Lecture 34: Chapter 13, Section 1 Two Quantitative Variables Inference for Regression

■Regression for Sample vs. Population
\square Population Model; Parameters and Estimates
םRegression Hypotheses
\square Test about Slope; Interpreting Output
\square Confidence Interval for Slope

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
$\square \quad 1$ categorical (discussed in Lectures 21-23)
- 1 quantitative (discussed in Lectures 24-27)
- cat and quan: paired, 2-sample, several-sample (Lectures 28-31)
- 2 categorical (discussed in Lectures 32-33)
$\square \quad 2$ quantitative

Regression Line and Residuals (Review)

Summarize linear relationship between explanatory (x) and response (y) values with line $\hat{y}=b_{0}+b_{1} x$ minimizing sum of squared prediction errors $y_{i}-\widehat{y}_{i}$ (called residuals). Typical residual size is

$$
s=\sqrt{\frac{\left(y_{1}-\widehat{y}_{1}\right)^{2}+\cdots+\left(y_{n}-\widehat{y}_{n}\right)^{2}}{n-2}}
$$

\square Slope: predicted change in response y for every unit increase in explanatory value x

- Intercept: predicted response for $x=0$

Note: this is the line that best fits the sampled points.

Regression for Sample vs. Population

\square Can find line that best fits the sample.

- What does it tell about line that best fits population?

Example: Slope for Sample, Population

- Background: Parent ages have $\hat{y}=14.54+0.666 x, s=3.3$.

- Question: Is 0.666 the slope of the line that best fits relationship for all students' parents ages?
- Response: Slope β_{1} of best line for all parents is

Example: Intercept for Sample, Population

ㅁ Background: Parent ages have $\hat{y}=14.54+0.666 x, s=3.3$.

- Question: Is 14.54 the intercept of the line that best fits relationship for all students' parents ages?
- Response: Intercept β_{O} of best line for all parents is

Example: Prediction Error for Sample, Pop.

$\square \quad$ Background: Parent ages have $\hat{y}=14.54+0.666 x, s=3.3$.

- Question: Is 3.29 the typical prediction error size for the line that relates ages of all students' parents?
- Response: Typical residual size for best line for all parents is

Notation; Population Model; Estimates

σ : typical residual size for line best fitting linear relationship in population.
$\mu_{y}=\beta_{o}+\beta_{1} x$: population mean response
to any x. Responses vary normally about μ_{y} with standard deviation σ

Parameter	Estimate
β_{o}	b_{o}
β_{1}	b_{1}
σ	s

Population Model

Each distribution of mother ages is centered at the mean response to all such father ages
(on the population regression line)

Estimates

Parameter	Estimate
β_{O}	b_{O}
β_{1}	b_{1}
σ	s

\square Intercept and spread: point estimates suffice.
\square Slope is focus of regression inference (hypothesis test, sometimes confidence interval).

Regression Hypotheses

- $H_{0}: \beta_{1}=0 \rightarrow \mu_{y}=\beta_{0}+\beta_{1} x$
 \rightarrow no population relationship between x and y

- $H_{a}: \beta_{1}\left\{\begin{array}{l}> \\ < \\ \neq\end{array}\right\} 0$
$\rightarrow x$ and y are related for population (and relationship is positive if $>$, negative if $<$)

Example: Point Estimates and Test about Slope

\square Background: Consider parent age regression:

```
The regression equation is
MotherAge = 14.5 + 0.666 FatherAge
```

431 cases used 15 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	14.542	1.317	11.05	0.000
FatherAge	0.66576	0.02571	25.89	0.000
$S=3.288$	$R-S q=61.0 \%$	$R-S q(a d j)=60.9 \%$		

- Questions: What are parameters of interest and accompanying estimates? What hypotheses will we test?
- Responses: For $\mu_{y}=\beta_{o}+\beta_{1} x$, estimate
- Parameter with
- Parameter with
- Parameter with

Suspect

Key to Solving Inference Problems (Review)

(1 quantitative variable) For a given population mean μ, standard deviation σ, and sample size n, needed to find probability of sample mean \bar{X} in a certain range:
Needed to know sampling distribution of \bar{X} in order to perform inference about μ.
Now, to perform inference about β_{1}, need to know sampling distribution of b_{1}.

Slopes b_{1} from Random Samples Vary

Each distribution of mother ages is centered at the mean response to all such father ages
(on the population regression line)

Distribution of Sample Slope

As a random variable, sample slope b_{1} has

- Mean β_{1}
- s.d. $\approx S E_{b_{1}}=\frac{|s|}{\sqrt{\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}}$
- Residuals large \rightarrow slope hard to pinpoint
- Residuals small \rightarrow slope easy to pinpoint
- Shape approximately normal if responses vary normally about line, or n large

Distribution of Sample Slope

Distribution of Standardized Sample Slope

Standardize b_{1} to $t=\frac{b_{1}-\beta_{1}}{S E_{b_{1}}}$

$$
=\frac{b_{1}-0}{S E_{b_{1}}} \text { if } H_{0} \text { is true. }
$$

For large enough n, \boldsymbol{t} follows t distribution with $n-2$ degrees of freedom.

