
Lecture 15:

RE in Python

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 10/19/2023

Outline

10/19/2023 2

 Midterm review, Exercise 7 review

 Language and Computers, Ch.4 Searching
 4.4 Searching semi-structured data with regular expressions

 4.41 Syntax of regular expressions

 Learning regular expressions
 regex101 (real-time regex tester):
 https://regex101.com/

 Python Regex syntax reference:
https://docs.python.org/3/library/re.html

 Regex tutorial:
http://gnosis.cx/publish/programming/regular_expressions.html

 Na-Rae's Python 3 Notes on Regex:
http://www.pitt.edu/~naraehan/python3/re.html

https://regex101.com/
https://docs.python.org/3/library/re.html
http://gnosis.cx/publish/programming/regular_expressions.html
http://www.pitt.edu/~naraehan/python3/re.html

Exercise 7: Regex vs. Jobs

10/19/2023 3

 [x|X]✘ [xX]✔ (x|X)✔
 Within [...], all characters are already considered forming a set, i.e., alternation.
Example: [aeiou] (any "vowel" character) Corollary: a […] match is always of
width 1 (=single character)!

 [A-z]✘ [A-Za-z]✔
 [A-z] character range goes by ASCII code points: some symbols get included. If
you are doing [A-Za-z], see if \w will work for your purpose (includes digits and
_).

 Hyphenated words
\w+-\w+ does not match 'state-of-the-art' as a whole
\w+(-\w+)+ does!

 'the ... of' construction, 1-4 ... words, allow punctuation
 the(\w+){1,4} of works, but punctuation not allowed
 the(\S+){1,4} of allows punctuation!

 Parentheses
 \(.*\) has a critical flaw due to 'greedy matching'

Greedy match

10/19/2023 4

 + and * are greedy:

 Matches the longest string it can. \(.*\) matches:

Greedy match

10/19/2023 5

 + and * are greedy:

 Matches the longest string it can.

 SOLUTION 1:

 Instead of .*, exclude) in the middle portion with [^\)]*

Un-greedy match

10/19/2023 6

 + and * are greedy:

 Matches the longest string it can.

 SOLUTION 2:

 To turn + and * into un-greedy, suffix '?' → .+? and .*?

Using regex in Python

10/19/2023 7

 Na-Rae's tutorials:
 https://sites.pitt.edu/~naraehan/python3/re.html

 https://sites.pitt.edu/~naraehan/python3/more_list_comp.html

 Official reference

 Python Regex syntax reference:

https://docs.python.org/3/library/re.html

 're' is Python's regular expression module

 Like any other module, start by importing it:

>>> import re
>>>

https://sites.pitt.edu/~naraehan/python3/re.html
https://sites.pitt.edu/~naraehan/python3/more_list_comp.html
https://docs.python.org/3/library/re.html

 re.findall(pattern, string)

 Returns all matches as a list

 'Ignore case' option:

Using re.findall()

10/19/2023 8

>>> chom = 'Colorless green ideas sleep furiously.'
>>> re.findall(r'e+', chom)
 ['e', 'ee', 'e', 'ee']
>>> re.findall(r'\d', chom)
 []

>>> foo = 'This and that and those'
>>> re.findall(r'th\w+', foo)
 ['that', 'those']
>>> re.findall(r'th\w+', foo, re.IGNORECASE)
 ['This', 'that', 'those']

use 'r' prefix to mark your
regular expression as a raw string

(otherwise you have to escape your \)

Use this flag to match
both upper and lower case

Also works: re.I

re.findall() and group extraction

10/19/2023 9

 Use () to capture only a specific portion of the match

>>> foo = 'walked, studied and stopped.'
>>> re.findall(r'\w+ed', foo)
 ['walked', 'studied', 'stopped']

>>> re.findall(r'(\w+)ed', foo)
 ['walk', 'studi', 'stopp']

>>> re.findall(r'(\w+)(ed)', foo)
 [('walk', 'ed'), ('studi', 'ed'), ('stopp', 'ed')]

>>> re.findall(r'((\w+)ed)', foo)
 [('walked', 'walk'), ('studied', 'studi'), ('stopped', 'stopp')]

