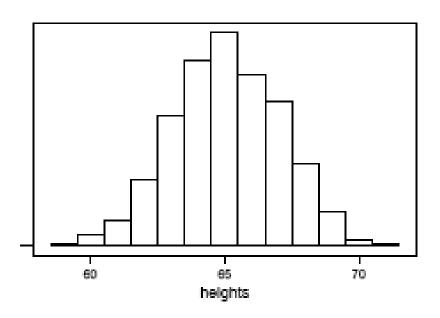
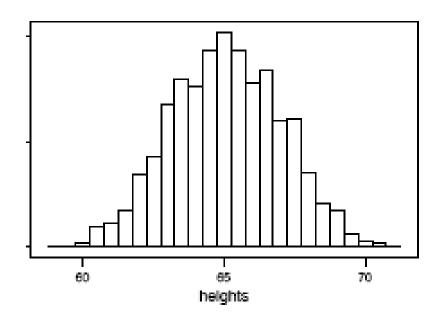
Lecture 10/Chapter 8 Bell-Shaped Curves & Other Shapes

- □From a Histogram to a Frequency Curve
- □Standard Score
- Using Normal Table
- □Empirical Rule

From Histogram to Normal Curve

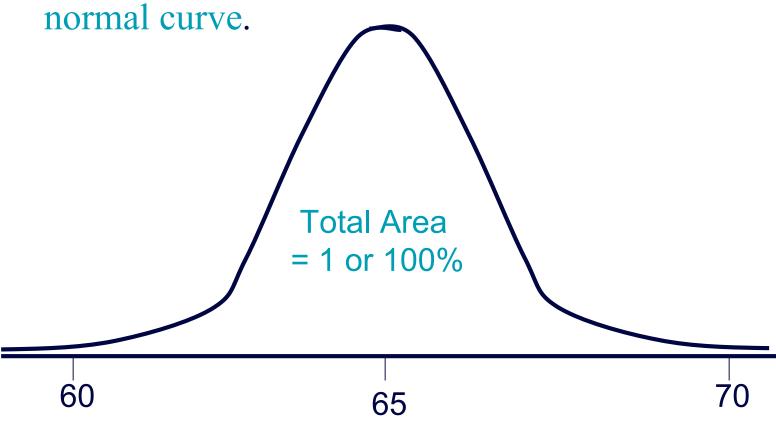
- □ Start: sample of female hts to nearest inch (left)
- □ Fine-tune: sampled hts to nearest 1/2-inch (right)





From Histogram to Normal Curve

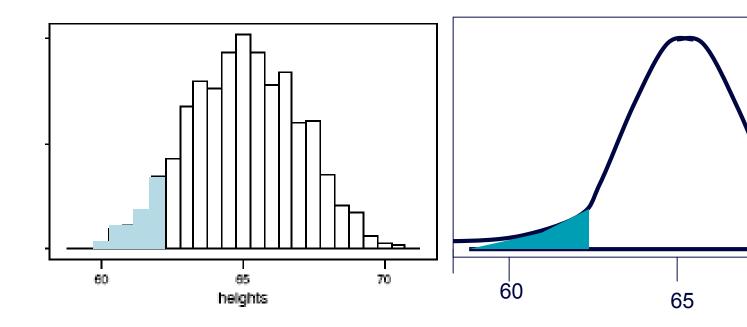
☐ Idealize: Population of infinitely many hts over continuous range of possibilities modeled with



