# Lecture 20: Chapter 11, Section 3 Categorical & Quantitative Variable Inference in Several-Sample Design

- Compare and Contrast Several- and 2-sample
- □Variation Among Means or Within Groups
- □F Statistic as Ratio of Variation
- □Role of Sample Size
- □Formulating Hypotheses Correctly
- □Questions about Practice Midterm 2?

#### Looking Back: Review

#### □ 4 Stages of Statistics

- Data Production (discussed in Lectures 1-3)
- Displaying and Summarizing (Lectures 3-8)
- Probability (discussed in Lectures 9-14)
- Statistical Inference
  - □ 1 categorical (discussed in Lectures 14-16)
  - □ 1 quantitative (discussed in Lectures 16-18)
  - cat and quan: paired, 2-sample, several-sample
  - □ 2 categorical
  - □ 2 quantitative

# Inference Methods for $C \rightarrow Q$ (Review)

- Paired: reduces to 1-sample t
  - □ Focused on mean of differences
- Two-Sample: 2-sample *t* (similar to 1-sample *t*)
  - □ Focused on difference between means
- $\blacksquare$  Several-Sample: need new distribution (F)
  - □ Focus on difference among means

#### Display & Summary, Several Samples (Review)

- **□** Display: Side-by-side boxplots:
  - One boxplot for each categorical group
  - All share same quantitative scale
- □ **Summarize:** Compare
  - Five Number Summaries (looking at boxplots)
  - Means and Standard Deviations

Looking Ahead: Inference for population relationship focuses on means and standard deviations.

# Notation

|            | Sizes                              | Means                                                          | s.d.s                                  |
|------------|------------------------------------|----------------------------------------------------------------|----------------------------------------|
| Sample     | I =no. of groups compared          |                                                                |                                        |
|            | $n_1, n_2, \cdots, n_I$ sum to $N$ | $\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_I$ (overall $\bar{x}$ ) | $s_1, s_2, \cdots, s_I$                |
| Population |                                    | $\mu_1,\mu_2,\cdots,\mu_I$                                     | $\sigma_1, \sigma_2, \cdots, \sigma_I$ |

### Two- vs. Several-Sample Inference

- Similar: test statistic standardizes difference among sample means, taking sample sizes and standard deviations into account
- **Different:** several-sample test statistic (*F*) focuses on
  - Squared differences of means in numerator
  - Squared standard deviations (variances) in denominator

Procedure called **ANOVA** (ANalysis Of VAriance)

### Two- vs. Several-Sample Inference

Similar: test statistic standardizes difference among sample means, taking sample sizes and standard deviations into account.

For 2 groups of equal sizes and  $\sigma_1 = \sigma_2$ ,  $F = t^2$  and conclusions (including *P*-value) are the same.

#### t and F Distributions

- Left: sampled 100 values from a *t* distribution
- Right: squared the 100 values from t distribution

Squaring makes *F* non-negative, right-skewed (makes extreme values even more extreme; for example, 3 becomes 9)



### Two- vs. Several-Sample Statistics

Similar: test statistic standardizes how different sample means are, taking sample sizes and standard deviations into account

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$F = \frac{\left[n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2\right]/(I - 1)}{\left[(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2\right]/(N - I)}$$

### Two- vs. Several-Sample Statistics

- How different are sample means?
- How spread out are the distributions?
- How large are the samples? (As far as contributing to the size of F is concerned, the individual group sizes "cancel out": the main contributor is N.)

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}}$$

$$F = \frac{\left[n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2\right]/(I - 1)}{\left[(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2\right]/(N - I)}$$

### What Makes t or F Statistics Large

- Large diff among sample means (in numerator)
- Small spreads (in denominator)
- Large sample sizes (denominator of denominator)

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{n_1 + n_2}}$$

$$F = \frac{\left[n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2\right] / (I - 1)}{\left[(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2\right] / (N - I)}$$

#### **Example:** Sample S.D.s' Effect on P-Value

**Background**: Boxplots with  $\bar{x}_1 = 3$ ,  $\bar{x}_2 = 4$ ,  $\bar{x}_3 = 5$  could appear as on left or right, depending on s.d.s.



Context: sample mean monthly pay (in \$1000s) for 3 racial/ethnic groups.

- **Question:** For which scenario does the difference among means appear more significant?
- **Response:** Difference among means appears more significant on

#### **Example:** Sample S.D.s' Effect on P-Value

**Background**: Boxplots with  $\bar{x}_1 = 3, \bar{x}_2 = 4, \bar{x}_3 = 5$  could appear as on left or right, depending on s.d.s.



Context: sample mean monthly pay (in \$1000s) for 3 racial/ethnic groups.