If there is (x) in the expression,
.findall() returns a list of x's

Multiple ()s: returns a list of tuples.

re.findall() and group extraction

10/19/2023 10

 Be careful when you need to use ():

>>> foo = 'bless this mess'
>>> re.findall(r'(bl|m)ess', foo)
 ['bl', 'm']

>>> re.findall(r'(?:bl|m)ess', foo)
 ['bless', 'mess']

Solution:
(?:) avoids creating

unwanted group capture

Using () to override
precedence, but

group is captured

Regex substitution

10/19/2023 11

 Use re.sub() method to replace matched portions with a new
string.

>>> foo = 'walked, studied and stopped.'
>>> re.sub(r'\w+ed', 'Xed', foo)
 'Xed, Xed and Xed.'

>>> tale = """It was the best of times, it was the worst of times,
 it was the age of wisdom, it was the age of foolishness,
 ...
 being received, for good or for evil, in the superlative degree
 of comparison only."""
>>> print(re.sub(r'\w+ of \w+', 'CREAM of MUSHROOM', tale))
 It was the CREAM of MUSHROOM, it was the CREAM of MUSHROOM,
 it was the CREAM of MUSHROOM, it was the CREAM of MUSHROOM,
 it was the CREAM of MUSHROOM, it was the CREAM of MUSHROOM,
 it was the CREAM of MUSHROOM, it was the CREAM of MUSHROOM,
 it was the CREAM of MUSHROOM, it was the CREAM of MUSHROOM,
 we had everything before us, we had nothing before us,

Referencing group matches: \1 \2

10/19/2023 12

 Once groups have been captured using (…) … (…), they can be
referenced as \1, \2, etc.

>>> tale = """It was the best of times, it was the worst of times,
 it was the age of wisdom, it was the age of foolishness,
 ...
 being received, for good or for evil, in the superlative degree
 of comparison only."""
>>> print(re.sub(r'(\w+) of (\w+)', r'\2 of \1', tale))
 It was the times of best, it was the times of worst,
 it was the wisdom of age, it was the foolishness of age,
 it was the belief of epoch, it was the incredulity of epoch,
 it was the Light of season, it was the Darkness of season,
 it was the hope of spring, it was the despair of winter,
 we had everything before us, we had nothing before us,

Lots of "X of Y".
Change them all

to "Y of X"?

>>> foo = 'This and that and those'
>>> re.findall(r'th\w+', foo)
 ['that', 'those']
>>> re.findall(r'th\w+', foo, re.IGNORECASE)
 ['This', 'that', 'those']

Try it yourself

10/19/2023 13

3 minutes

>>> foo = 'walked, studied and stopped.'
>>> re.findall(r'\w+ed', foo)
 ['walked', 'studied', 'stopped']
>>> re.findall(r'(\w+)ed', foo)
 ['walk', 'studi', 'stopp']
>>> re.findall(r'(\w+)(ed)', foo)
 [('walk', 'ed'), ('studi', 'ed'), ('stopp', 'ed')]
>>> re.findall(r'((\w+)ed)', foo)
 [('walked', 'walk'), ('studied', 'studi'), ('stopped', 'stopp')]
>>> re.findall(r'(?:\w+)ed', foo)
 ['walked', 'studied', 'stopped']
>>> re.sub(r'\w+ed', 'Xed', foo)
 'Xed, Xed and Xed.'

Too short/simple?
Try with tale string

Also: how to double-
up vowel letters

using \1?

Zero-width matches: AVOID

10/19/2023 14

>>> re.findall(r'x+', 'abc')
 []
>>> re.findall(r'x*', 'abc')
 ['', '', '', '']
>>> re.sub(r'b+', '-', 'abc')
 'a-c'
>>> re.sub(r'b*', '-', 'abc')
 '-a--c-'
>>> re.sub(r'b*', '-', 'ac')
 '-a-c-'
>>>

* More information on https://www.regular-expressions.info/zerolength.html

Zero-width matches
can catch you

off-guard.

Different implementations
of regex may handle these
differently, even between

Python 3.6 and 3.7!