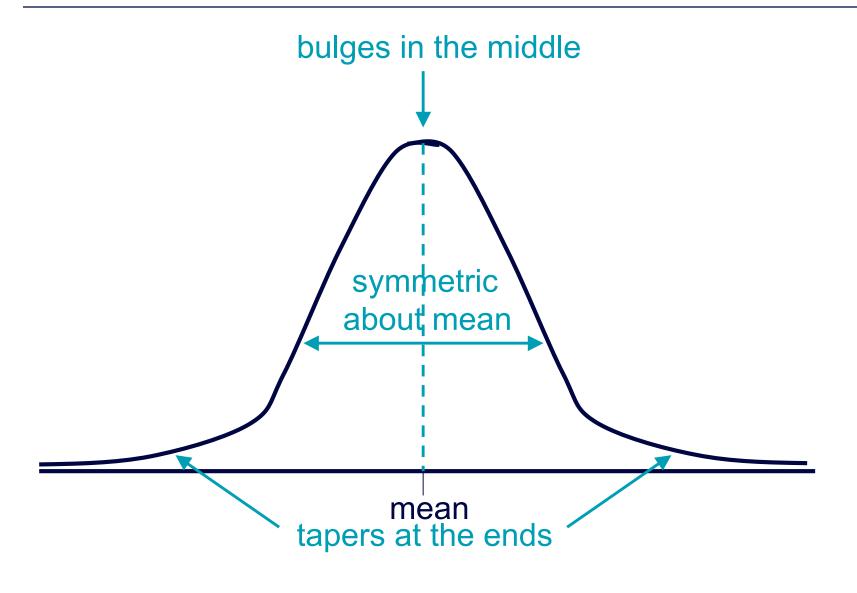
How Areas Show Proportions

- □ Area of histogram bars to the left of 62 shows proportion of sampled heights below 62 inches.
- Area under curve to the left of 62 shows proportion of all heights in population below 62 inches.

70



Properties of Normal Curve



Background of Normal Curve

- Karl Friedrich Gaus (1777-1855) was one of the first to explore normal distributions.
- Many distributions--such as test scores, physical characteristics, measurement errors, etc.-- naturally follow this particular pattern.
- If we know the shape is normal, and the value of the mean and standard deviation, we know exactly how the distribution behaves.
- There are infinitely many normal curves possible.

Standardizing Values of Normal Distribution

Put a value of a normal distribution into perspective by standardizing to its *z*-score:

observed value - mean

z =standard deviation

Example: Sign of z

- **Background**: A person's z-score for height is found; its sign is negative.
- □ **Question:** What do we know about the person's height?
- **□** Response:

Example: What z Tells Us

- **Background**: Heights of women (in inches) have mean 65, standard deviation 2.5. Heights of men have mean 70, standard deviation 3.
- □ **Question:** Who is taller relative to others of their sex: Jane at 71 inches or Joe at 76 inches?
- □ **Response:** Jane has z=Joe has z=

Example: More about What z Tells Us

- **Background**: Jane's *z*-score for height is +2.4 and Joe's is +2.0.
- □ **Question:** How do their heights relate to the averages, respectively, for women and men?
- □ **Response:** Jane's height is

Joe's height is

Example: Finding a Proportion, Given z

- **Background**: Jane's *z*-score for height is +2.4 and Joe's is +2.0, so the proportion of women shorter than Jane is more than the proportion of men shorter than Joe.
- □ Question: What are the proportions? Sketch #1
- **Response:** (See table p. 157.) The proportion below z=+2.4 is about ____; the proportion below z=+2.0 is about ____.

(Jane is in the ___th percentile; Joe is in the ___th.)

Example: Finding %, Given Original Value

- **Background**: Verbal SAT scores for college-bound students are approximately normal with mean 500, standard deviation 100.
- □ **Question:** If a student scored 450, what percentage scored less than she did? Sketch #2
- □ **Response:** z=(value-mean)/sd =

=____

[450 is ____ stan. deviation below mean]

Table shows % are below this.

Example: Finding Percentage Above

- **Background**: Verbal SAT scores for college-bound students are approximately normal with mean 500, standard deviation 100.
- □ **Question:** If a student scored 400, what percentage scored *more* than he did? Sketch #3
- □ **Response:** z=(value-mean)/sd = ____ [400 is ___ stan. deviation below mean]

Table shows _____% are *below* this so % are *above* this.

