Lecture 12: Naïve Bayes Classifier, Evaluation Methods

Ling 1330/2330 Intro to Computational Linguistics Na-Rae Han, 10/5/2023

Overview

- Text classification; Naïve Bayes classifier
- Language and Computers: Ch. 5 Classifying documents
- NLTK book: Ch. 6 Learning to classify text
- Evaluating the performance of a system
- Language and Computers:
- Ch.5.4 Measuring success, 5.4.1 Base rates
- NLTK book: Ch.6.3 Evaluation
- Cross-validation
- Accuracy vs. precision vs. recall
- F-measure

Given D, chance of Spam?

$$
P(S P A M \mid D)=\frac{P(S P A M, D)}{P(D)}=\frac{P(S P A M, D)}{P(S P A M, D)+P(H A M, D)}
$$

P(SPAM|D)
\leftarrow The probability of a given document D being SPAM $=1-\mathrm{P}(\mathrm{HAM} \mid \mathrm{D})$
\leftarrow Can calculate from $P(S P A M, D)$ and $P(H A M, D)$

A bit of background

- $P(A)$: the probability of A occurring
- P(SPAM): the probability of having a SPAM document.
- $P(A \mid B)$: Conditional probability the probability of A occurring, given that B has occurred
- P(f1|SPAM): given a spam document, the probability of feature1 occurring.
- P(SPAM|D): given a specific document, the probability of it being a SPAM.
- $P(A, B)$: Joint probability
the probability of A occurring and B occurring
- Same as P(B, A).
- If A and B are independent events, same as $P(A) * P(B)$. If not, same as $P(A \mid B)^{*} P(B)$ and also $P(B \mid A)^{*} P(A)$.
- P(D, SPAM): the probability of a specific document D occurring, and it being a SPAM.

A bit of background

- $P(A, B)$: Joint probability
the probability of A occurring and B occurring
- Same as P(B, A).
- If A and B are independent events, same as $P(A)^{*} P(B)$.

If not, same as $P(A \mid B)^{*} P(B)$ and also $P(B \mid A)^{*} P(A)$.

- P(D, SPAM): the probability of a specific document D occurring, and it being a SPAM.

Throwing two dice.
A: die 1 comes up with 6 .
B : die 2 comes up with an even number.
$\rightarrow A$ and B are independent.
$\rightarrow P(A, B)=P(A) * P(B)$
$=1 / 6 * 1 / 2=1 / 12$

Throwing one die.
A: die comes up with 6 .
B : die comes up with an even number.
$\rightarrow A$ and B are NOT independent!
$\rightarrow P(A, B)=P(A \mid B)^{*} P(B)$
$=1 / 3 * 1 / 2=1 / 6$
$=P(B \mid A) * P(A)$
$=1 * 1 / 6=1 / 6$

Bayes' Theorem

$$
\begin{aligned}
& \bullet \\
& P(B \mid A)=\frac{P(B, A)}{P(A)}=\frac{P(A \mid B) * P(B)}{P(A)}
\end{aligned}
$$

- B: Pitt closing, A: snowing
- $P(B \mid A)$: probability of Pitt closing, given snowy weather
- $P(B, A)$: probability of Pitt closing and snowing
(1): the probability of Pitt closing given it's snowing is equal to the probability of Pitt closing and snowing, divided by the probability of snowing.

Snow vs. Pitt, Bayes theorem style

$$
\begin{aligned}
& \bullet \\
& P(B \mid A)=\frac{P(B, A)}{P(A)}=\frac{P(A \mid B)^{*} P(B)}{P(A)}, ~
\end{aligned}
$$

- B: Pitt closing, A: snowing
- Last year, there were 15 snowy days; Pitt closed 4 days, 3 of which were snowy days.
- $P(B \mid A)$: probability of Pitt closing, given snowy weather

$$
\begin{aligned}
& =P(B, A) / P(A) \\
& =(3 / 365) /(15 / 365) \\
& =3 / 15=0.2
\end{aligned}
$$

- $P(B, A)$: probability of Pitt closing and snowing

$$
=3 / 365
$$

(1) the probability of Pitt closing given it's snowing is equal to the probability of Pitt closing and snowing, divided by the probability of snowing.

Snow vs. Pitt, Bayes theorem style

$$
P(B \mid A)=\frac{\stackrel{\ominus}{P(B, A)}}{P(A)}=\frac{P(A \mid B) * P(B)}{P(A)}
$$

- B: Pitt closing, A: snowing
- $P(B \mid A)$: probability of Pitt closing, given snowy weather
- $P(B, A)$: probability of Pitt closing and snowing

2) the probability of Pitt closing AND it's snowing is equal to the probability of Pitt closing (=prior) multiplied by the probability of snowing given that Pitt is closed.
\leftarrow Corollary of (1) You get this by swapping A and B and solving for P(B,A)

