Lecture 34: Chapter 13, Section 1 Two Quantitative Variables Inference for Regression

Regression for Sample vs. Population
 Population Model; Parameters and Estimates
 Regression Hypotheses
 Test about Slope; Interpreting Output
 Confidence Interval for Slope

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures 21-23)
 - □ 1 quantitative (discussed in Lectures 24-27)
 - □ cat and quan: paired, 2-sample, several-sample (Lectures 28-31)
 - □ 2 categorical (discussed in Lectures 32-33)

□ 2 quantitative

Regression Line and Residuals (Review)

Summarize linear relationship between explanatory (x) and response (y) values with line $\hat{y} = b_0 + b_1 x$ minimizing sum of squared prediction errors $y_i - \hat{y}_i$ (called *residuals*). Typical residual size is

$$s = \sqrt{\frac{(y_1 - \hat{y}_1)^2 + \dots + (y_n - \hat{y}_n)^2}{n-2}}$$

- □ Slope: predicted change in response *y* for every unit increase in explanatory value *x*
- **Intercept:** predicted response for x=0

Note: this is the line that best fits the *sampled* points.

Regression for Sample vs. Population

- □ Can find line that best fits the *sample*.
- □ What does it tell about line that best fits *population*?

Example: *Slope for Sample, Population*

Background: Parent ages have $\hat{y} = 14.54 + 0.666x$, s = 3.3.

- **Question:** Is 0.666 the slope of the line that best fits relationship for *all* students' parents ages?
- **Response:** Slope β_1 of best line for *all* parents is

Example: Intercept for Sample, Population

Background: Parent ages have $\hat{y} = 14.54 + 0.666x$, s = 3.3.

□ **Question:** Is 14.54 the intercept of the line that best fits relationship for *all* students' parents ages?

Response: Intercept β_0 of best line for *all* parents is $b_0 = 14.54$

Example: *Prediction Error for Sample, Pop.*

Background: Parent ages have $\hat{y} = 14.54 + 0.666x$, s = 3.3.

- □ **Question:** Is 3.29 the typical prediction error size for the line that relates ages of *all* students' parents?
- Response: Typical residual size for best line for *all* parents is

Notation; Population Model; Estimates

 σ : typical residual size for line best fitting linear relationship in population.

 $\mu_y = \beta_o + \beta_1 x$: population mean response

to any x. Responses vary normally

about μ_y with standard deviation σ

Parameter	Estimate
eta_o	b_o
β_1	b_1
σ	S

Population Model

Each distribution of mother ages is centered at the mean response to all such father ages (on the population regression line)

Estimates

Parameter	Estimate
β_o	b_o
β_1	b_1
σ	S

 Intercept and spread: point estimates suffice.
 Slope is focus of regression inference (hypothesis test, sometimes confidence interval).

Regression Hypotheses

$$H_{o}: \beta_{1} = 0 \rightarrow \mu_{y} = \beta_{o} + \beta_{1}x$$

$$\rightarrow \text{no population relationship between } x \text{ and } y$$

$$H_{a}: \beta_{1} \begin{cases} > \\ < \\ \neq \end{cases} 0$$

 $\rightarrow x$ and *y* are related for population (and relationship is positive if >, negative if <)

Example: *Point Estimates and Test about Slope*

Background: Consider parent age regression: The regression equation is MotherAge = 14.5 + 0.666 FatherAge 431 cases used 15 cases contain missing values Predictor Coef SE Coef Т Ρ Constant 14.542 1.317 11.05 0.000 FatherAge 0.66576 0.02571 25.89 0.000 S = 3.288R-Sq = 61.0% R-Sq(adj) = 60.9%Questions: What are parameters of interest and accompanying estimates? What hypotheses will we test? **Responses:** For $\mu_y = \beta_o + \beta_1 x$, estimate Parameter with with Parameter Parameter with **Suspect** Test H_o : vs. H_a : *relationship*. L34.17

Elementary Statistics: Looking at the Big Picture

Practice: 13.9 p.648

Key to Solving Inference Problems (Review)

- (1 quantitative variable) For a given population mean μ , standard deviation σ , and sample size *n*, needed to find probability of sample mean \overline{X} in a certain range:
- Needed to know sampling distribution of \overline{X} in order to perform inference about μ . Now, to perform inference about β_1 , need to know sampling distribution of b_1 .

Slopes *b*¹ from Random Samples Vary

Each distribution of mother ages is centered at the mean response to all such father ages (on the population regression line)

Distribution of Sample Slope

As a random variable, sample slope b_1 has

- Mean β₁ s.d. ≈ SE_{b1} = s
 Residuals large→slope hard to pinpoint
 Residuals small→slope easy to pinpoint
- Shape approximately normal if responses vary normally about line, or *n* large

Distribution of Sample Slope

Distribution of Standardized Sample Slope

Standardize
$$b_1$$
 to $t = \frac{b_1 - \beta_1}{SE_{b_1}}$
= $\frac{b_1 - 0}{SE_{b_1}}$ if H_0 is true.

