Lecture 23: Chapter 13, Section 1 Two Quantitative Variables Inference for Regression

- □Regression for Sample vs. Population
- □Population Model; Parameters and Estimates
- □Regression Hypotheses
- □Test about Slope; Interpreting Output
- □Confidence Interval for Slope

Looking Back: Review

□ 4 Stages of Statistics

- Data Production (discussed in Lectures 1-3)
- Displaying and Summarizing (Lectures 3-8)
- Probability (discussed in Lectures 9-14)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures 14-16)
 - □ 1 quantitative (discussed in Lectures 16-18)
 - cat and quan: paired, 2-sample, several-sample (Lectures 19-21)
 - □ 2 categorical (discussed in Lectures 21-22)
 - □ 2 quantitative

Correlation and Regression (Review)

- □ Relationship between 2 quantitative variables
 - Display with scatterplot
 - Summarize:
 - □ Form: linear or curved
 - □ Direction: positive or negative
 - □ Strength: strong, moderate, weak

If form is linear, correlation r tells direction and strength.

Also, equation of least squares regression line lets us predict a response \hat{y} for any explanatory value x.

Regression Line and Residuals (Review)

Summarize linear relationship between explanatory (x) and response (y) values with line $\hat{y} = b_0 + b_1 x$ minimizing sum of squared prediction errors $y_i - \hat{y}_i$ (called *residuals*). Typical residual size is

$$s = \sqrt{\frac{(y_1 - \hat{y}_1)^2 + \dots + (y_n - \hat{y}_n)^2}{n - 2}}$$

- \square Slope: predicted change in response y for every unit increase in explanatory value x
- □ **Intercept:** predicted response for x=0

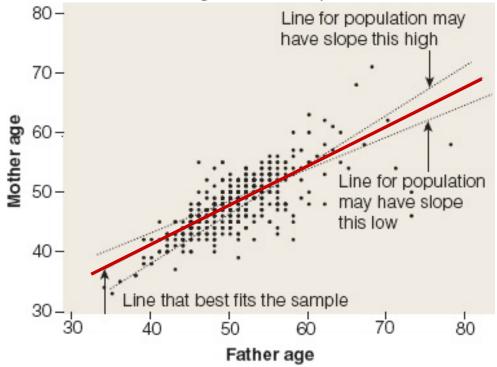
Note: this is the line that best fits the *sampled* points.

Regression for Sample vs. Population

- Can find line that best fits the sample.
- □ What does it tell about line that best fits *population*?

Example: Slope for Sample, Population

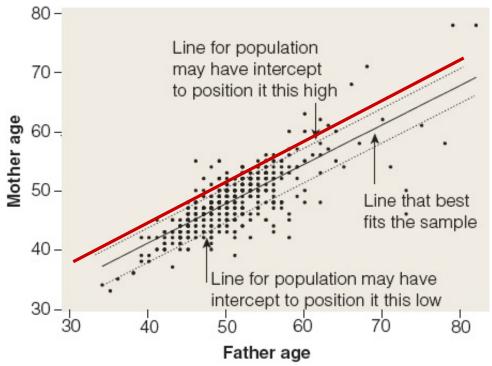
Background: Parent ages have $\hat{y} = 14.54 + 0.666x$, s = 3.3.



- **Question:** Is 0.666 the slope of the line that best fits relationship for *all* students' parents ages?
- **Response:** Slope β_1 of best line for *all* parents is

Example: Intercept for Sample, Population

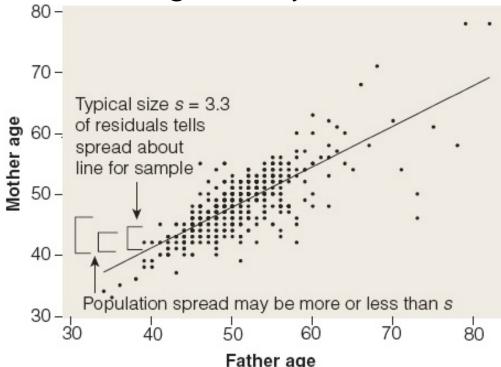
Background: Parent ages have $\hat{y} = 14.54 + 0.666x$, s = 3.3.