Bayes' Theorem \& spam likelihood

$$
P(S P A M \mid D)=\frac{P(S P A M, D)}{P(D)}=\frac{P(S P A M, D)}{P(S P A M, D)+P(H A M, D)}
$$

$$
P(S P A M, D)
$$

$$
=P(D \mid S P A M) * P(S P A M)
$$

A document has to be either SPAM or HAM!
$=P(S P A M) * P(D \mid S P A M)$
$=P(S P A M) * P\left(f_{1}, f_{2}, \ldots, f n \mid S P A M\right)$
$=P(S P A M) * P\left(f_{1} \mid S P A M\right) * P\left(f_{2} \mid S P A M\right) * \ldots * P(f n \mid S P A M)^{2}$

- SPAM: document is spam, D: a specific document occurs
- P(SPAM|D): probability of document being SPAM, given a particular document
- P(SPAM, D): probability of D occurring and it being SPAM
- Which means: we can calculate P(SPAM|D) from

P(SPAM, D) and P(HAM, D), which are calculated as 2 .

Probabilities of the entire document

H_{1} "D is a SPAM" is closely related to P(D, SPAM):

The probability of document D occurring and it being a spam
$=P(S P A M) * P(D \mid S P A M)$
$=P(S P A M) * P\left(f_{1}, f_{2}, \ldots, f_{n} \mid S P A M\right){ }^{1}$
$=P(S P A M) * P\left(f_{1} \mid S P A M\right) * P\left(f_{2} \mid S P A M\right) * \ldots * P\left(f_{n} \mid S P A M\right)^{2}$

- We have all the pieces to compute this.
- "Bag-of-words" assumption (1)
- "Naïve" Bayes because 2 assumes feature independence.

If all we're going to do is rule between SPAM and HAM, we can simply compare $P(D, S P A M)$ and $P(D, H A M)$ and choose one with higher probability.

- But we may also be interested in answering:
"Given D, what are the chances of it being a SPAM? 70\%? 5\%?"

Naïve Bayes Assumption

- Given a label, a set of features f_{1}, f_{2}, ... f_{n} are generated with different probabilities
- The features are independent of each other; f_{x} occurring does not affect f_{y} occurring, etc.

\rightarrow Naïve Bayes Assumption
- This feature independence assumption simplifies combining contributions of features; you just multiply their probabilities:

$$
P\left(f_{1}, f_{2}, \ldots, f_{n} \mid L\right)=P\left(f_{1} \mid L\right)^{*} P\left(f_{2} \mid L\right)^{*} \ldots * P\left(f_{n} \mid L\right)
$$

< "Naïve" because features are often inter-dependent.
<f1:'contains-Linguistics:YES' and f2:'containssyntax:YES' are not independent.

Homework 4: Who Said It?

- Jane Austen or Herman Melville?
- I never met with a disposition more truly amiable.

- But Queequeg, do you see, was a creature in the transition stage -- neither caterpillar nor butterfly.
- Oh, my sweet cardinals!
- Task: build a Naïve Bayes classifier and explore it
- Do three-way partition of data:
- test data
- development-test data
- training data

1,000 Test	1,000 Dev- test	15,152 sents Training

whosaid: a Naïve Bayes classifier

- How did the classifier do?
- 0.951 accuracy on the test data, using a fixed random data split.
- Probably outperformed your expectation.
- What's behind this high accuracy? How does the NB classifier work?
\rightarrow HW4 PART [B]
- How good is 0.951 ?

Common evaluation setups

- Training vs. testing partitions

1. Training data \leftarrow classifier is trained on this section
2. Testing data \leftarrow classifier's performance is measured

- Training, testing, + development-testing
+3 . Development testing data
\leftarrow In feature engineering, researcher can error-analyze the data to improve performance

Cross validation

- But what if our training/testing split is somehow biased?
\rightarrow We could randomize \rightarrow or use cross-validation.
- n-fold cross validation method

- Partition the data set into equally sized n sets
- Conduct n rounds of training-testing, each using 1 partition as testing and the rest $n-1$ partitions for training
- And then take an average of the n accuracy figures
\leftarrow More reliable accuracy score. Performance evaluation is less dependent on a particular training-testing split
\leftarrow We can see how widely performance varies across different training sets

Confusion matrices

- When classifying among 3+ labels, confusion matrices can be informative
- L1 classification of ESL essays:

ARA	57	0	3	9	1	8	2	9	6	10	2
DEU	6	79	5	2	7	4	2	5	0	1	3
FRA	2	7	60	3	8	0	3	5	1	1	3
HIN	5	1	1	46	3	1	2	7	19	6	4
${ }^{\square} \mathrm{ITA}$	5	4	10	2	67	2	3	14	0	4	3
$\stackrel{0}{0}$ JPN	2	1	4	0	5	72	20	0	0	2	6
\% KOR	1	0	0	0	1	2	51	6	1	8	6
SPA	6	4	8	12	1	3	2	45	11	6	1
TEL	10	1	0	17	3	2	3	1	53	2	1
TUR	5	2	6	7	1	6	5	5	7	53	8
ZHO	1	1	3	2	3	0	7	3	2	7	63
	ARA	DEU	FRA	HIN	TA	JPN rue L		SPA	TEL	TUR	ZHO