- b_{1} close to $0 \rightarrow t$ not large $\rightarrow P$-value not small
- b_{1} far from $0 \rightarrow t$ large $\rightarrow P$-value small Sample slope far from 0 gives evidence to reject Ho, conclude population slope not 0 .

Distribution of Standardized Sample Slope

Example: Regression Output (Review)

\square Background: Regression of mom and dad ages:
The regression equation is
MotherAge $=14.5+0.666$ FatherAge
431 cases used 15 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	14.542	1.317	11.05	0.000
FatherAge	0.66576	0.02571	25.89	0.000
$S=3.288$	$R-S q=61.0 \%$	$R-S q(a d j)=60.9 \%$		

\square Question: What does the output tell about the relationship between mother' and fathers' ages in the sample?
\square Response:

- Line best fits sample (slope pos).
- Sample relationship $: r=$ for sample is
 \qquad

Example: Regression Inference Output

\square Background: Regression of 431 parent ages:

Predictor	Coef	SE Coef	T	P
Constant	14.542	1.317	11.05	0.000
FatherAge	0.66576	0.02571	25.89	0.000
S = 3.288	R-Sq $=61.0 \%$	R-Sq (adj) $=60.9 \%$		

\square Question: What does the output tell about the relationship between mother' and fathers' ages in the population?
■ Response: To test $H_{o}: \beta_{1}=0$ vs. $H_{a}: \beta_{1}>0$ focus on line of numbers (about slope, not intercept)

- Estimate for slope of line best fitting population:
- Standard error of sample slope:
- Stan. sample slope:
- P-value: $\quad=0.000$ where t has $\mathrm{df}=$
- Reject H_{0} ?

Strength of Relationship or of Evidence

- Can have weak/strong evidence of weak/strong relationship.
- Correlation r tells strength of relationship (observed in sample)
- $|r|$ close to $1 \rightarrow$ relationship is strong
P-value tells strength of evidence that variables are related in population.
- $\quad P$-value close to $0 \rightarrow$ evidence is strong

Example: Strength of Relationship, Evidence

- Background: Regression of students' mothers' on fathers' ages had $r=+0.78, p=0.000$.
- Question: What do these tell us?
\square Response:
- $\quad r$ fairly close to $1 \rightarrow$
- P-value $0.000 \rightarrow$
- We have

evidence of a

relationship between students' mothers' and fathers' ages in general.

Example: Strength of Evidence; Small Sample

- Background: \% voting Dem vs. \% voting Rep for 4 states in 2000 presidential election has $r=-0.922, \quad P$-value 0.078 .

- Question: What do these tell us?
- Response: We have evidence (due to
of a relationship in the population of states.

Example: Strength of Evidence; Large Sample

- Background: Hts of moms vs. hts of dads have $r=+0.225$, P-value 0.000 .

- Question: What do these tell us?
\square Response: There is evidence (due to)
of a relationship in the population.

Distribution of Sample Slope (Review)

As a random variable, sample slope b_{1} has

- Mean β_{1}
- s.d. $\approx S E_{b_{1}}=\frac{s}{\sqrt{\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}}$
- Shape approximately normal if responses vary normally about line, or n large
To construct confidence interval for unknown population slope β_{1} use b_{1} as estimate, $S E b_{1}$ as estimated s.d., and t multiplier with $n-2 \mathrm{df}$.

Confidence Interval for Slope

Confidence interval for β_{1} is

$$
b_{1} \pm \text { multiplier }\left(S E_{b_{1}}\right)
$$

where multiplier is from t dist. with $n-2 \mathrm{df}$.
If n is large, 95% confidence interval is

$$
b_{1} \pm 2\left(S E_{b_{1}}\right)
$$

Example: Confidence Interval for Slope

\square Background: Regression of 431 parent ages:

Predictor	Coef	SE Coef	T	P
Constant	14.542	1.317	11.05	0.000
FatherAge	0.66576	0.02571	25.89	0.000
S = 3.288	R-Sq $=61.0 \%$	R-Sq (adj) $=60.9 \%$		

Question: What is an approximate 95% confidence interval for the slope of the line relating mother's age and father's age for all students?

- Response: Use multiplier

We're 95% confident that for population of age pairs, if a father is 1 year older than another father, the mother is on average between and years older.
Note: Interval $\leftrightarrow \rightarrow$ Rejected Ho.

Lecture Summary

(Inference for Quan \rightarrow Quan: Regression)

- Regression for sample vs. population
- Slope, intercept, sample size
\square Regression hypotheses
- Test about slope
- Distribution of sample slope
- Distribution of standardized sample slope
\square Regression inference output
- Strength of relationship, strength of evidence
- Confidence interval for slope