- **Question:** Is 14.54 the intercept of the line that best fits relationship for *all* students' parents ages?
- **Response:** Intercept β_O of best line for *all* parents is

Example: Prediction Error for Sample, Pop.

Background: Parent ages have $\hat{y} = 14.54 + 0.666x$, s = 3.3.



- Question: Is 3.3 the typical prediction error size for the line that relates ages of *all* students' parents?
- Response: Typical residual size for best line for *all* parents is

Notation; Population Model; Estimates

 σ : typical residual size for line best fitting linear relationship in population.

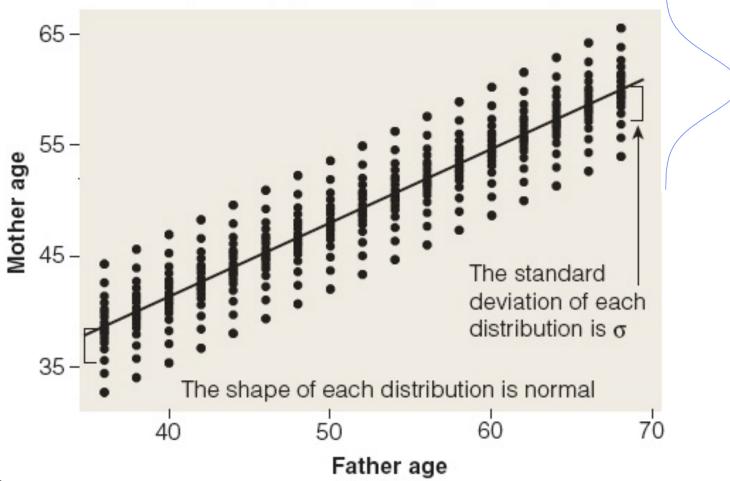
$$\mu_y = \beta_o + \beta_1 x$$
: population mean response

to any x. Responses vary normally about μ_y with standard deviation σ

Parameter	Estimate
eta_o	$b_{\scriptscriptstyle O}$
eta_1	b_1
σ	s

Population Model

Each distribution of mother ages is centered at the mean response to all such father ages (on the population regression line)



Estimates

Parameter	Estimate	
eta_o	b_O	
eta_1	b_1	
σ	s	

- □ Intercept and spread: point estimates suffice.
- □ Slope is focus of regression inference (hypothesis test, sometimes confidence interval).

Regression Hypotheses

$$\Box H_o: \beta_1 = 0 \rightarrow \mu_y = \beta_o + \beta_1 x$$

 \rightarrow no population relationship between x and y

$$\square H_a: \beta_1 \left\{ \begin{array}{l} > \\ < \\ \neq \end{array} \right\} 0$$

 $\rightarrow x$ and *y are* related for population (and relationship is positive if >, negative if <)

Example: Point Estimates and Test about Slope

□ **Background**: Consider parent age regression:

The regression equation is MotherAge = 14.5 + 0.666 FatherAge 431 cases used 15 cases contain missing values SE Coef Coef Predictor 11.05 Constant 14.542 1.317 0.000 FatherAge 0.66576 0.02571 25.89 0.000 S = 3.288R-Sq = 61.0% R-Sq(adj) = 60.9%

- Questions: What are parameters of interest and accompanying estimates? What hypotheses will we test?
- **Responses:** For $\mu_y = \beta_o + \beta_1 x$, estimate
 - Parameter with
 - Parameter with
 - Parameter with
 - Test H_o : VS. H_a :

Suspect _____ relationship.

