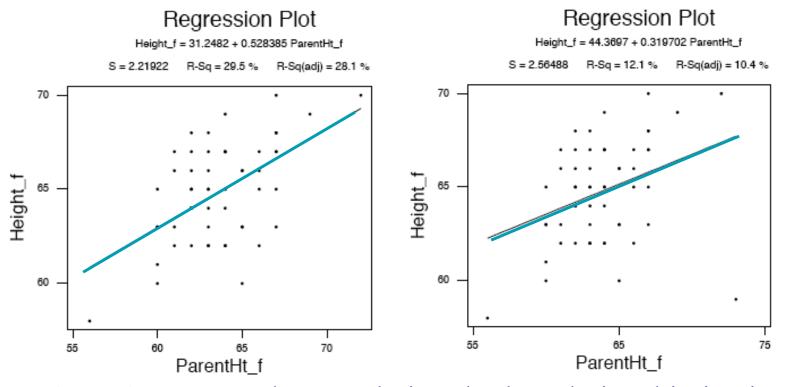
# Lecture 14 Chapter 11 Relationships Can Be Deceiving

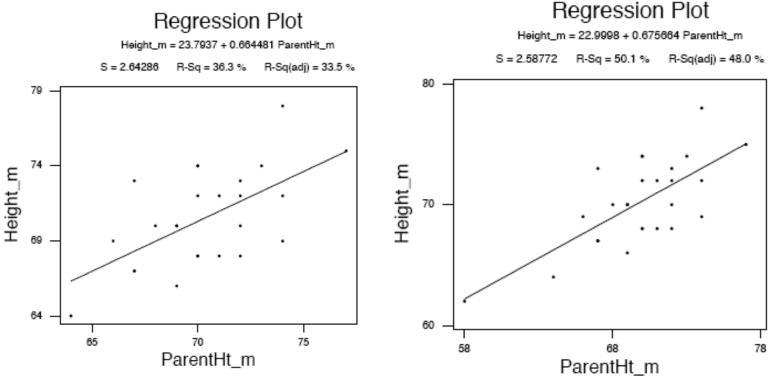
- □Illegitimate Correlations
- □Reasons for a Relationship
- Establishing Causation in Observational Study


#### **Definitions**

- Outlier (in regression): point that is unusually far (vertically) from the regression line.
- □ **Influential observation:** point with high degree of influence on regression line.
  - A point that is inconsistent with the trend of the data can decrease the correlation.
  - A point that is consistent with the trend of the data can inflate the correlation.

An illegitimate correlation is one that fails to reflect the true strength of the relationship.

## Example: An Influential Height Observation


■ **Background**: Add data: very short daughter, very tall mother.



- □ **Question:** Does the correlation do the relationship justice?
- □ Response:

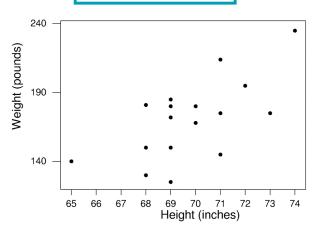
## **Example:** Another Influential Observation

■ **Background**:Add data: very short son, very short father.

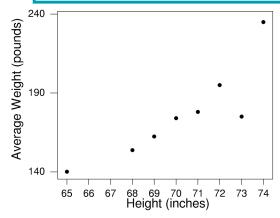


- **Question:** Does the correlation do the relationship justice?
- □ Response:

#### More about Correlation r


- □ Correlation is a standardized measure of the direction and strength of the linear relation between 2 quantitative variables
  - A strong curved relationship may have r close to 0
  - r is unaffected by change of units
  - r based on averages overstates strength
  - r may be high due to confounding variables

### **Example:** Correlation Based on Averages


| Ht   | 65  | 68    |     |     | 69    |     |     |     |     | 70    |     | 71    |     |     | 72  | 73  | 74  |
|------|-----|-------|-----|-----|-------|-----|-----|-----|-----|-------|-----|-------|-----|-----|-----|-----|-----|
| Wt   | 140 | 130   | 150 | 181 | 125   | 150 | 172 | 180 | 185 | 168   | 180 | 145   | 175 | 214 | 195 | 175 | 235 |
| AvWt | 140 | 153.7 |     |     | 162.4 |     |     |     |     | 174.0 |     | 178.0 |     |     | 195 | 175 | 235 |

**Background**: For male students plot...

Left: wt. vs. ht. or



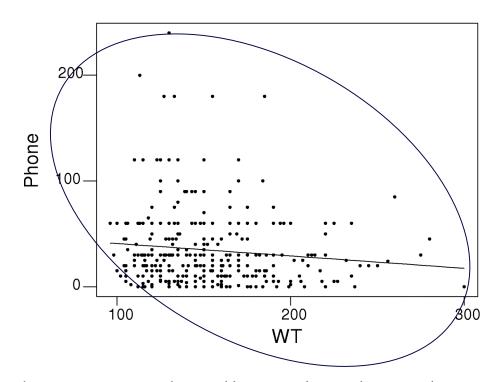
Right: average wt. vs. ht.



