Lecture 16: Chapter 7, Section 2 Binomial Random Variables

-Definition
\square What if Events are Dependent?
םCenter, Spread, Shape of Counts, Proportions
■Normal Approximation

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability
- Finding Probabilities (discussed in Lectures 13-14)
- Random Variables (introduced in Lecture 15)

- Sampling Distributions
- Statistical Inference

Definition (Review)

- Discrete Random Variable: one whose possible values are finite or countably infinite (like the numbers $1,2,3, \ldots$)

Looking Ahead: To perform inference about

 categorical variables, need to understand behavior of sample proportion. A first step is to understand behavior of sample counts. We will eventually shift from discrete counts to a normal approximation, which is continuous.
Definition

Binomial Random Variable counts sampled

 individuals falling into particular category;- Sample size n is fixed
- Each selection independent of others
- Just 2 possible values for each individual
- Each has same probability p of falling in category of interest

Example: A Simple Binomial Random Variable

\square Background: The random variable X is the count of tails in two flips of a coin.
\square Questions: Why is X binomial? What are n and p ?
\square Responses:

- Sample size n fixed?
- Each selection independent of others?
- Just 2 possible values for each?
- Each has same probability p ?

Example: A Simple Binomial Random Variable

\square Background: The random variable X is the count of tails in two flips of a coin.
\square Question: How do we display X ?

- Response:

> Looking Back: We already discussed and displayed this random variable when learning about probability distributions.

Example: Determining if R.V. is Binomial

\square Background: Consider following R.V.:

- Pick card from deck of 52, replace, pick another. $X=$ no. of cards picked until you get ace.
\square Question: Is X binomial?
\square Response:

Example: Determining if R.V. is Binomial

\square Background: Consider following R.V.:

- Pick 16 cards without replacement from deck of 52. $X=$ no. of red cards picked.
\square Question: Is X binomial?
\square Response:

Example: Determining if R.V. is Binomial

\square Background: Consider following R.V.:

- Pick 16 cards with replacement from deck of 52. $W=$ no. of clubs, $X=$ no. of diamonds, $Y=$ no. of hearts, $Z=$ no. of spades. Goal is to report how frequently each suit is picked.
\square Question: Are W, X, Y, Z binomial?
\square Response:

Example: Determining if R.V. is Binomial

\square Background: Consider following R.V.:

- Pick with replacement from German deck of 32 (doesn't include numbers 2-6), then from deck of 52 , back to deck of 32 , etc. for 16 selections altogether. $X=$ no. of aces picked.
\square Question: Is X binomial?
\square Response:

Example: Determining if R.V. is Binomial

- Background: Consider following R.V.:
- Pick 16 cards with replacement from deck of 52. $X=$ no. of hearts picked.
\square Question: Is X binomial?
\square Response:
- fixed $n=16$
- selections independent (with replacement)
- just 2 possible values (heart or not)
- same $p=0.25$ for all selections
\rightarrow

Requirement of Independence

Snag:

- Binomial theory requires independence
- Actual sampling done without replacement so selections are dependent
Resolution: When sampling without replacement, selections are approximately independent if population is at least $10 n$.

Example: A Binomial Probability Problem

\square Background: The proportion of Americans who are left-handed is 0.10 . Of 44 presidents, 7 have been left-handed (proportion 0.16).
\square Question: How can we establish if being left-handed predisposes someone to be president?
\square Response: Determine if 7 out of 44 (0.16) is when sampling at random from a population where 0.10 fall in the category of interest.

Solving Binomial Probability Problems

- Use binomial formula or tables

Only practical for small sample sizes

- Use software

Won't take this approach until later

- Use normal approximation for count X

Not quite: more interested in proportions

- Use normal approximation for proportion

Need mean and standard deviation...

Example: Mean of Binomial Count, Proportion

\square Background: Based on long-run observed outcomes, probability of being left-handed is approx. 0.1. Randomly sample 100 people.
\square Questions: On average, what should be the

- count of lefties?
- proportion of lefties?
\square Responses: On average, we should get
- count of lefties
- proportion of lefties

Mean and S.D. of Counts, Proportions

Count X binomial with parameters n, p has:

- Mean $n p$
- Standard deviation $\sqrt{n p(1-p)}$ Sample proportion $\hat{p}=\frac{X}{n}$ has:
- Mean p
- Standard deviation $\sqrt{\frac{p(1-p)}{n}}$

Looking Back: Formulas for s.d. require independence: population at least $10 n$.