L23.17

Practice: 13.9 p.648

Key to Solving Inference Problems (Review)

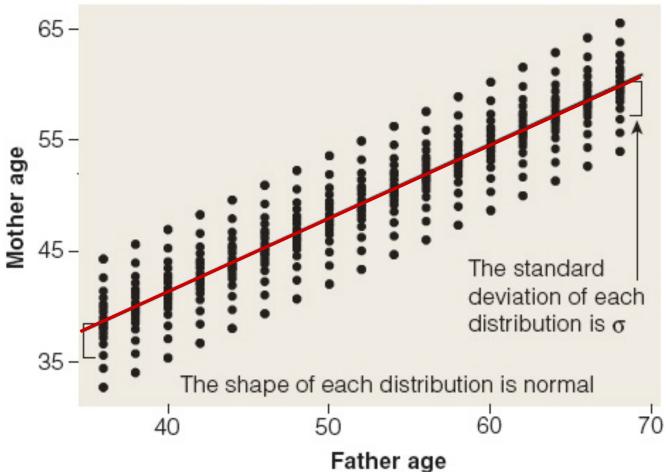
(1 quantitative variable) For a given population mean μ , standard deviation σ , and sample size n, needed to find probability of sample mean \bar{X} in a certain range:

Needed to know sampling distribution of \bar{X} in order to perform inference about μ .

Now, to perform inference about β_1 , need to know sampling distribution of b_1 .

Slopes b₁ from Random Samples Vary

Each distribution of mother ages is centered at the mean response to all such father ages (on the population regression line)

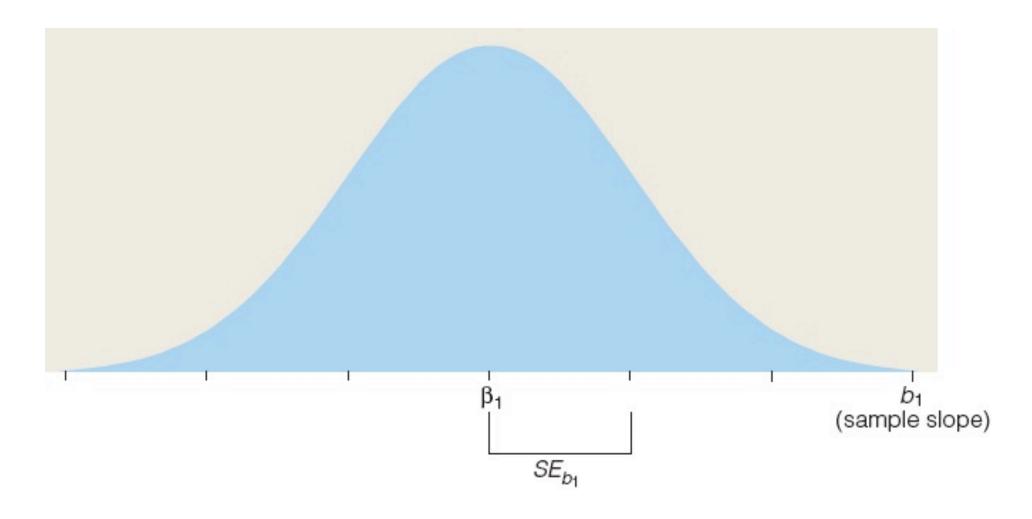


Distribution of Sample Slope

As a random variable, sample slope b_1 has

- Mean β_1
- s.d. $\approx SE_{b_1} = \frac{s}{\sqrt{(x_1 \bar{x})^2 + \dots + (x_n \bar{x})^2}}$
 - □ Residuals large → slope hard to pinpoint
 - □ Residuals small→slope easy to pinpoint
- Shape approximately normal if responses vary normally about line, or *n* large