Take care to AVOID
composing regular

expressions that could
produce zero-width matches.

https://www.regular-expressions.info/zerolength.html

Compiling regular expression objects

10/19/2023 15

 Constructing a regular expression (→ FSA) is computationally
expensive.

 If you will be matching a regex repeatedly, pre-compiling a regular
expression object lightens processing load.

>>> myre = re.compile(r'\w*e\w*')

>>> myre.findall('Colorless green ideas sleep furiously.')
 ['Colorless', 'green', 'ideas', 'sleep']
>>> myre.findall('bless this mess')
 ['bless', 'mess']
>>> myre.findall('Mary had a little lamb')
 ['little']

myre is compiled as a regular expression object;
.findall() method is directly called on it.

.search()

10/19/2023 16

 Sometimes, we are dealing with a whole lot of strings, and only
interested in whether there is a match, and not in identifying all the
matching parts.

 Ex: Find all lines in Jane Austen novels that contain 'so ...ly'

 .findall() is an overkill for this purpose.

 Use .search() instead.

 Using .search()

>>> chom = 'Colorless green ideas sleep furiously.'
>>> re.search(r'e+', chom)
 <_sre.SRE_Match object; span=(6, 7), match='e'>
>>> re.search(r'e+', chom).group()
 'e'

.search() method

10/19/2023 17

 .search() only finds the first match and then quits.

 If successful, .search() returns a "match object" instead of a list.

 The matched portion is available through .group()

 If there's no match, .search() returns None: nothing.

>>> chom = 'Colorless green ideas sleep furiously.'
>>> re.search(r'e+', chom)
 <_sre.SRE_Match object; span=(6, 7), match='e'>
>>> re.search(r'e+', chom).group()
 'e'
>>> re.search(r'\d', chom)
>>>
>>> re.search(r'\d', chom).group()
 Traceback (most recent call last):
 File "<pyshell#146>", line 1, in <module>
 re.search(r'\d', chom).group()
 AttributeError: 'NoneType' object has no attribute 'group'

No digit in chom;
returns None

If a match found, ... else, ...

10/19/2023 18

 For obvious reasons, regular expression matches are often
coupled with if ... else:

>>> chomwds = 'Colorless green ideas sleep furiously'.split()
>>> chomwds
 ['Colorless', 'green', 'ideas', 'sleep', 'furiously']
>>> for c in chomwds:
... mat = re.search(r'e+', c)
... if mat : print('YES', mat.group(), 'in', c)
... else : print('NO', c)

 YES e in Colorless
 YES ee in green
 YES e in ideas
 YES ee in sleep
 NO furiously

But mat is a regex match object
and not a True/False type.

How could it work in if ... test?

non-Boolean "False/True" values

10/19/2023 19

 For if ... testing, certain non-Boolean
type values are also considered False.

 None (when no object is returned)

 Number zero

 Any empty sequence: [], (), ''

 An empty dictionary

 Conversely, the following are
considered True.

 Any returned object

 Any number other than zero

 A non-empty sequence or dictionary

>>> if ['a'] : print('YES')
 YES
>>> if [] : print('YES')
>>>
>>> if 3 : print('YES')
 YES
>>> if 0 : print('YES')
>>>
>>> if -3 : print('YES')
 YES
>>> if 'lala' : print('YES')
 YES
>>> if '' : print('YES')
>>>
>>> if {'a':9} : print('YES')
 YES
>>> if {} : print('YES')
>>>

Searching in text

10/19/2023 20

 Searching through a text typically proceeds line-by-line.