Example: Finding z, Given Percentile

- **Background**: Verbal SAT scores for college-bound students are approximately normal with mean 500, standard deviation 100.
- □ **Question:** A student scored in the 90th percentile; what was her score? Sketch #4
- Response: Table shows 90th percentile has
 z=___: her score is ___ sds above the mean,
 or

Example: Finding z, Given Percentile

- **Background**: Verbal SAT scores for college-bound students are approximately normal with mean 500, standard deviation 100.
- □ **Question:** What is the cutoff for top 5%? Sketch #5
- **Response:** Proportion above = $0.05 \rightarrow$ proportion below = $\rightarrow z = \rightarrow$ the value is stan. deviations above mean
 - → the value is _____

Example: Finding Proportion between Scores

- **Background**: Verbal SAT scores for college-bound students are approximately normal with mean 500, standard deviation 100.
- **Question:** What proportion scored between 425 and 633? Sketch #6
- Response: 425 has z=___; prop. below =____ 633 has z=___; proportion below =____

Prop. with *z* bet.-0.75 and +1.33 is_____

Example: Proportion within 1 sd of Mean

- □ **Background**: *Table 8.1* p. 157 Sketch #7
- □ **Question:** What proportion of normal values are within 1 standard deviation of the mean?
- **Response:** Proportion below -1 is ____; proportion below +1 is ____, so ____ are between -1 and +1.

Example: Proportion within 2 sds of Mean

- □ Background: *Table 8.1* p. 157 Sketch #8
- □ **Question:** What proportion of normal values are within 2 standard deviations of the mean?
- Response: Proportion below -2 is _____; proportion below +2 is ______;

 $\underline{}$ are between -2 and +2.

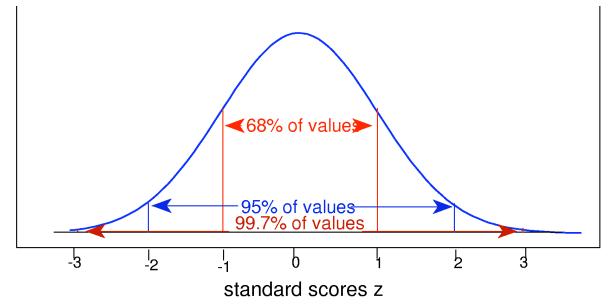
Example: Proportion within 3 sds of Mean

- □ Background: *Table 8.1* p. 157 Sketch #9
- □ **Question:** What proportion of normal values are within 3 standard deviations of the mean?
- Response: Proportion below -3 is ______
 proportion below +3 is ______
 are between -3 and +3.

Empirical Rule (68-95-99.7 Rule)

For any normal curve, approximately

- □ 68% of values are within 1 sd of mean
- □ 95% of values are within 2 sds of mean
- □ 99.7% of values are within 3 sds of mean