- Question: For which scenario are we more likely to reject П hypothesis of equal population means?
- **Response:** Scenario on : smaller s.d.s $\rightarrow$ larger Fstat $\rightarrow$ smaller P-val $\rightarrow$ likelier to reject  $H_{\cap}$ , conclude

### Measuring Variation Among and Within

$$F = \frac{\left[n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2\right]/(I - 1)}{\left[(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2\right]/(N - I)}$$

- □ Numerator: variation among groups
  - How different are  $\bar{x}_1, \dots, \bar{x}_I$  from one another?
- □ **Denominator:** variation within groups
  - How spread out are samples? (sds  $s_1, \dots, s_I$ )

# Numerator of F (Difference Among Means)

□ SSG: Sum of Squared diffs among Groups

$$SSG = 5(3-4)^2 + 5(4-4)^2 + 5(5-4)^2 = 10$$

□ **DFG:** Degrees of Freedom for Groups

$$DFG = I - 1 = 3 - 1 = 2$$

□ MSG: Mean Squared diffs among Groups

$$MSG = \frac{SSG}{DFG} = \frac{10}{2} = 5$$

$$\begin{bmatrix} n_1 = 5 & \bar{x}_1 = 3 & s_1 = 1.58 \\ n_2 = 5 & \bar{x}_2 = 4 & s_2 = 1.58 \\ n_3 = 5 & \bar{x}_3 = 5 & s_3 = 1.58 \\ N = 15 & \bar{x} = 4 \end{bmatrix}$$

monthly earnings (in \$1000s) for 3 racial/ethnic groups (hypothetical)

# Numerator of F (Difference Among Means)

Note: numerator of F is the same for both scenarios because the difference *among* means is the same.



# Denominator of F (Spread Within Groups)

□ SSE: Sum of Squared Error within Groups

$$SSE = (5-1)1.58^2 + (5-1)1.58^2 + (5-1)1.58^2 = 30$$

□ **DFE:** Degrees of Freedom for Error

$$DFE = N - I = 15 - 3 = 12$$

□ MSE: Mean Squared Error within Groups

$$MSE = \frac{SSE}{DFE} = \frac{30}{12} = 2.5$$

$$\begin{bmatrix} n_1 = 5 & \bar{x}_1 = 3 \\ n_2 = 5 & \bar{x}_2 = 4 \\ n_3 = 5 & \bar{x}_3 = 5 \end{bmatrix} \begin{array}{c} s_1 = 1.58 \\ s_2 = 1.58 \\ s_3 = 1.58 \\ \hline N = 15 & \bar{x} = 4 \\ \end{bmatrix}$$

monthly earnings (in \$1000s) for 3 racial/ethnic groups (hypothetical)

# Denominator of F (Spread Within Groups)

 $\square$  Note: denominator of F is smaller for the scenario on the right, because of less spread.



 $\square$  Because the numerators are the same, F (the quotient) is considerably larger on the right.

#### The F Statistic

$$F = \frac{\left[n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2\right]/(I - 1)}{\left[(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2\right]/(N - I)}$$

$$=\frac{MSG}{MSE} = \frac{5}{2.5} = 2$$
 Is 2 large???

measures difference among sample means

(relative to spreads and sample sizes)

If F is large, reject  $H_0$ :  $\mu_1 = \mu_2 = \mu_3$ 

Conclude population means differ.

# **Example:** Size of Standardized Statistics

- □ **Background:** Say standardized statistic is 2.
- □ **Question:** Is 2 large...
  - $\blacksquare$  For z?
  - For *t*?
  - For *F*?
- **□** Response:
  - z=2 large? (combined tail probs 0.05)
  - t=2 large? depends on \_\_\_\_\_
  - F=2 large?

depends on

(based on total sample size N and number of groups I)

# F and its Degrees of Freedom

Family of F curves all non-neg, right-skewed. Spreads vary, depending on DFG = I - 1 in numerator, DFE = N - I in denominator.

# **Example:** Degrees of Freedom for F

- **Background**: Consider these F distributions
  - F with I=5, N=390
  - F with DFG=2, DFE=12 [written F(2, 12)]
- Questions:
  - What are degrees of freedom if I=5, N=390?
  - What are I and N if DFG=2, DFE=12?
- **Responses:** 
  - $I = 5, N = 390 \rightarrow$ DFG =, DFE =
  - DFG = 2, DFE =  $12 \rightarrow$

# **Example:** Assessing Size of F Statistic

**Background**: F=3 for DFG=4, DFE=385: 



- **Questions:** Is F=3 large? Will we reject a claim that the 5 П population means are equal?
- **Responses:** P-val= 0.0185  $\rightarrow$  Very little area past  $F=3 \rightarrow$ Reject claim that 5 population means are equal? F is

# **Example:** Assessing F for Different DF

**Background**: F=3 for DFG=2, DFE=12



**Questions:** Is F=3 large? 

What would we conclude if F=2 for DFG=2, DFE=12?

