
Lecture 13:

Naïve Bayes Classifier Review

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 10/10/2023

Outline

10/10/2023 2

 Naïve Bayes and machine learning wrap-up

 Midterm review

whosaid: a Naïve Bayes classifier

10/10/2023 3

 How did the classifier do?
 0.951 accuracy on the test data, using a

fixed random data split.

 Training set: 15,152 sentences
 6,672 are Austen
 P(austen) is 0.44

 Austen prior

 8,480 are Melville
 P(melville) is 0.56

 Melville prior

 Sentences have a higher chance of being
Melville out of the gate!

Used for
Evaluation:

0.951 accuracy Used for
error analysis:
aa, am, mm, ma

15,152 sents
Training

1,000
Test

1,000
Dev-
test

whosaid: error analysis

10/10/2023 4

 ma (really Melville, classified as Austen)

 am (really Austen, classified as Melville)
0.9911 It is a sort of prologue to the play , a motto to the chapter ; and will be
soon followed by matter - of - fact prose ."
0.9639 In this age of literature , such collections on a very grand scale are not
uncommon .
0.8823 And at others , what a heap of absurdities it is !
0.7826 shark is only one syllable .
0.7251 said he , offering his hand .
0.6601 " Here is April come !"

'melville' prob shown.

0.9947 At first sight , you would not think it so strong as it really is .
0.8933 He feels that his dreadful punishment is just .
0.7817 And here , shipmates , is true and faithful repentance ; not clamorous for
pardon , but grateful for punishment .
0.6192 I knew no one in the place .
0.5713 Indeed , in other respects , you can hardly regard any creatures of the deep
with the same feelings that you do those of the shore .
0.5528 " Oh ! 'austen' prob shown.

Informative features (_all)

10/10/2023 5

('contains-emma', 1) austen : melvil ~ 1864.5 : 1.0
 ('contains-whale', 1) melvil : austen ~ 1522.5 : 1.0
 ('contains-harriet', 1) austen : melvil ~ 1048.5 : 1.0
 ('contains-weston', 1) austen : melvil ~ 926.5 : 1.0
 ('contains-knightley', 1) austen : melvil ~ 840.1 : 1.0
 ('contains-elton', 1) austen : melvil ~ 771.5 : 1.0
 ('contains-ship', 1) melvil : austen ~ 696.3 : 1.0
 ('contains-ahab', 1) melvil : austen ~ 666.4 : 1.0
 ('contains-woodhouse', 1) austen : melvil ~ 652.0 : 1.0
 ('contains-jane', 1) austen : melvil ~ 613.9 : 1.0
 ('contains-fairfax', 1) austen : melvil ~ 507.1 : 1.0
 ('contains-churchill', 1) austen : melvil ~ 469.0 : 1.0
 ('contains-boat', 1) melvil : austen ~ 424.1 : 1.0
 ('contains-miss', 1) austen : melvil = 381.7 : 1.0
 ('contains-hartfield', 1) austen : melvil ~ 362.2 : 1.0
 ('contains-whales', 1) melvil : austen ~ 345.4 : 1.0
 ('contains-queequeg', 1) melvil : austen ~ 337.5 : 1.0
 ('contains-stubb', 1) melvil : austen ~ 325.0 : 1.0
 ('contains-sperm', 1) melvil : austen ~ 318.7 : 1.0
 ('contains-bates', 1) austen : melvil ~ 311.4 : 1.0

Informative features, noCharNames

10/10/2023 6

('contains-whale', 1) melvil : austen ~ 1522.5 : 1.0
 ('contains-ship', 1) melvil : austen ~ 696.3 : 1.0
 ('contains-boat', 1) melvil : austen ~ 424.1 : 1.0
 ('contains-miss', 1) austen : melvil = 381.7 : 1.0
 ('contains-whales', 1) melvil : austen ~ 345.4 : 1.0
 ('contains-sperm', 1) melvil : austen ~ 318.7 : 1.0
 ('contains-deck', 1) melvil : austen ~ 271.5 : 1.0
 ('contains-crew', 1) melvil : austen ~ 195.9 : 1.0
 ('contains-boats', 1) melvil : austen ~ 195.9 : 1.0
 ('contains-mast', 1) melvil : austen ~ 175.5 : 1.0
 ('contains-whaling', 1) melvil : austen ~ 175.5 : 1.0
 ('contains-`', 1) austen : melvil ~ 166.5 : 1.0
 ('contains-thee', 1) melvil : austen ~ 162.9 : 1.0
 ('contains-ll', 1) melvil : austen ~ 142.4 : 1.0
 ('contains-sail', 1) melvil : austen ~ 137.7 : 1.0
 ('contains-voyage', 1) melvil : austen ~ 137.7 : 1.0
 ('contains-flask', 1) melvil : austen ~ 134.5 : 1.0
 ('contains-ships', 1) melvil : austen ~ 125.1 : 1.0
 ('contains-leviathan', 1) melvil : austen ~ 125.1 : 1.0
 ('contains-cabin', 1) melvil : austen ~ 118.8 : 1.0

