Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation

םDisplay and Summarize
\square Correlation for Direction and Strength
\square Properties of Correlation
\square Regression Line

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
\square Single variables: 1 cat,1 quan (discussed Lectures 5-8)
- Relationships between 2 variables:
- Categorical and quantitative (discussed in Lecture 9)
- Two categorical (discussed in Lecture 10)
- Two quantitative
- Probability
- Statistical Inference

Example: Two Single Quantitative Variables

- Background: Data on male students' heights and weights:

Variable	N	Mean	Median	TrMean	StDev	SE Mean
height	17	69.765	69.000	69.800	2.137	0.518
weight	17	170.59	175.00	169.33	28.87	7.00

- Question: What do these tell us about the relationship between male height and weight?
- Response:

Definition

- Scatterplot displays relationship between 2 quantitative variables:
- Explanatory variable (x) on horizontal axis
- Response variable (y) on vertical axis

Example: Explanatory/Response Roles

\square Background: We're interested in the relationship between male students' heights and weights.
\square Question: Which variable should be graphed along the horizontal axis of the scatterplot?
\square Response:

Definitions

\square Form: relationship is linear if scatterplot points cluster around some straight line
\square Direction: relationship is

- positive if points slope upward left to right
- negative if points slope downward left to right

Example: Form and Direction

\square Background: Scatterplot displays relationship between male students' heights and weights.

- Question: What are the form and direction of the relationship?
- Response: Form is direction is

Strength of a Linear Relationship

\square Strong: scatterplot points tightly clustered around a line

- Explanatory value tells us a lot about response
\square Weak: scatterplot points loosely scattered around a line
- Explanatory value tells us little about response

Example: Relative Strengths

- Background: Scatterplots display:
- mothers' ht. vs. fathers' ht. (left)
- males' wt. vs. ht. (middle)
- mothers' age vs. fathers' age (right):

\square Question: How do relationships' strengths compare? (Which is strongest, which is weakest?)

Example: Negative Relationship

- Background: Scatterplot displays price vs. age for 14 used Pontiac Grand Am's.
- Questions:

- Why should we expect the relationship to be negative?
- Does it appear linear? Is it weak or strong?
\square Responses:

Definition

\square Correlation r : tells direction and strength of linear relation between 2 quantitative variables

- Direction: r is
- positive for positive relationship
- negative for negative relationship
\square zero for no relationship
- Strength: r is between -1 and +1 ; it is
- close to 1 in absolute value for strong relationship
- close to 0 in absolute value for weak relationship
\square close to 0.5 in absolute value for moderate relationship

Example: Extreme Values of Correlation

- Background: Scatterplots show relationships...
- (left) Price per kilogram vs. price per pound for groceries
- (middle) Used cars' age vs. year made
- (right) Students' final exam score vs. order handed in

\square Question: Correlations (scrambled) are $-1,0,+1$. Which goes with each scatterplot?

Example: Relative Strengths

- Background: Scatterplots display:
- mothers' ht. vs. fathers' ht. (left)
- males' wt. vs. ht. (middle)
- mothers' age vs. fathers' age (right):

- Question: Which graphs go with which correlation:
$r=0.23, r=0.78, r=0.65$?
- Response: left $r=$
middle $r=\quad$ right $r=$ \square

Example: Imperfect Relationships

\square Background: For 50 states, \% voting Republican vs. \% Democrat in 2000 presidential election had $r=-0.96$.

- Questions: Why should we expect the relationship to be negative? Why is it imperfect?
\square Responses:
- Negative:
- Imperfect:

More about Correlation r

- Tells direction and strength of linear relation between 2 quantitative variables
- A strong curved relationship may have r close to 0
- Correlation not appropriate for categorical data
\square Unaffected by roles explanatory/response
\square Unaffected by change of units
\square Overstates strength if based on averages

Example: Correlation when Roles are Switched

\square Background: Male students' wt vs ht (left) or ht vs wt (right):

- Questions:

- How do directions and strengths compare, left vs. right?
- How do correlations r compare, left vs. right?
\square Responses:

Example: Correlation when Units are Changed

\square Background: For male students plot...
Left: wt (lbs) vs. ht (in) or Right: wt (kg) vs. ht (cm)

\square Question:

- How do directions, strengths, and r compare, left vs. right?
\square Response:

Example: Correlation Based on Averages

\square Background: For male students plot...

Ht	65		68		69		70		71	72	73	74
Wt	140	130	150181	125150	172180	185	168180	145	175214	195	175	235
AvWt	140		153.7		162.4		174.0		178.0	195	175	235
Left: wt. vs. ht. or												

- Question: Which one has $r=+0.87$? (other $r=+0.65$)
\square Response: Plot on \qquad has $r=+0.87$ (stronger).

Least Squares Regression Line

If form appears linear, then we picture points clustered around a straight line.

- Questions (Rhetorical):

1. Is there only one "best" line?
2. If so, how can we find it?
3. If found, how can we use it?

Responses: (in reverse order)
3. If found, can use line to make predictions.

Least Squares Regression Line

Response:

3. If found, can use line to make predictions. Write equation of line $\widehat{y}=b_{0}+b_{1} x$:

- Explanatory value is x
- Predicted response is \widehat{y}
- y-intercept is b_{0}
- Slope is b_{1}
and use the line to predict a response for any given explanatory value.

Least Squares Regression Line

If form appears linear, then we picture points clustered around a straight line.

- Questions:

1. Is there only one "best" line?
2. If so, how can we find it?
3. If found, how can we use it? Predictions

Response:
2. Find line that makes best predictions.

Least Squares Regression Line

Response:

2. Find line that makes best predictions:

Minimize sum of squared residuals (prediction errors). Resulting line called least squares line or regression line.
A Closer Look: The mathematician Sir Francis Galton called it the "regression" line because of the "regression to mediocrity" seen in any imperfect relationship: besides responding to x, we see y tending towards its average value.

Least Squares Regression Line

If form appears linear, then we picture points clustered around a straight line.

- Questions:

1. Is there only one "best" line?
2. If so, how can we find it? Minimize errors
3. If found, how can we use it? Predictions

Response:

1. Methods of calculus \rightarrow unique "best" line

Least Squares Regression Line

If form appears linear, then we picture points clustered around a straight line.

- Questions:

1. Is there only one "best" line?
2. If so, how can we find it?
3. If found, how can we use it?

- Response:

1. "Best" line has $b_{1}=r \frac{s_{y}}{s_{x}} b_{0}=\bar{y}-b_{1} \bar{x}$

Example: Least Squares Regression Line

- Background: Car-buyer wants to know if $\$ 4,000$ is a fair price for an 8 -yr-old Grand Am; uses software to regress price on age for 14 used Grand Am's:

\square Question: How can she use the line?
\square Response: Predict for $x=8, \widehat{y}$

Lecture Summary

(Quantitative Relationships; Correlation)

- Display with scatterplot
- Summarize with form, direction, strength
- Correlation r tells direction and strength
\square Properties of r
- Unaffected by explanatory/response roles
- Unaffected by change of units
- Overstates strength if based on averages
- Least squares regression line for predictions