Example: Standard Deviation of Sample Count

\square Background: Probability of being left-handed is approx. 0.1. Randomly sample 100 people. Sample count has mean $100(0.1)=10$, standard deviation $\sqrt{100(0.1)(1-0.1)}=3$
\square Question: How do we interpret these?
\square Response: On average, expect sample count lefties.
Counts vary; typical distance from 10 is

Example: S.D. of Sample Proportion

\square Background: Probability of being left-handed is approx. 01 . Randomly sample 100 people.
Sample proportion has mean 0.l, standard deviation $\sqrt{\frac{0.1(1-0.1)}{100}}=0.03$
\square Question: How do we interpret these?
\square Response: On average, expect
sample proportion $=\quad$ lefties.
Proportions vary; typical distance from 0.1 is

Example: Role of Sample Size in Spread

- Background: Consider proportion of tails in various sample sizes n of coinflips.
- Questions: What is the standard deviation for

$$
n=1 ? n=4 ? n=16 ?
$$

\square Responses:

-	$\boldsymbol{n}=\mathbf{1}:$ s.d. $=$
-	$\boldsymbol{n}=\mathbf{4}:$ s.d. $=$
	$\boldsymbol{n}=\mathbf{1 6 :}$ s.d. $=\square$

A Closer Look: Due to n in the denominator of formula for standard deviation, spread of sample proportion as n increases.

Shape of Distribution of Count, Proportion

Binomial count X or proportion $\hat{p}=\frac{X}{n}$ for repeated random samples has shape approximately normal if samples are large enough to offset underlying skewness. (Central Limit Theorem)
For a given sample size n, shapes are identical for count and proportion.

Example: Underlying Coinflip Distribution

\square Background: Distribution of count or proportion of tails in $n=1$ coinflip ($p=0.5$):

\square Question: What are the distributions' shapes?
\square Response:

Example: Distribution for 4 Coinflips

- Background: Distribution of count or proportion of tails in $n=4$ coinflips ($p=0.5$):

$X=$ Count of tails in 4 coin flips
$\hat{p}=$ Proportion of tails in 4 coin flips
\square Question: What are the distributions' shapes?
\square Response:

Shift from Counts to Proportions

Binomial Theory begins with counts

- Inference will be about proportions

Example: Distribution of \widehat{p} for 16 Coinflips

- Background: Distribution of proportion of tails in $n=16$ coinflips ($p=0.5$):

\square Question: What is the shape?
\square Response:

Example:Underlying Distribution of Lefties

\square Background: Distribution of proportion of lefties $(p=0.1)$ for samples of $n=1$:

- Question: What is the shape?
\square Response:

Example: Dist of \hat{p} of Lefties for $n=16$

\square Background: Distribution of proportion of lefties $(p=0.1)$ for $n=16$:

\square Question: What is the shape?
\square Response:

Example: Dist of \hat{p} of Lefties for $n=100$

\square Background: Distribution of proportion of lefties $(p=0.1)$ for $n=100$:

- Question: What is the shape?
\square Response:

Rule of Thumb:

Sample Proportion Approximately Normal

Distribution of \widehat{p} is approximately normal if sample size n is large enough relative to shape, determined by population proportion p.
Require $n p \geq 10$ and $n(1-p) \geq 10$

Together, these require us to have larger n for p close to 0 or 1 (underlying distribution skewed right or left).

Example: Applying Rule of Thumb

\square Background: Consider distribution of sample proportion for various n and p :
$n=4, p=0.5 ; n=20, p=0.5 ; n=20, p=0.1 ; n=20, p=0.9 ; n=100, p=0$.
\square Question: Is shape approximately normal?
\square Response: Normal?

```
- \(n=4, p=0.5\)
- \(n=20, p=0.5\)
    \([n p=4(0.5)=2<10]\)
    \([n p=20(0.5)=10=n(1-p)]\)
    - \(n=20, p=0.1 \quad\) No [
    - \(n=20, p=0.9 \quad\) No |
    - \(n=100, p=0.1\)
    \([n p=100(0.1)=10, n(1-p)=100(0.9)=90\) both \(\geq 10]\)
```


Example: Solving the Left-handed Problem

- Background: The proportion of Americans who are lefties is 0.1. Consider $\mathrm{P}(\widehat{p} \geq 7 / 44=0.16)$ for a sample of 44 presidents.
\square Question: Can we use a normal approximation to find the probability that at least 7 of $44(0.16)$ are left-handed?
\square Response:

Example: From Count to Proportion and Vice

Versa

\square Background: Consider these reports:

- In a sample of 87 assaults on police, 23 used weapons.
- 0.44 in sample of 25 bankruptcies were due to med. bills
- Question: In each case, what are n, X, and \widehat{p} ?
\square Response:
- First has $n=\quad x=\square \widehat{p}=$
- Second has $n=$

$$
\widehat{p}=\quad x=
$$

Lecture Summary

(Binomial Random Variables)

- Definition; 4 requirements for binomial
\square R.V.s that do or don't conform to requirements
\square Relaxing requirement of independence
- Binomial counts, proportions
- Mean
- Standard deviation
- Shape
- Normal approximation to binomial