He, she, very

10/10/2023 7

>>> whosaid.classify(gen_feats('He knows the truth'.split()))
'melville'
>>> whosaid.prob_classify(gen_feats('He knows the truth'.split())).prob('austen')
0.44921141639835876
>>> whosaid.prob_classify(gen_feats('She knows the truth'.split())).prob('austen')
0.9314339848201395
>>> whosaid.feature_weights('contains-he', 1)
{'melville': 0.1554651574106827, 'austen': 0.16881462610520007}
>>> whosaid.feature_weights('contains-she', 1)
{'melville': 0.011496285815351963, 'austen': 0.2079274689045407}
>>> whosaid.feature_weights('contains-very', 1)
{'melville': 0.0321306449711119, 'austen': 0.13899295669114342}
>>>

Fun times with Whosaid

10/10/2023 8

5 minutes

 A sentence with "whale" categorized Austen?

 Start with "a whale", then gradually add words to make the sentence
more "Austen".

 A perfectly ambiguous sentence?

 Can you come up with a sentence that's at least 5 words long that is as
close to 50-50 Austen-Melville?

 Which word feature is neutral?

 You will need to think "odds ratio".

 whosaid.feature_weights('contains-...', 1) is the function
to use.

When you and your buddy have an answer,
paste a screenshot on MS Teams!

Odds ratio

10/10/2023 9

>>> def getOddsRatio(word):
... fw = whosaid.feature_weights('contains-'+word, 1)
... print(fw)
... aweight = fw['austen']
... mweight = fw['melville']
... if aweight > mweight:
... print('austen-melville odds ratio', round(aweight/mweight, 2))
... else:
... print('melville-austen odds ratio', round(mweight/aweight, 2))
...
>>> getOddsRatio('sea')
{'melville': 0.04533663483079826, 'austen': 0.0018732204405814477}
melville-austen odds ratio 24.20
>>> getOddsRatio('unfortunate')
{'melville': 0.00029477655936799903, 'austen': 0.0011239322643488685}
austen-melville odds ratio 3.81
>>> getOddsRatio('must')
{'melville': 0.02835750501120151, 'austen': 0.07095759028922524}
austen-melville odds ratio 2.50
>>> getOddsRatio('!')
{'melville': 0.11348897535667964, 'austen': 0.06601228832609021}
melville-austen odds ratio 1.72
>>> getOddsRatio('why')
{'melville': 0.01232166018158236, 'austen': 0.006518807133223438}
melville-austen odds ratio 1.89
>>> getOddsRatio('the')
{'melville': 0.5981016389576701, 'austen': 0.37636745092162444}
melville-austen odds ratio 1.59
>>> getOddsRatio('at')
{'melville': 0.12186062964273081, 'austen': 0.11846246066237075}
melville-austen odds ratio 1.03
>>>

Many function words
are not neutral, lean
towards Melville or

Austen

'at' is almost
perfectly neutral

Austen vs. whale

10

>>> whosaid.prob_classify(gen_feats('a whale'.split())).prob('austen')
0.00046963208159057055
>>> whosaid.prob_classify(gen_feats('a beautiful whale'.split())).prob('austen')
0.001629566209242024
>>> whosaid.prob_classify(gen_feats('she married a whale'.split())).prob('austen')
0.10371709682345985
>>> whosaid.prob_classify(gen_feats('she married a beautiful whale'.split()))
.prob('austen')
0.28673216572155275
>>> whosaid.prob_classify(gen_feats('she married a very beautiful whale'.split()))
.prob('austen')
0.6349019382913935

 Can a sentence with 'whale' ever be classified as 'austen'?

Even though 'whale' never occurs in Austen,
'contains-whale', 1 for 'austen' gets assigned a

tiny weight through smoothing

More in homework KEY

10/10/2023 11

 We went over the solutions in class.