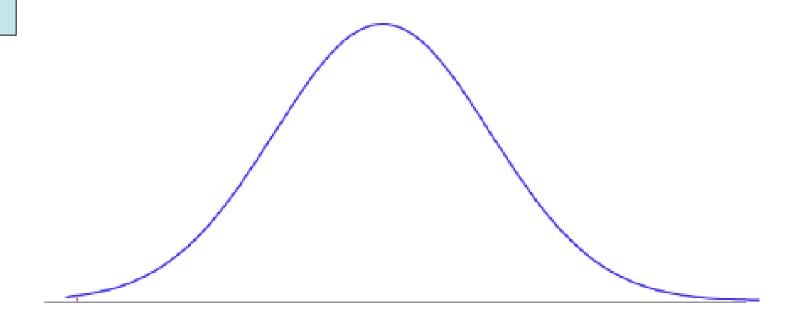


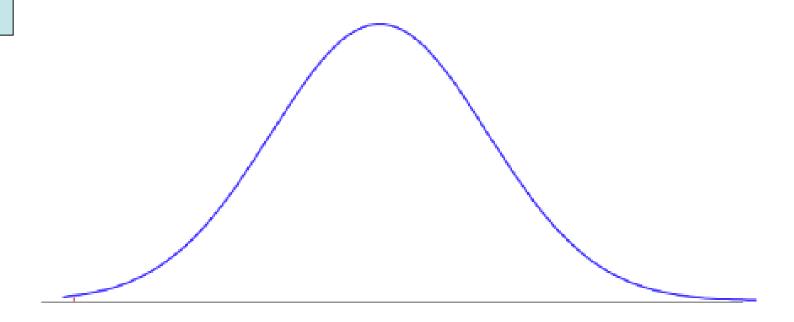
Example: Applying Empirical Rule

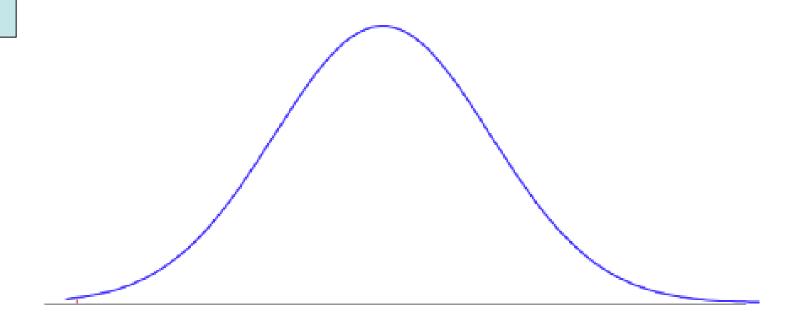
- **Background**: IQ scores normal with mean 100, standard deviation 15.
- □ **Question:** What does Empirical Rule tell us?
- **□** Response:
 - 68% of IQ scores are between and
 - 95% of IQ scores are between and
 - 99.7% of IQ scores are between ____ and ____

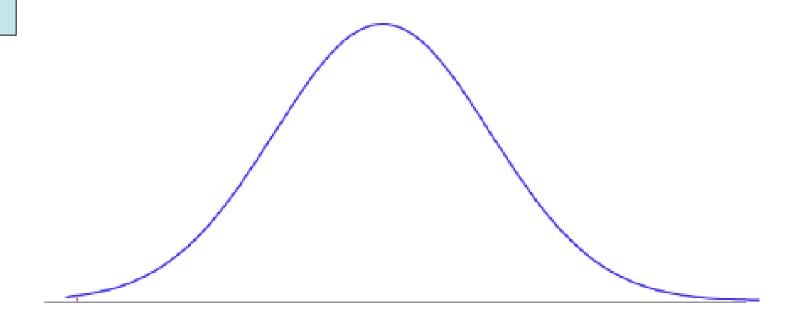
Example: Applying Empirical Rule?

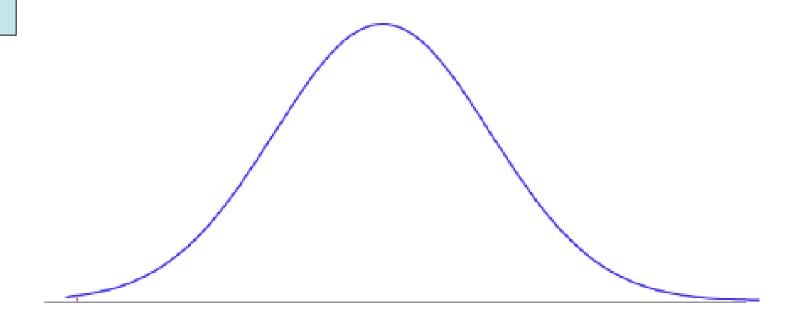
- **Background**: Earnings for a large group of students had mean \$4000, stan. dev. \$6000.
- □ **Question:** What does Empirical Rule tell us?
- **□** Response:
 - 68% of earnings are between -\$2000 and \$10,000?
 - 95% of earnings are between -\$8000 and \$16,000?
 - 99.7% of earnings between -\$14,000 and \$22,000?











Normal Practice Exercises

Try all the exercises in Lecture 11 before next class; we'll discuss the solutions in lecture.