Distribution of Sample Slope



Distribution of Standardized Sample Slope

Standardize
$$b_1$$
 to $t = \frac{b_1 - \beta_1}{SE_{b_1}}$

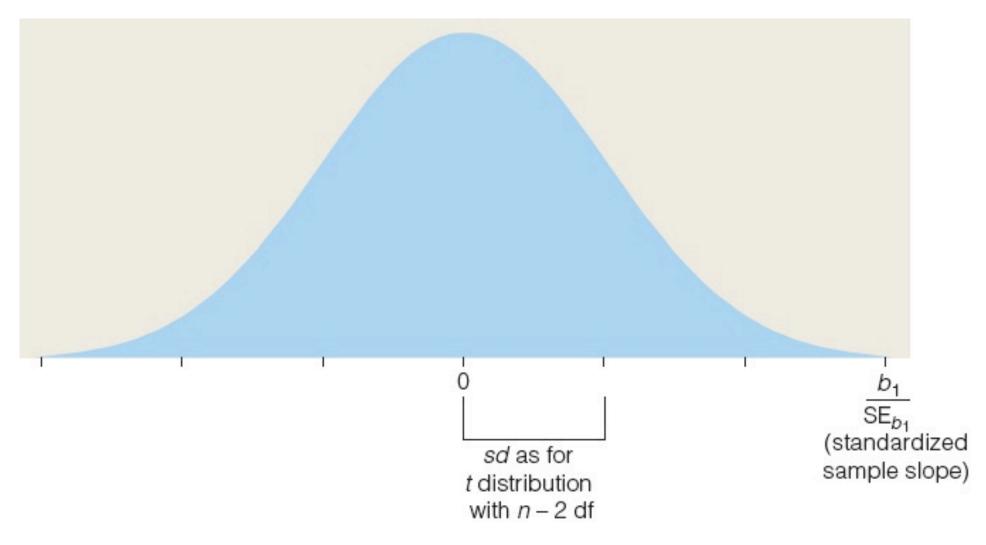
$$= \frac{b_1 - 0}{SE_{b_1}} \text{ if } H_0 \text{ is true.}$$

For large enough n, t follows t distribution with n-2 degrees of freedom.

- b_1 close to $0 \rightarrow t$ not large $\rightarrow P$ -value not small
- b_1 far from $0 \rightarrow t$ large $\rightarrow P$ -value small

Sample slope far from 0 gives evidence to reject Ho, conclude population slope not 0.

Distribution of Standardized Sample Slope



Example: Regression Output (Review)

□ **Background**: Regression of mom and dad ages:

```
The regression equation is

MotherAge = 14.5 + 0.666 FatherAge

431 cases used 15 cases contain missing values

Predictor Coef SE Coef T P

Constant 14.542 1.317 11.05 0.000

FatherAge 0.66576 0.02571 25.89 0.000

S = 3.288 R-Sq = 61.0% R-Sq(adj) = 60.9%
```

- Question: What does the output tell about the relationship between mother' and fathers' ages in the sample?
- **□** Response:
 - Line_____best fits sample (slope pos).
 - Sample relationship : r =
 - Typical size of prediction errors for sample is

Example: Regression Inference Output

Background: Regression of 431 parent ages:

Predictor	Coef	SE Coef	T	P
Constant	14.542	1.317	11.05	0.000
${ t Father Age}$	0.66576	0.02571	25.89	0.000
S = 3.288	R-Sq =	61.0% R	R-Sq(adj) =	60.9%

- **Question:** What does the output tell about the relationship П between mother' and fathers' ages in the population?
- **Response:** To test $H_o: \beta_1 = 0$ vs. $H_a: \beta_1 > 0$ П focus on line of numbers (about slope, not intercept)
 - Estimate for slope of line best fitting population:
 - Standard error of sample slope:
 - Stan. sample slope:
 - P-value: = 0.000 where t has df =
 - Reject H_0 ? Variables related in population?