 Will be posted on Canvas! (Along with HW2 KEY)

whosaid vs. movie review classifier

10/10/2023 12

 The movie review classifier behaves very differently:

▪ whosaid on tiny sentences with strong features:

>>> whosaid.prob_classify(gen_feats('he was a whale'.split())).prob('austen')
0.0008505667723433306
>>> whosaid.prob_classify(gen_feats('she was delighted'.split())).prob('austen')
0.9967617928216123

contains(outstanding) = True pos : neg = 11.0 : 1.0
 contains(mulan) = True pos : neg = 7.7 : 1.0
 contains(seagal) = True neg : pos = 7.4 : 1.0
 contains(damon) = True pos : neg = 5.7 : 1.0
 contains(awful) = True neg : pos = 5.6 : 1.0
>>> classifier.prob_classify(document_features('damon was outstanding'.split()))
.prob('neg')
0.9999998931163593
>>> classifier.prob_classify(document_features('seagal was awful'.split()))
.prob('neg')
0.9999999999655637

Both strongly neg? How could this be?

whosaid vs. movie review classifier

10/10/2023 13

 The movie review classifier behaves very differently:

▪ whosaid on tiny sentences with strong features:

>>> whosaid.prob_classify(gen_feats('he was a whale'.split())).prob('austen')
0.0008505667723433306
>>> whosaid.prob_classify(gen_feats('she was delighted'.split())).prob('austen')
0.9967617928216123

contains(outstanding) = True pos : neg = 11.0 : 1.0
 contains(mulan) = True pos : neg = 7.7 : 1.0
 contains(seagal) = True neg : pos = 7.4 : 1.0
 contains(damon) = True pos : neg = 5.7 : 1.0
 contains(awful) = True neg : pos = 5.6 : 1.0
>>> classifier.prob_classify(document_features('damon was outstanding'.split()))
.prob('neg')
0.9999998931163593
>>> classifier.prob_classify(document_features('seagal was awful'.split()))
.prob('neg')
0.9999999999655637

Whosaid only encodes presence of
a word as a feature.

Four features of value 1
for this sentence

Here, 2000 most common words
are encoded as 'presence' or

'absence' features.

Becomes a set of
2,000 True/False

features!

whosaid vs. movie review classifier

10/10/2023 14

 The movie review classifier behaves very differently:

▪ whosaid on tiny sentences with strong features:

>>> whosaid.prob_classify(gen_feats('he was a whale'.split())).prob('austen')
0.0008505667723433306
>>> whosaid.prob_classify(gen_feats('she was delighted'.split())).prob('austen')
0.9967617928216123

contains(outstanding) = True pos : neg = 11.0 : 1.0
 contains(mulan) = True pos : neg = 7.7 : 1.0
 contains(seagal) = True neg : pos = 7.4 : 1.0
 contains(damon) = True pos : neg = 5.7 : 1.0
 contains(awful) = True neg : pos = 5.6 : 1.0
>>> classifier.prob_classify(document_features('damon was outstanding'.split()))
.prob('neg')
0.9999998931163593
>>> classifier.prob_classify(document_features('seagal was awful'.split()))
.prob('neg')
0.9999999999655637

What is NOT in this sentence does
not affect labeling decision at all.

All top 2,000 words, even those not in this
review, affect the labeling decision!

Collective power of features

10/10/2023 15

contains(outstanding) = True pos : neg = 11.0 : 1.0
 contains(mulan) = True pos : neg = 7.7 : 1.0
 contains(seagal) = True neg : pos = 7.4 : 1.0
 contains(damon) = True pos : neg = 5.7 : 1.0
 contains(awful) = True neg : pos = 5.6 : 1.0
>>> classifier.prob_classify(document_features('damon was outstanding'.split())).prob('neg')
0.9999998931163593
>>> classifier.prob_classify(document_features('seagal was awful'.split())).prob('neg')
0.9999999999655637

Voting for "positive":
- 'damon' & 'outstanding', strongly positive-leaning, for being IN the review
- All negative-learning words (e.g., 'awful') for NOT BEING IN the review

Voting for "negative":
- 'was', which turns out leans slightly negative, for being IN the review
- All the rest (1000+!!) positive-learning words for NOT BEING IN the review

Naïve Bayes classifier: variants

10/10/2023 16

(1) WhoSaid

(2) Movie Review classifier

 In both, features had discreet, categorical values (1, True/False)

 Can we use actual word count (2, 3, 5, …) as numerical feature
values, instead of just presence/(absence)?

 "movie is fantastic … fantastic … fantastic"  3 times!

 Yes it can be done. It's common to convert raw counts into what's
known as TF-IDF (Term Frequency -- Inverse Document Frequency) with
a normalized value between 0 and 1.