Accuracy as a measure

- Accuracy: of all labeling decisions that a classifier made, how many of them are correct?
- POS tagger
- Name gender identifier
- whosaid: Austen/Melville author classifier
- Document topic identifier
- Movie review classifier: positive/neg. ("sentiment classifier")

Accuracy as a measure

- Accuracy: of all labeling decisions that a classifier made, how many of them are correct?
- Interpreting accuracy numbers
- A movie review sentiment classifier tests 85% accurate. Is this good or bad?
- What if it turns out 80% movie reviews are positive?
- How about 60\%?
- A document topic identifier tests 60\% accurate. Good or bad?
- What if 55% of documents are on "Politics"?
- What if there are as many as 20 different topics, and the largest category only accounts for 10% of the data?
\leftarrow These questions cannot be answered without considering base probabilities (priors).

Base probabilities

- Base probabilities (priors)

The probability of a randomly drawn sample to have a label x

- whosaid? POS tagger? Disease test?
- whosaid: 'melville' has a higher prior than 'austen'
- POS tagger: 'Noun' may have the highest prior than other tags
- Disease test: 'Negative' is typically much higher than 'Positive'
- Base rate neglect
- A cognitive bias humans have
- We tend to assume that base probabilities are equal
- Base performance
- The "absolute bottom line" for system performances
= the highest base probability
ex. POS tagger: if 20\% of all words are 'Noun', then the worst-performing system can be constructed which blindly assigns 'Noun' to every word, whose accuracy is 20%.

When accuracy isn't a good measure

- A medical test for a disease is 96% accurate. Good or bad?
- What if 95% of population is free of the disease?
- A grammatical error detector is 96% accurate. Good or bad?
- Suppose 95\% of all sentences are error-free.
\leftarrow Accuracy alone doesn't tell the whole story.
- We are interested in:
- Of all "ungrammatical" flags the system raises, what \% is correct?
\leftarrow This is the precision rate.
- Of all actual ungrammatical sentences, what \% does the system correctly capture as such?
\leftarrow This is the recall rate.

Outcome of a diagnostic test

- A grammatical error detector as a diagnostic test
- Positive: has grammatical error
- Negative: is error-free

		Real	
	Has grammatical error	Is error-free	
Test	positive	True positives	False positives
	False negatives	True negatives	

- Accuracy:

$$
(T p+T n) /(T p+T n+F p+F n)
$$

\leftarrow When the data is predominantly error-free (high base rate), this is not a meaningful measure of system performance.

Outcome of a diagnostic test

- A grammatical error detector as a diagnostic test
- Positive: has grammatical error
- Negative: is error-free

		Real	
	Has grammatical error	Is error-free	
Test	positive	(1) True positives	False positives
	False negatives	True negatives	

- Precision:

Rate of "True positives" out of all positive rulings (1)
$=T p /(T p+F p)$

Outcome of a diagnostic test

- A grammatical error detector as a diagnostic test
- Positive: has grammatical error
- Negative: is error-free

		Real	
	Has grammatical error	Is error-free	
Test	positive	(2 True positives	False positives
	False negatives	True negatives	

- Recall:

Rate of "True positives" out of all actual positive cases (2)
$=T p /(T p+F n)$

Precision vs. recall

- Precision and recall are in a trade-off relationship.
- Highly precise grammatical error detector:

Ignores many lower-confidence cases \rightarrow drop in recall

- High recall (captures as many errors as possible):
many non-errors will also be flagged \rightarrow drop in precision
- In developing a real-world application, picking the right trade-off point between the two is an important usability issue.
- A grammar checker for general audience (MS-Word, etc)
- Higher precision or higher recall?
- Same, but for English learners.
- Higher precision or higher recall?

F-measure

- Precision and recall are in a trade-off relationship.
\leftarrow Both measures should be taken into consideration when evaluating performance
- F-measure
- Also called F-score, F_{1} score
- An overall measure of a test's accuracy: Combines precision (P) and recall (R) into a single measure
- Harmonic mean \rightarrow
- Best value: 1, worst value: 0
- = average if $\mathrm{P}=\mathrm{R}$,

$$
F_{1}=\frac{2 P R}{P+R}
$$

< average if P and R different

Wrapping up

- HW 4 Part A, B due on Tue
- Don't procrastinate! Part B is more complex.
- Next class (Tue)
- HW4 review
- Midterm review
- Midterm exam on Thursday \rightarrow NEXT SLIDE

Midterm exam: what to expect

- 10/12 (Thursday)
- 75 minutes.
- At LMC's PC Lab (G17 CL)
- Exam format:
- Closed book. All pencil-and-paper.
- Topical questions: "what is/discuss/analyze/find out/calculate..."
- Bring your calculator! \rightarrow
- A letter-sized cheat sheet allowed.
- Front and back.
- Hand-written only.