Strength of Relationship or of Evidence

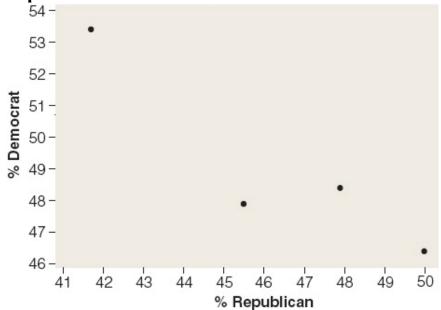
- Can have weak/strong evidence of weak/strong relationship.
- Correlation r tells strength of relationship (observed in sample)
 - \square |r| close to 1 \rightarrow relationship is strong
- P-value tells strength of evidence that variables are related in population.
 - \square P-value close to $0 \rightarrow$ evidence is strong

Example: Strength of Relationship, Evidence

- **Background**: Regression of students' mothers' on fathers' ages had r=+0.78, p=0.000.
- **Question:** What do these tell us?
- **□** Response:
 - r fairly close to $1 \rightarrow \underline{}$
 - P-value $0.000 \rightarrow$
 - We have _____ evidence of a _____
 relationship between students' mothers' and fathers' ages in general.

Example: Strength of Evidence; Small Sample

Background: % voting Dem vs. % voting Rep for 4 states in 2000 presidential election has r = -0.922, P-value 0.078.

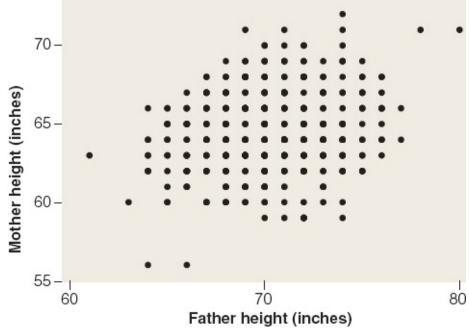


- **Question:** What do these tell us?
- **Response:** We have evidence (due to of a relationship in the population of states.

Example: Strength of Evidence; Large Sample

Background: Hts of moms vs. hts of dads have r = +0.225,

P-value 0.000.



- **Question:** What do these tell us?
- **Response:** There is evidence (due to of a relationship in the population.

Distribution of Sample Slope (Review)

As a random variable, sample slope b_1 has

- lacksquare Mean eta_1
- s.d. $\approx SE_{b_1} = \frac{s}{\sqrt{(x_1 \bar{x})^2 + \dots + (x_n \bar{x})^2}}$
- Shape approximately normal if responses vary normally about line, or *n* large
- To construct confidence interval for unknown population slope β_1 use b_1 as estimate, SEb_1 as estimated s.d., and t multiplier with n-2 df.

Confidence Interval for Slope

Confidence interval for β_1 is

$$b_1 \pm multiplier(SE_{b_1})$$

where multiplier is from t dist. with n-2 df.

If n is large, 95% confidence interval is

$$b_1 \pm 2(SE_{b_1}).$$

Example: Confidence Interval for Slope

■ **Background**: Regression of 431 parent ages:

Predictor	Coef	SE Coef	T	Р
Constant	14.542	1.317	11.05	0.000
${ t Father Age}$	0.66576	0.02571	25.89	0.000
S = 3.288	R-Sq = 0	61.0% R-	Sq(adj) =	60.9%

- Question: What is an approximate 95% confidence interval for the slope of the line relating mother's age and father's age for all students?
- □ **Response:** Use multiplier _____

We're 95% confident that for population of age pairs, if a father is 1 year older than another father, the mother is on average between ____ and ____ years older.

Note: Interval ____ ←→Rejected Ho.

Lecture Summary

(Inference for Quan \rightarrow Quan: Regression)

- □ Regression for sample vs. population
 - Slope, intercept, sample size
- Regression hypotheses
- □ Test about slope
 - Distribution of sample slope
 - Distribution of standardized sample slope
- Regression inference output
 - Strength of relationship, strength of evidence
- Confidence interval for slope