
Lecture 14:

Regular Expressions

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 10/17/2023

Outline

10/17/2023 2

 Language and Computers, Ch.4 Searching
 4.4 Searching semi-structured data with regular expressions

 4.41 Syntax of regular expressions

 Learning regular expressions
 regex101 (real-time regex tester):
 https://regex101.com/

 Python Regex syntax reference:
https://docs.python.org/3/library/re.html

 Regex tutorial:
https://gnosis.cx/publish/programming/regular_expressions.html

 Na-Rae's Python 3 Notes on Regex:
http://www.pitt.edu/~naraehan/python3/re.html

https://regex101.com/
https://docs.python.org/3/library/re.html
https://gnosis.cx/publish/programming/regular_expressions.html
http://www.pitt.edu/~naraehan/python3/re.html

Searching

10/17/2023 3

 The perk of digital texts: they are searchable.

 The anti-perk of digital texts:

 They often come in extremely large sizes.

  Without means to search, they are unusable

  Imagine the internet without Google/Bing...

 Searching in:

 Written texts: is done, very efficiently

 Speeches:

 No native solution to searching in speech

 Audio signals will first need to be converted to a text through speech
recognition; and then search on written text

Searching for an expression

10/17/2023 4

 Question:

 How would you find instances of have been in austen-emma.txt?

 How would you find have been along with its inflected varieties, i.e.,
has been, had been?

 You also want to allow ever or never, e.g., has ever been, had never
been. How?

 More broadly, you want to find all instances of have been, with up to
two words occurring between have and been. Can this be done with a
single search?

 Answer:

 YES, they can be done, using regular expressions.

10/17/2023 5

 https://www.explainxkcd.com/wiki/index.php/208:_Regular_Expr
essions

https://www.explainxkcd.com/wiki/index.php/208:_Regular_Expressions
https://www.explainxkcd.com/wiki/index.php/208:_Regular_Expressions

Searching, literally

10/17/2023 6

/have been/

 have been as a literal string

'have been', 'has been', 'had been'

10/17/2023 7

/(have|has|had) been/

 Allows inflected forms of have

Include never or ever

10/17/2023 8

/(have|has|had)(n?ever)? been/

 Allows never or ever to intervene (along with a space!)

Any word in between

10/17/2023 9

/(have|has|had)(\w+)? been/

 Allows any single word (along with a space) to intervene

More intervening words

10/17/2023 10

/(have|has|had)(\w+){2,4} been/

 With 2-4 intervening words (along with a space!)

That is so …ly

10/17/2023 11

/so \w+ly/

 so followed by a word ending in -ly

grep and regular expressions

10/17/2023 12

 grep

 Global Regular Expression Print

 A command-line utility that searches plain-text data for lines matching a
regular expression pattern

 Comes standard in Unix, Linux, Mac OS-X

 Some ports available for Windows (install git Bash)

 Variants:

 egrep ("extended", same as grep -E), fgrep

 What I am using here is in fact grep -P --color

 -P means perl-style regular expression notation, which is also what Python uses

 -P is not available on Macs; use grep -E or pcregrep (perl-compatible re grep)
instead

grep –P '(have|has|had)(\w+)? been' austen-emma.txt

https://git-scm.com/downloads

Regular expressions

10/17/2023 13

 Regular expression

 A compact representation of a set of strings

/(have|has|had)(n?ever)? been/ describes:

 have been

 has been

 had been

 have ever been

 has ever been

 had ever been

 have never been

 has never been

 had never been

 The set of strings can be infinite in size.

 Serves as a pattern for search.

Regular expressions
are often

enclosed in //

Practice

10/17/2023 14

 regex101

 A real-time regular expression tester

 https://regex101.com/

 Select "python" flavor →

https://regex101.com/

Regex demo

10/17/2023 15

 A snippet from 'Fox in Sox':

 https://sites.pitt.edu/~naraehan/python3/text-samples.txt

 /e/

 /ea/

 /ew/

 /e+/

 /ee|ea|ew/

 /e./

 /f.e/

 /[aeiou]/

 /[aeiou][aeiou]/

 /[aeiou]+/

 /[a-z]/

 /[A-Z]/

 /[A-Za-z]/

 /\w/

 /\W/

 /\s/

 /\S/

 /./

 /.+/

NOT [A-z]!!

https://sites.pitt.edu/~naraehan/python3/text-samples.txt

Regex demo

10/17/2023 16

 A snippet from 'Fox in Sox':

 https://sites.pitt.edu/~naraehan/python3/text-samples.txt

 Words (no symbols)

 Capitalized words

 Words ending in ee

 Words that contain ee

 Words that do not contain e

 Words that are 4 chars long

 e and any character before it
other than f? and r? and h?
and l?

 /[A-Za-z]+/ or /\w+/

 /\b[A-Z]\w+/

 /\w*ee\b/

 /\w*ee\w*/

 /\b[^e]+\b/

 /\b\w\w\w\w\b/ or /\b\w{4}\b/

 /[^frhl]e/

If it matches
newline, use \s
instead of space

https://sites.pitt.edu/~naraehan/python3/text-samples.txt

Regexing with Dr. Seuss

10/17/2023 17

Syntax of regular expressions (1)

10/17/2023 18

 Literals, concatenation, alternation

 A single character in a set []

RE What Matches

a A single literal character a

ab Concatenation ab

ab|xyz Alternation ab or xyz

RE What Matches

[aeiou] Character set Any single character in the set, i.e., a, e, i, o
or u

[a-z]
[0-9]

Character range Any single character in the range

[^aeiou] "Negative" character Any single character that is NOT in the set

Syntax of regular expressions (2)

10/17/2023 19

 Predefined character sets

RE What Matches

\d any digit any single digit: 0, 1, 3, …, 9

\D any non-digit any single char that's not one of above

\s any whitespace character space, tab, new-line character, etc.

