
Lecture 14:

Regular Expressions

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 10/17/2023

Outline

10/17/2023 2

 Language and Computers, Ch.4 Searching
 4.4 Searching semi-structured data with regular expressions

 4.41 Syntax of regular expressions

 Learning regular expressions
 regex101 (real-time regex tester):
 https://regex101.com/

 Python Regex syntax reference:
https://docs.python.org/3/library/re.html

 Regex tutorial:
https://gnosis.cx/publish/programming/regular_expressions.html

 Na-Rae's Python 3 Notes on Regex:
http://www.pitt.edu/~naraehan/python3/re.html

https://regex101.com/
https://docs.python.org/3/library/re.html
https://gnosis.cx/publish/programming/regular_expressions.html
http://www.pitt.edu/~naraehan/python3/re.html

Searching

10/17/2023 3

 The perk of digital texts: they are searchable.

 The anti-perk of digital texts:

 They often come in extremely large sizes.

 Without means to search, they are unusable

 Imagine the internet without Google/Bing...

 Searching in:

 Written texts: is done, very efficiently

 Speeches:

 No native solution to searching in speech

 Audio signals will first need to be converted to a text through speech
recognition; and then search on written text

Searching for an expression

10/17/2023 4

 Question:

 How would you find instances of have been in austen-emma.txt?

 How would you find have been along with its inflected varieties, i.e.,
has been, had been?

 You also want to allow ever or never, e.g., has ever been, had never
been. How?

 More broadly, you want to find all instances of have been, with up to
two words occurring between have and been. Can this be done with a
single search?

 Answer:

 YES, they can be done, using regular expressions.

10/17/2023 5

 https://www.explainxkcd.com/wiki/index.php/208:_Regular_Expr
essions

https://www.explainxkcd.com/wiki/index.php/208:_Regular_Expressions
https://www.explainxkcd.com/wiki/index.php/208:_Regular_Expressions

Searching, literally

10/17/2023 6

/have been/

 have been as a literal string

'have been', 'has been', 'had been'

10/17/2023 7

/(have|has|had) been/

 Allows inflected forms of have

Include never or ever

10/17/2023 8

/(have|has|had)(n?ever)? been/

 Allows never or ever to intervene (along with a space!)

Any word in between

10/17/2023 9

/(have|has|had)(\w+)? been/

 Allows any single word (along with a space) to intervene

More intervening words

10/17/2023 10

/(have|has|had)(\w+){2,4} been/

 With 2-4 intervening words (along with a space!)

That is so …ly

10/17/2023 11

/so \w+ly/

 so followed by a word ending in -ly

grep and regular expressions

10/17/2023 12

 grep

 Global Regular Expression Print

 A command-line utility that searches plain-text data for lines matching a
regular expression pattern

 Comes standard in Unix, Linux, Mac OS-X

 Some ports available for Windows (install git Bash)

 Variants:

 egrep ("extended", same as grep -E), fgrep

 What I am using here is in fact grep -P --color

 -P means perl-style regular expression notation, which is also what Python uses

 -P is not available on Macs; use grep -E or pcregrep (perl-compatible re grep)
instead

grep –P '(have|has|had)(\w+)? been' austen-emma.txt

https://git-scm.com/downloads

Regular expressions

10/17/2023 13

 Regular expression

 A compact representation of a set of strings

/(have|has|had)(n?ever)? been/ describes:

 have been

 has been

 had been

 have ever been

 has ever been

 had ever been

 have never been

 has never been

 had never been

 The set of strings can be infinite in size.

 Serves as a pattern for search.

Regular expressions
are often

enclosed in //

Practice

10/17/2023 14

 regex101

 A real-time regular expression tester

 https://regex101.com/

 Select "python" flavor →

https://regex101.com/

Regex demo

10/17/2023 15

 A snippet from 'Fox in Sox':

 https://sites.pitt.edu/~naraehan/python3/text-samples.txt

 /e/

 /ea/

 /ew/

 /e+/

 /ee|ea|ew/

 /e./

 /f.e/

 /[aeiou]/

 /[aeiou][aeiou]/

 /[aeiou]+/

 /[a-z]/

 /[A-Z]/

 /[A-Za-z]/

 /\w/

 /\W/

 /\s/

 /\S/

 /./

 /.+/

NOT [A-z]!!

https://sites.pitt.edu/~naraehan/python3/text-samples.txt

Regex demo

10/17/2023 16

 A snippet from 'Fox in Sox':

 https://sites.pitt.edu/~naraehan/python3/text-samples.txt

 Words (no symbols)

 Capitalized words

 Words ending in ee

 Words that contain ee

 Words that do not contain e

 Words that are 4 chars long

 e and any character before it
other than f? and r? and h?
and l?

 /[A-Za-z]+/ or /\w+/

 /\b[A-Z]\w+/

 /\w*ee\b/

 /\w*ee\w*/

 /\b[^e]+\b/

 /\b\w\w\w\w\b/ or /\b\w{4}\b/

 /[^frhl]e/

If it matches
newline, use \s
instead of space

https://sites.pitt.edu/~naraehan/python3/text-samples.txt

Regexing with Dr. Seuss

10/17/2023 17

Syntax of regular expressions (1)

10/17/2023 18

 Literals, concatenation, alternation

 A single character in a set []

RE What Matches

a A single literal character a

ab Concatenation ab

ab|xyz Alternation ab or xyz

RE What Matches

[aeiou] Character set Any single character in the set, i.e., a, e, i, o
or u

[a-z]
[0-9]

Character range Any single character in the range

[^aeiou] "Negative" character Any single character that is NOT in the set

Syntax of regular expressions (2)

10/17/2023 19

 Predefined character sets

RE What Matches

\d any digit any single digit: 0, 1, 3, …, 9

\D any non-digit any single char that's not one of above

\s any whitespace character space, tab, new-line character, etc.