Naïve Bayes: strength

10/10/2023 17

 whosaid is a fairly simple statistical model.

 Yet it achieves 95.1% accuracy.

 Why is it so successful?

 Is it just because of a handful of strong, topical features like 'whale',
'ship'…?

 What are the strengths of Naïve Bayes classifier?

Weighting the evidence

10/10/2023 18

▪ A classification decision involves reconciling multiple features with
different levels of predictive power.

Different types of classifiers use different algorithms for:
1. Determining the weights of individual features in order to maximize its

labeling success in the training data

2. When given an input, using the feature weights to compute the likelihood of
a label

 Popular machine learning methods:
 Naïve Bayes

 Hidden Markov model (HMM)

 Maximum entropy (ME)

 Decision tree

 Support vector machine (SVM)

 Neural network → Deep learning (!!)

With Naïve Bayes, the
association between

feature weights and the
underlying data is fairly

straightforward.

Weighting the evidence

10/10/2023 19

▪ A classification decision involves reconciling multiple features with
different levels of predictive power.

Different types of classifiers use different algorithms for:
1. Determining the weights of individual features in order to maximize its

labeling success in the training data

2. When given an input, using the feature weights to compute the likelihood of
a label

 Popular machine learning methods:
 Naïve Bayes

 Hidden Markov model (HMM)

 Maximum entropy (ME)

 Decision tree

 Support vector machine (SVM)

 Neural network → Deep learning (!!)

With more sophisticated ML
models, the relationship

becomes more complex to
the point of almost
completely opaque

(Deep Learning).

Machine learning: the vast ocean

10/10/2023 20

 'Machine Learning is too easy' https://hunch.net/?p=634

 (2009: before Deep Learning's time)

 WEKA: a collection of machine learning algorithms for data
mining

 Scikit-Learn (Python library for ML)

 Deep Learning libraries

 PyTorch (Facebook)

 https://pytorch.org/

 Tensorflow (Google)

 https://ai.googleblog.com/2016/11/celebrating-tensorflows-first-year.html

 MXNet (Amazon)

 https://aws.amazon.com/mxnet/

https://hunch.net/?p=634
http://www.cs.waikato.ac.nz/ml/weka/
https://scikit-learn.org/stable/
https://pytorch.org/
https://ai.googleblog.com/2016/11/celebrating-tensorflows-first-year.html
https://aws.amazon.com/mxnet/

Wrapping up

10/10/2023 21

 Midterm on Thu. ➔ Details next slide

 Regular expressions and FSA

 Language and Computers, Ch.4 Searching

 4.4 Searching semi-structured data with regular expressions

 4.41 Syntax of regular expressions

 NLTK 3.4 Regular expressions

 https://www.nltk.org/book/ch03.html#sec-regular-expressions-word-patterns

 J&M Regular expressions

 https://web.stanford.edu/~jurafsky/slp3/2.pdf

https://www.nltk.org/book/ch03.html#sec-regular-expressions-word-patterns
https://web.stanford.edu/~jurafsky/slp3/2.pdf

Midterm exam: what to expect

10/10/2023 22

 10/12 (Thursday)

 75 minutes.

 At LMC's PC Lab (G17 CL)  NOT our usual classroom!

 Exam format:

 Closed book. All pencil-and-paper.

 Topical questions: "what is/discuss/analyze/find out/calculate…"

 Bring your calculator! →

 A letter-sized cheat sheet allowed.

 Front and back.

 Hand-written only.

	Slide 1: Lecture 13: Naïve Bayes Classifier Review
	Slide 2: Outline
	Slide 3: whosaid: a Naïve Bayes classifier
	Slide 4: whosaid: error analysis
	Slide 5: Informative features (_all)
	Slide 6: Informative features, noCharNames
	Slide 7: He, she, very
	Slide 8: Fun times with Whosaid
	Slide 9: Odds ratio
	Slide 10: Austen vs. whale
	Slide 11: More in homework KEY
	Slide 12: whosaid vs. movie review classifier
	Slide 13: whosaid vs. movie review classifier
	Slide 14: whosaid vs. movie review classifier
	Slide 15: Collective power of features
	Slide 16: Naïve Bayes classifier: variants
	Slide 17: Naïve Bayes: strength
	Slide 18: Weighting the evidence
	Slide 19: Weighting the evidence
	Slide 20: Machine learning: the vast ocean
	Slide 21: Wrapping up
	Slide 22: Midterm exam: what to expect

