 281 females: mean 20.28 sd 3.34; 163 males: mean 20.53 sd 1.96
- □ **Question:** Are students' sex and age related?
- Response: Testing for relationship same as testing  $H_0$ : VS.  $H_a$ :

Standardized diff between sample mean ages is

Samples are large  $\rightarrow$  2-sample t\_\_\_\_\_z distribution. |t| is just under  $1 \rightarrow P$ -val for 2-sided  $H_a$  is \_\_\_\_\_ Small? \_\_\_\_ Evidence that sex and age are related? \_\_\_\_\_

#### Two-Sample Confidence Interval

Confidence interval for diff between population means is

$$(\bar{x}_1 - \bar{x}_2) \pm \text{multiplier} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- Multiplier from two-sample t distribution
- Multiplier smaller for lower confidence
- Multiplier smaller for larger df

If samples are large, multiplier for 95% confidence is 2, as for z distribution.

#### **Example:** Two-Sample Confidence Interval

- **Background**: Students' age and sex summaries:
- 281 females: mean 20.28 sd 3.34; 163 males: mean 20.53 sd 1.96.
- **Question:** What interval should contain the difference between population mean ages?
- **Response:** For this large a sample size, 2-sample t multiplier П

We're 95% sure that females are between years younger and years older than males, on average. is a plausible age difference, consistent with test Thus,

not rejecting Ho.

#### **Example:** Interpreting Confidence Interval

- **Background**: A 95% confidence interval for difference between population mean hts, in inches, females minus males, is (-6.4, -5.3).
- **Question:** What does the interval tell us?
- Response: We're 95% sure that, on average, females are shorter by \_\_\_\_\_ to \_\_\_\_ inches. We would reject the null hypothesis of equal population means.

### Pooled Two-Sample t Procedure

If we can assume  $\sigma_1 = \sigma_2$ , standardized difference between sample means follows an actual tdistribution with  $df = n_1 + n_2 - 2$ 

- Higher df $\rightarrow$ narrower C.I., easier to reject  $H_0$
- Some apply Rule of Thumb: use pooled *t* if larger sample s.d. not more than twice smaller.

# **Example:** Checking Rule for Pooled t

- **Background**: Consider use of pooled t procedure.
- **Question:** Does Rule of Thumb allow use of pooled t in each of the following?
  - Male and female ages have sample s.d.s 3.34 and 1.96.
  - 1-bedroom apartment rents downtown and near campus have sample s.d.s \$258 and \$89.
- **Response:** We check if larger s.d. is more than twice smaller in each case.
  - 3.34 > 2(1.96)?, so pooled t\_\_\_\_\_ ()K.
  - 258 > 2(89)? , so pooled t OK.

#### **Lecture Summary**

#### (Inference for Cat $\rightarrow$ Quan; Paired)

- Inference for relationships
  - Focus on variables
  - Focus on parameters
- □ cat → quan relationship: paired, 2- or several-sample
- □ Inference for paired design
  - Output
  - Display
  - Notation
  - Test statistic
  - Form of alternative
- $\square$  Paired t vs. ordinary t vs. z
- Paired confidence interval vs. hypothesis test

### **Lecture Summary**

### (Inference for Cat & Quan; Two-Sample)

- □ Inference for 2-sample design
  - Notation
  - Test
  - Confidence interval
- Sampling distribution of diff between means
- □ 2-sample *t* statistic (role of diff between sample means, standard deviation sizes, sample sizes)
- Test with software or by hand
- Confidence interval
- □ Pooled 2-sample *t* procedures