\S any non-whitespace
character

any single char that's not one of the
above

\w any alphanumeric character a, b, A, Z, 0, 1, 9, _ (underscore)

\W any non-alphanumeric
character

any single character that's not one of
the above

Syntax of regular expressions (3)

10/17/2023 20

 Any single character

 Place indicators

 These have zero width– they do not match any character themselves

RE What Matches

. Any single character
except for the new line character '\n'

a, b, A, 1, 9, %, !, …

RE What Example matches

^ Beginning of string /^a/ matches a, ab, abc
does not match ba, bac

$ End of string /a$/ matches a, ba, bca
does not match ab, bac

\b Word boundary /ed\b/ matches ed in 'worked ', 'worked? '
but not 'education'

Syntax of regular expressions (4)

10/17/2023 21

 Counters

RE What Example matches

? Optionality: 0 or 1 /n?ever/ ever, never

* Kleene star; any number
(0 to infinity)

/no*/ n, no, noo, nooo, noooooo, …

+ at least one
(1 to infinity)

/no+/ no, noo, nooo, nooooooo, …

{n} exactly n /yes{3}/ yesss

{n,} at least n /yes{3,}/ yesss, yessss, yessssss, …

{n, m} between n and m /yes{2,5}/ yess, yesss, yessss, yesssss

Syntax of regular expressions (5)

10/17/2023 22

 Escaped characters

 Special characters in RE: ., ?, +, *, (,), [,], {, }, -, |, ^, $, \

 What if we need to match these characters, literally?

 Use a backslash "\" to escape

RE What Matches

\. escaped . . (actual period character)

\? escaped ? ? (actual question marker)

\$ escaped $ $ (actual dollar sign)

\\ escaped \ \ (actual backslash)

Operator precedence

10/17/2023 23

 In algebra:

 10 + 2 x 3 = 16  not 36. x has precedence over +

 (10 + 2) x 3 = 36  precedence superseded using ()

 RE operators also have precedence.

 /ab|cd/ matches ab and cd

 /a(b|c)d/ matches abd, acd

Alternation "|" has the lowest operator precedence

Good idea to use () whenever using |

Practice

10/17/2023 24

 First two paragraphs from Abraham Lincoln's Wikipedia entry:
 https://en.wikipedia.org/wiki/Abraham_Lincoln

 Compose regular expressions for:
1. Words ending with –y

2. Words starting with a capital letter and ending in –ed

3. Vowel character clusters (2+ vowels)

4. Lincoln's names (full name or last name only)

5. Numbers

6. Years

7. Numbers followed by alphabetic letter(s): 1930s, 16th

8. Dates (January 1, 1999) or months (January 1999)

9. Capitalized words

10. the and its next word

11. hyphenated words

https://en.wikipedia.org/wiki/Abraham_Lincoln

Practice

10/17/2023 25

 First two paragraphs from Abraham Lincoln's Wikipedia entry:
 https://en.wikipedia.org/wiki/Abraham_Lincoln

 Compose regular expressions for:
1. /\w+y\b/ or /[A-Za-z]+y\b/ (Word boundary \b is needed)

2. /\b[A-Z][a-z]*ed\b/

3. /[aeiou][aeiou]+/ or /[aeiou]{2,}/

4. /(Abraham)?Lincoln/

5. /\d+/ or /[0-9]+/

6. /\d\d\d\d/ or /\d{4}/ or /[0-9]{4}/

7. /\d+[a-z]+/

8. /[A-Z][a-z]+(\d\d?,)? \d\d\d\d/

9. /[A-Z][a-z]+/

10. /the \w+/

11. /\w+-\w+/

Will over-match:
"In 1860"

/\bthe …/ is
more precise

Will over-match:
"1000000"

https://en.wikipedia.org/wiki/Abraham_Lincoln

Wrapping up

10/17/2023 26

 Next class:

 Regex in Python

 https://sites.pitt.edu/~naraehan/python3/re.html

 FSA (Finite-State Automata)

 Exercise 7 out

 Regexing Steve Jobs!

 With regex, there is a HIGH chance of your solution being wrong in
some way without you realizing it. Make sure to study the EXERCISE
KEY.

https://sites.pitt.edu/~naraehan/python3/re.html

	Slide 1: Lecture 14: Regular Expressions
	Slide 2: Outline
	Slide 3: Searching
	Slide 4: Searching for an expression
	Slide 5
	Slide 6: Searching, literally
	Slide 7: 'have been', 'has been', 'had been'
	Slide 8: Include never or ever
	Slide 9: Any word in between
	Slide 10: More intervening words
	Slide 11: That is so …ly
	Slide 12: grep and regular expressions
	Slide 13: Regular expressions
	Slide 14: Practice
	Slide 15: Regex demo
	Slide 16: Regex demo
	Slide 17: Regexing with Dr. Seuss
	Slide 18: Syntax of regular expressions (1)
	Slide 19: Syntax of regular expressions (2)
	Slide 20: Syntax of regular expressions (3)
	Slide 21: Syntax of regular expressions (4)
	Slide 22: Syntax of regular expressions (5)
	Slide 23: Operator precedence
	Slide 24: Practice
	Slide 25: Practice
	Slide 26: Wrapping up