**Responses:** P-val=0.0878 $\rightarrow F$ =3 is 

*P*-val for F=2 must be

Reject  $H_0$ ?

Conclude population means may be equal?

#### The F Statistic (Review)

$$F = \frac{\left[n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2\right]/(I - 1)}{\left[(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2\right]/(N - I)}$$

$$= \frac{MSG}{MSE} = \frac{5}{2.5} = 2$$
 Is 2 large for DFG=2, DFE=12?

measures difference among sample means

(relative to spreads and sample sizes)

If F is large, reject  $H_0$ :  $\mu_1 = \mu_2 = \mu_3$ 

Conclude population means differ.

#### **Example:** Drawing Conclusions Based on F

- **Background**: Earnings for 5 sampled individuals from three racial/ethnic groups had means 3, 4, 5 (in thousands of dollars). ANOVA procedure resulted in F=2, which in this case is **not** large.
- **Question:** What do we conclude about mean earnings for populations in the three racial/ethnic groups?
- Response: Since F is not large, sample means differ significantly from one another.
   Conclude population mean earnings

### **Example:** Role of n in ANOVA Test

- **Background**: Earnings for **12** (instead of 5) sampled individuals from three racial/ethnic groups had means 3, 4, 5 (in thousands of dollars). ANOVA procedure resulted in *F*=**4.8**, and a *P*-value of 0.015.
- Question: What do we conclude about mean earnings for populations in the three racial/ethnic groups?
- Response: Conclude population mean earnings for the three groups are \_\_\_\_\_\_ samples help provide more evidence against Ho.

#### Mean of F

Since t has s.d.= typical distance of values from 0 = approximately 1, and F is similar to squaring t distribution, mean of F is approximately 1.



#### Example: Test Relationship/Parameters (Review)

- **Background**: Research question: "For all students at a university, are Math SATs related to what year they're in?"
- Question: How can the question be reformulated in terms of relevant parameters (means) instead of in terms of whether or not the variables are related?
- Response:

#### **Example:** Testing Relationship or Parameters

- **Background**: Research question: "Do mean earnings differ significantly for three racial/ethnic groups?"
- Question: How can the question be reformulated in terms of relevant variables instead of in terms of whether or not the means are equal?
- Response:

# Inference Methods for $C \rightarrow Q$ (Review)

- Paired: reduces to 1-sample t
  - □ Focused on mean of differences
- Two-Sample: 2-sample *t* (similar to 1-sample *t*)
  - □ Focused on difference between means
- Several-Sample: F distribution
  - □ Focus on difference among means

# Inference for Relationship (Review)

- $\blacksquare$   $H_0$  and  $H_a$  about variables: not related or related
  - $\square$  Applies to all three  $C \rightarrow Q$ ,  $C \rightarrow C$ ,  $Q \rightarrow Q$
- $\blacksquare$   $H_0$  and  $H_a$  about parameters: equality or not
  - $\Box$  C $\rightarrow$ Q: pop means equal? (or mean=0? for paired)
  - $\Box$  C $\rightarrow$ C: pop proportions equal?
  - $\square$  Q $\rightarrow$ Q: pop slope equals zero?

### ANOVA Null and Alternative Hypotheses

 $H_0$ : explanatory C & response Q not related

- Equivalently,  $H_o: \mu_1 = \mu_2 = \cdots = \mu_I$ (difference among sample means just chance)
- $H_a$ : explanatory C & response Q are related
- Equivalently,  $H_a$ : not all the  $\mu_i$  are equal

(difference too extreme to be due to chance)

Depending on formulation, the word "not" appears in Ho or Ha.

#### **Example:** How to Refute a Claim about "All"

- **Background**: Reader asked medical advice columnist: "Dear Doctor, does everyone with Parkinson's disease shake?" and doctor replied: All patients with Parkinson's disease do not shake.
- **Question:** Is this what the doctor meant to say?
- **Response:**

#### **Example:** ANOVA Alternative Hypothesis

■ **Background**: Null hypothesis to test for relationship between race (3 groups) and earnings:

$$H_o: \mu_1 = \mu_2 = \mu_3$$

□ **Question:** Is this the correct alternative?

$$H_a: \mu_1 \neq \mu_2 \neq \mu_3$$

Response:

Practice: 11.37b p.564

#### **Questions about Practice Midterm 2?**

#### **Lecture Summary**

(Inference for Cat & Quan: ANOVA)

- □ Several-sample vs. 2-sample design
  - Notation
  - $\blacksquare$  Compare and contrast t and F statistics
  - What makes t or F large?
- $\square$  Variation among means or within groups; F as ratio of variations
- $\square$  How large is "large" F?
  - F degrees of freedom
  - F distribution
- □ Role of sample size
- Formulating hypotheses correctly