For large enough *n*, *t* follows *t* distribution with *n*-2 degrees of freedom.

- b_1 close to $0 \rightarrow t$ not large $\rightarrow P$ -value not small
- b_1 far from $0 \rightarrow t$ large $\rightarrow P$ -value small

Sample slope far from 0 gives evidence to reject Ho, conclude population slope not 0.

Distribution of Standardized Sample Slope

Example: Regression Output (Review)

Background: Regression of mom and dad ages:

```
The regression equation is
MotherAge = 14.5 + 0.666 FatherAge
431 cases used 15 cases contain missing values
Predictor
              Coef
                     SE Coef
                                   Т
                                           Ρ
Constant 14.542 1.317 11.05 0.000
FatherAge 0.66576 0.02571 25.89 0.000
S = 3.288 R-Sq = 61.0\% R-Sq(adj) = 60.9\%
```

- **Question:** What does the output tell about the relationship п between mother' and fathers' ages in the sample?
- **Response:**
 - Line best fits sample (slope pos).
 - Sample relationship : *r* =

```
Typical size of prediction errors for sample is
Elementary Statistics: Looking at the Big Picture Practice: 13.2c,d,I p.646
```

Example: Regression Inference Output

Background	l: Regress	ion of 431 p	arent ages:	
Predictor	Coef	SE Coef	Т	Р
Constant	14.542	1.317	11.05	0.000
FatherAge	0.66576	0.02571	25.89	0.000
S = 3.288	R-Sq =	61.0% R	l-Sq(adj) =	60.9%

- □ **Question:** What does the output tell about the relationship between mother' and fathers' ages in the population?
- **Response:** To test H_o : $\beta_1 = 0$ vs. H_a : $\beta_1 > 0$ focus on _____ line of numbers (about slope, not intercept)
 - Estimate for slope of line best fitting population:
 - Standard error of sample slope:
 - Stan. sample slope:
 - *P*-value: = 0.000 where *t* has df =

Reject H_0 ?_____ Variables related in population?_____

Strength of Relationship or of Evidence

- Can have weak/strong evidence of weak/strong relationship.
- Correlation *r* tells strength of relationship (observed in sample)
 - □ |r| close to 1→relationship is strong
- *P*-value tells strength of evidence that variables are related in population.
 - $\square P-value close to 0 \rightarrow evidence is strong$

Example: Strength of Relationship, Evidence

- **Background**: Regression of students' mothers' on fathers' ages had r=+0.78, p=0.000.
- **Question:** What do these tell us?
- **Response:**
 - r fairly close to $1 \rightarrow$
 - $\bullet P-value 0.000 \rightarrow$
 - We have ______ evidence of a ______
 relationship between students' mothers' and fathers' ages in general.

Example: *Strength of Evidence; Small Sample*

Background: % voting Dem vs. % voting Rep for 4 states in 2000 presidential election has r = -0.922, *P*-value 0.078.

Response: We have _____ evidence (due to ______
 of a _____ relationship in the population of states.

Example: *Strength of Evidence; Large Sample*

Background: Hts of moms vs. hts of dads have r = +0.225, *P*-value 0.000.

- **Question:** What do these tell us?
- Response: There is ______ evidence (due to _______)
 of a ______ relationship in the population.

Distribution of Sample Slope (Review)

As a random variable, sample slope b_1 has

• Mean β_1

s.d.
$$\approx SE_{b_1} = \frac{s}{\sqrt{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}}$$

- Shape approximately normal if responses vary normally about line, or *n* large
- To construct confidence interval for unknown population slope β_1 use b_1 as estimate, *SEb*₁ as estimated s.d., and *t* multiplier with *n*-2 df.

Confidence Interval for Slope

Confidence interval for β_1 is $b_1 \pm multiplier(SE_{b_1})$ where multiplier is from *t* dist. with *n*-2 df. If *n* is large, 95% confidence interval is $b_1 \pm 2(SE_{b_1})$.

Example: Confidence Interval for Slope

Background: Regression of 431 parent ages:

Predictor	Coef	SE Coef	Т	Р
Constant	14.542	1.317	11.05	0.000
FatherAge	0.66576	0.02571	25.89	0.000
S = 3.288	R-Sq = 6	51.0% R-S	q(adj) = 6	50.9%

- Question: What is an approximate 95% confidence interval for the slope of the line relating mother's age and father's age for all students?
- **Response:** Use multiplier

We're 95% confident that for population of age pairs, if a father is 1 year older than another father, the mother is on average between ______ and _____ years older.

Note: Interval

 \leftrightarrow Rejected Ho.

Lecture Summary

(Inference for Quan \rightarrow Quan: Regression)

- □ Regression for sample vs. population
 - Slope, intercept, sample size
- Regression hypotheses
- □ Test about slope
 - Distribution of sample slope
 - Distribution of standardized sample slope
- Regression inference output
 - Strength of relationship, strength of evidence
- Confidence interval for slope