\S any non-whitespace
character

any single char that's not one of the
above

\w any alphanumeric character a, b, A, Z, 0, 1, 9, _ (underscore)

\W any non-alphanumeric
character

any single character that's not one of
the above

Syntax of regular expressions (3)

10/17/2023 20

 Any single character

 Place indicators

 These have zero width– they do not match any character themselves

RE What Matches

. Any single character
except for the new line character '\n'

a, b, A, 1, 9, %, !, …

RE What Example matches

^ Beginning of string /^a/ matches a, ab, abc
does not match ba, bac

$ End of string /a$/ matches a, ba, bca
does not match ab, bac

\b Word boundary /ed\b/ matches ed in 'worked ', 'worked? '
but not 'education'

Syntax of regular expressions (4)

10/17/2023 21

 Counters

RE What Example matches

? Optionality: 0 or 1 /n?ever/ ever, never

* Kleene star; any number
(0 to infinity)

/no*/ n, no, noo, nooo, noooooo, …

+ at least one
(1 to infinity)

/no+/ no, noo, nooo, nooooooo, …

{n} exactly n /yes{3}/ yesss

{n,} at least n /yes{3,}/ yesss, yessss, yessssss, …

{n, m} between n and m /yes{2,5}/ yess, yesss, yessss, yesssss

Syntax of regular expressions (5)

10/17/2023 22

 Escaped characters

 Special characters in RE: ., ?, +, *, (,), [,], {, }, -, |, ^, $, \

 What if we need to match these characters, literally?

 Use a backslash "\" to escape

RE What Matches

\. escaped . . (actual period character)

\? escaped ? ? (actual question marker)

\$ escaped $ $ (actual dollar sign)

\\ escaped \ \ (actual backslash)

Operator precedence

10/17/2023 23

 In algebra:

 10 + 2 x 3 = 16 not 36. x has precedence over +

 (10 + 2) x 3 = 36 precedence superseded using ()

 RE operators also have precedence.

 /ab|cd/ matches ab and cd

 /a(b|c)d/ matches abd, acd

Alternation "|" has the lowest operator precedence

Good idea to use () whenever using |

Practice

10/17/2023 24

 First two paragraphs from Abraham Lincoln's Wikipedia entry:
 https://en.wikipedia.org/wiki/Abraham_Lincoln

 Compose regular expressions for:
1. Words ending with –y

2. Words starting with a capital letter and ending in –ed

3. Vowel character clusters (2+ vowels)

4. Lincoln's names (full name or last name only)

5. Numbers

6. Years

7. Numbers followed by alphabetic letter(s): 1930s, 16th

8. Dates (January 1, 1999) or months (January 1999)

9. Capitalized words

10. the and its next word

11. hyphenated words

https://en.wikipedia.org/wiki/Abraham_Lincoln

Practice

10/17/2023 25

 First two paragraphs from Abraham Lincoln's Wikipedia entry:
 https://en.wikipedia.org/wiki/Abraham_Lincoln

 Compose regular expressions for:
1. /\w+y\b/ or /[A-Za-z]+y\b/ (Word boundary \b is needed)

2. /\b[A-Z][a-z]*ed\b/

3. /[aeiou][aeiou]+/ or /[aeiou]{2,}/

4. /(Abraham)?Lincoln/

5. /\d+/ or /[0-9]+/

6. /\d\d\d\d/ or /\d{4}/ or /[0-9]{4}/

7. /\d+[a-z]+/

8. /[A-Z][a-z]+(\d\d?,)? \d\d\d\d/

9. /[A-Z][a-z]+/

10. /the \w+/

11. /\w+-\w+/

Will over-match:
"In 1860"

/\bthe …/ is
more precise

Will over-match:
"1000000"

https://en.wikipedia.org/wiki/Abraham_Lincoln

Wrapping up

10/17/2023 26

 Next class:

 Regex in Python

 https://sites.pitt.edu/~naraehan/python3/re.html

 FSA (Finite-State Automata)

 Exercise 7 out

 Regexing Steve Jobs!

 With regex, there is a HIGH chance of your solution being wrong in
some way without you realizing it. Make sure to study the EXERCISE
KEY.

https://sites.pitt.edu/~naraehan/python3/re.html

	Slide 1: Lecture 14: Regular Expressions
	Slide 2: Outline
	Slide 3: Searching
	Slide 4: Searching for an expression
	Slide 5
	Slide 6: Searching, literally
	Slide 7: 'have been', 'has been', 'had been'
	Slide 8: Include never or ever
	Slide 9: Any word in between
	Slide 10: More intervening words
	Slide 11: That is so …ly
	Slide 12: grep and regular expressions
	Slide 13: Regular expressions
	Slide 14: Practice
	Slide 15: Regex demo
	Slide 16: Regex demo
	Slide 17: Regexing with Dr. Seuss
	Slide 18: Syntax of regular expressions (1)
	Slide 19: Syntax of regular expressions (2)
	Slide 20: Syntax of regular expressions (3)
	Slide 21: Syntax of regular expressions (4)
	Slide 22: Syntax of regular expressions (5)
	Slide 23: Operator precedence
	Slide 24: Practice
	Slide 25: Practice
	Slide 26: Wrapping up