 Since a regex will be repeatedly matched, pre-compiling it before the
iterated search is a MUST.

f = open('austen-emma.txt')
elines = f.readlines()
f.close()

myre = re.compile(r'(have|has|had) been', re.I)
for l in elines:
 mat = myre.search(l)
 if mat :
 print(mat.group(), '--', l, end='')

have been -- very well considering, it would probably have been better if
had been -- she felt, that pleased as she had been to see Frank Churchill,
had been -- but having once owned that she had been presumptuous and silly,
have been -- would have been a stain indeed.
have been -- of his son-in-law's protection, would have been under wretched
>>>

Tokenization through re.split(), re.findall()

10/19/2023 21

>>> sent = "It's 5 o'clock somewhere. Why don't we drink a martini."
>>> sent.split()
 ["It's", '5', "o'clock", 'somewhere.', 'Why', "don't", 'we', 'drink',
 'a', 'martini.']
>>> re.split(r'\s+', sent)
 ["It's", '5', "o'clock", 'somewhere.', 'Why', "don't", 'we', 'drink',
 'a', 'martini.']
>>> re.split(r'[eo]', sent)
 ["It's", '5', '', "'cl", 'ck', 's', 'm', 'wh', 'r', '.', 'Why', 'd',
 "n't", 'w', '', 'drink', 'a', 'martini.']
>>> re.split(r'\W', sent)
 ['It', 's', '5', 'o', 'clock', 'somewhere', '', 'Why', 'don', 't',
 'we', 'drink', 'a', 'martini', '']
>>> re.split(r'\W+', sent)
 ['It', 's', '5', 'o', 'clock', 'somewhere', 'Why', 'don', 't', 'we',
 'drink', 'a', 'martini', '']
>>> re.findall(r'\w+', sent)
 ['It', 's', '5', 'o', 'clock', 'somewhere', 'Why', 'don', 't', 'we',
 'drink', 'a', 'martini']

Regular-expression based tokenization

10/19/2023 22

 Remember NLTK's plain-text corpus reader was using a different
word tokenizer than nltk.word_tokenize():

\w+|[^\w\s]+
What sort of tokens does this produce?

Wrapping up

10/19/2023 23

 Office hours change: Tianyi Wed 1-3pm (no morning hours)

 HW5 out: due Tuesday

 Next week: Morphology and FST

 Jurafsky & Martin (2nd Ed!) Ch.3 Words and Transducers

 Hulden (2011) Morphological analysis with FST

 What class to take in Spring? → Next slide

 PyLing!

 Next Wednesday, 6pm, 2818 CL

 "From Bayes to BERT: Classification Approaches in NLP" by Alejandro Ciuba

Coming soon (hopefully):

 Computational Linguistics Certificate

10/19/2023 24

 Pre-reqs (LING & CS shared):
 LING 1578 (phonetics), LING 1777 (syntax), LING 1682 (semantics) or LING 1267

(sociolinguistics)

 COMPINF 401 (intermediate Java), CS 445 (algorithms and data structures 1)

 STAT 1000 (applied statistics) or equivalent (such as LING 1810)

 Required content courses:

LING & CS shared:

LING 1330 Intro to Computational Linguistics
CS 1684 Bias and Ethical Implications in AI (or CS 590 for LING majors)

LING majors/minors:* CS majors/minors:

LING 1340 Data Science for Linguists
LING 1810 Stats or LING 1269 Variation & Change
1 elective
1 capstone (2-3 credits)

CS 1671 Human Language Technologies
CS 1571 Intro to AI or CS 1675 Intro to ML
1 elective
1 capstone

* Maximum of 8 credit overlap allowed with LING major/minor

	Slide 1: Lecture 15: RE in Python
	Slide 2: Outline
	Slide 3: Exercise 7: Regex vs. Jobs
	Slide 4: Greedy match
	Slide 5: Greedy match
	Slide 6: Un-greedy match
	Slide 7: Using regex in Python
	Slide 8: Using re.findall()
	Slide 9: re.findall() and group extraction
	Slide 10: re.findall() and group extraction
	Slide 11: Regex substitution
	Slide 12: Referencing group matches: \1 \2
	Slide 13: Try it yourself
	Slide 14: Zero-width matches: AVOID
	Slide 15: Compiling regular expression objects
	Slide 16: .search()
	Slide 17: .search() method
	Slide 18: If a match found, ... else, ...
	Slide 19: non-Boolean "False/True" values
	Slide 20: Searching in text
	Slide 21: Tokenization through re.split(), re.findall()
	Slide 22: Regular-expression based tokenization
	Slide 23: Wrapping up
	Slide 24: Coming soon (hopefully): Computational Linguistics Certificate