- **Question:**Which one has r = +0.87? (other r = +0.65)
- **Response:** Plot on has r=+0.87 (stronger)

### **Example:** Another r Based on Averages

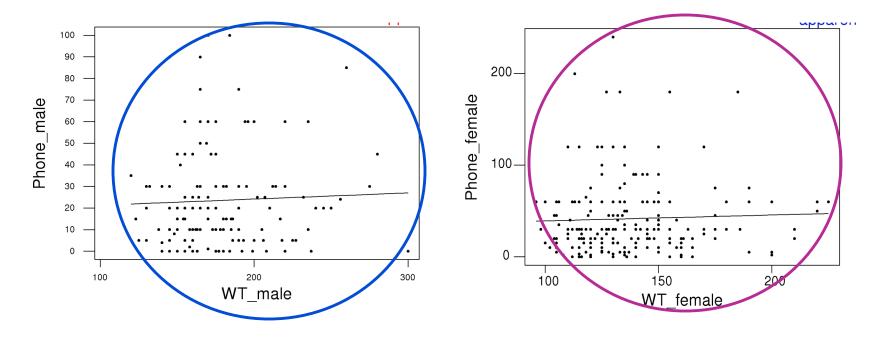
- **Background**: Richard Doll regressed lung cancer death rates on per capita cigarettes for 11 countries, and found r = +0.7 (fairly strong relationship).
- Question: Can we predict very well whether or not an individual will die of lung cancer, if we know whether or not he/she smokes?
- **□** Response:


In general, correlation based on averages tends to overstate strength because scatter due to individuals has been reduced.

## Confounding Variables in Regression

□ Combining two groups that differ with respect to a variable that is related to both explanatory and response variables can affect the nature of their relationship.

#### **Example:** Additional Variables


■ **Background**: A regression of phone time (in minutes the day before) and weight shows a negative relationship.



Questions: Do heavy people talk on the phone less? Do light people talk more?

## **Example:** Confounding Variables

■ **Background**: A regression of phone time (in minutes the day before) and weight shows a negative relationship.



■ **Response:** \_\_\_\_\_ is confounding variable → regress separately for males and females → no relationship

## Reasons for a Relationship

- Explanatory variable is direct cause of responses.
  - 2. Response var. causes changes in explanatory var.
- Explanatory var. is contributing cause of responses.
- →4. Confounding variable(s) relate the two variables.
- ▶ 5. Both variables result from a common cause.
  - 6. Both variables are changing over time.
  - 7. The association is just a coincidence.

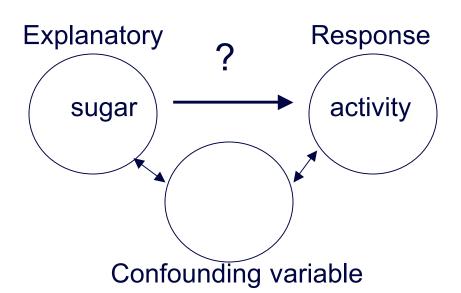
Note: We'll group reasons 1&3 together; 4&5 together.

**Background:** Say an observational study shows that for kids, sugar intake x and activity level y have positive r.

**Question:** Tell how each reason could be the case.

Response: 1&3 Explanatory Response sugar activity

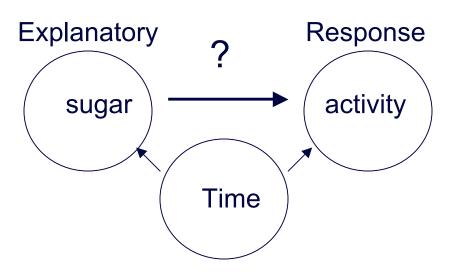
**Background:** Say an observational study shows that for kids, sugar intake x and activity level y have positive r.


Question: Tell how each reason could be the case.

Response: #2 Explanatory Response sugar activity

**Background:** Say an observational study shows that for kids, sugar intake *x* and activity level *y* have positive *r*.

Question: Tell how each reason could be the case.


Response: 4&5



**Background:** Say an observational study shows that for kids, sugar intake *x* and activity level *y* have positive *r*.

Question: Tell how each reason could be the case.

**Response: #6** 



**Background:** Say an observational study shows that for kids, sugar intake *x* and activity level *y* have positive *r*.

Question: Tell how each reason could be the case.

Response: #7 Explanatory Response

sugar ? activity

Results may be due to \_\_\_\_\_\_. [Small sample size? Or, many studies were conducted simultaneously, and one happened to turn out to have significant results?]

# Making a Case for Causation in Obs. Study

- Given all the possible ways two variables may be related, can we ever hope to claim causation? Yes, in a well-designed experiment, or an observational study that follows these guidelines:
- 1. There is a reasonable explanation for cause & effect.
- 2. The connection happens under varying conditions.
- 3. Potential confounding variables are ruled out.

Note: The third of these is the most difficult to achieve.

## **Example:** Guidelines for Evidence of Causation

- **Background**: Consider article about kids wt & TV.
- □ **Question:** Does it meet the recommended guidelines?
- **□** Response:
  - Reasonable explanation?

Connection happens under varying conditions?

Potential confounding variables ruled out?

Note Dr. Robinson's comment. Not coincidentally, the same Dr. Robinson soon published results of his own study...

#### **Example:** Comparing Evidence of Causation

- **Background**:Compare 2 articles about kids' wt & TV.
- □ **Question:** Why are the 2nd article's claims more convincing?
- **□** Response:

EXTRA CREDIT (Max. 5 pts.) Display with a scatterplot and describe (mention form, direction, and strength) the relationship between 2 quantitative variables from the survey [but not shoesize vs. height]. Is there an obvious choice for explanatory and response variables? Are there outliers or influential observations? Access the link 800surveyf06.txt at <a href="https://www.pitt.edu/~nancyp/stat-0800/index.html">www.pitt.edu/~nancyp/stat-0800/index.html</a> and see instructions to highlight, copy, and paste into MINITAB.