
Lecture 16:

Regex, FSA, Morphology, FST

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 10/24/2023

Outline

10/24/2023 2

 Regular expressions wrap

 FSA

 Morphology and FST

 Jurafsky & Martin (2nd Ed!) Ch.3 Words and Transducers

 Hulden (2011) Morphological analysis with FST

 foma!

Tokenization through re.split(), re.findall()

10/24/2023 3

>>> sent = "It's 5 o'clock somewhere. Why don't we drink a martini."
>>> sent.split()
 ["It's", '5', "o'clock", 'somewhere.', 'Why', "don't", 'we', 'drink',
 'a', 'martini.']
>>> re.split(r'\s+', sent)
 ["It's", '5', "o'clock", 'somewhere.', 'Why', "don't", 'we', 'drink',
 'a', 'martini.']
>>> re.split(r'[eo]', sent)
 ["It's", '5', '', "'cl", 'ck', 's', 'm', 'wh', 'r', '.', 'Why', 'd',
 "n't", 'w', '', 'drink', 'a', 'martini.']
>>> re.split(r'\W', sent)
 ['It', 's', '5', 'o', 'clock', 'somewhere', '', 'Why', 'don', 't',
 'we', 'drink', 'a', 'martini', '']
>>> re.split(r'\W+', sent)
 ['It', 's', '5', 'o', 'clock', 'somewhere', 'Why', 'don', 't', 'we',
 'drink', 'a', 'martini', '']
>>> re.findall(r'\w+', sent)
 ['It', 's', '5', 'o', 'clock', 'somewhere', 'Why', 'don', 't', 'we',
 'drink', 'a', 'martini']

Regular-expression based tokenization

10/24/2023 4

 Remember NLTK's plain-text corpus reader was using a different
word tokenizer than nltk.word_tokenize():

\w+|[^\w\s]+
What sort of tokens does this produce?

Regex IRL

10/24/2023 5

 Regex-based string substitution is an extremely common and
useful operation.

 Most text editors provide regex-based search-and-replace capability.

Notepad++ →

99 vs. 100 problems

10/24/2023 6

 https://www.explainxkcd.com/wiki/index.php/1171:_Perl_Problems

https://www.explainxkcd.com/wiki/index.php/1171:_Perl_Problems

Regular expression pitfalls

10/24/2023 7

 When you were composing regex's for Jobs's Wikipedia entry, you
were able to visually confirm what your regex does and does not
match.

 In real-life application of regex, you do not have that luxury.

 You do NOT see what your regex failed to match.

 Hard to debug when you don't even know what's missing (false negatives)!

 You do get to see positive matches. However:

 if your search pulls up a huge number of matches, you can't manually go
through them to make sure that there are no false positives.

 Regular expressions are very powerful, and it takes time and practice
to truly master them. Until you have, always be mindful and
thoroughly test your regular expressions.

Homework 5: Regex in Python

10/24/2023 8

 Compiling a regular expression through re.compile() turns

 into

 Multi-word proper noun phrase

 ('Steve Jobs', 'Apple I', 'Mac OS', 'The Walt Disney Company'):

 [A-Z]+[a-z]*([A-Z]+[a-z]*)+

a(b|c) Finite-State
Automata (FSA)

Matches 'A', 'AB',
'Abcd', 'ABcd', etc.

A single space is repeated
alongside a word

Also: whole regex has to be
in () for group capture

Regular expressions vs. automata

10/24/2023 9

 Regular expression

 A compact representation of a set of strings

/(have|has|had)(n?ever)? been/

 represents a set of 9 strings.

/(have|has|had)(\w+)* been/

 represents a set of infinite number of strings.

 Regular expressions as a formalism have a different incarnation in
the form of finite-state automata:

1 2START
b

a b

a*b* equivalent

Regular expressions vs. FSA

10/24/2023 10

 Regular expressions and FSA are equivalent.

 For any regular expression you compose, there is a corresponding FSA.

 Any FSA can be converted to a corresponding regular expression.

 How do you define equivalence?

 A regular expression represents a set of strings.

 A FSA accepts/generates a set of strings.

 If the two sets are identical, the regular expression and the FSA are equivalent.

3START
a

b

1
a

2ab*a
aa, aba,

abba, abbba,
abbbba, ...

Finite-State Automata

10/24/2023 11

 A finite-state automaton (FSA, also called a finite-state machine) is a
mathematical model of computation

 It consists of:

 A set of states. One state is initial; each state is either final (=accepting) or non-
final.

 A set of transition arcs between states with a label.

 The machine starts at the initial state, and then transits to a next state through
an arc, reading the label

 When the input string is exhausted, if the machine is at a final state (ab), then
the string is accepted/generated; if not (aba), it is rejected.

 Input string is also rejected when it cannot be completely processed. (b, aaa)

2START
a

b

1
a

3

4.12 (Language and Computers)

10/24/2023 12

 Accepted by this FSA?
 '' 'a' 'aa' 'b'

 Equivalent regular expression?

 /a/

2START
a

1

4.13

10/24/2023 13

 Accepted by this FSA?
 '' 'a' 'b' 'c' 'ab' 'bc' 'aa'

 Equivalent regular expression?

 /a|b|c/

2START
b

1

a

c

4.14

10/24/2023 14

 Accepted by this FSA?
'' 'a' 'aa' 'aaa' 'b' 'bc' 'abc' 'ba'
'aba' 'ab' 'aac'

 Equivalent regular expression?

 /a*(a|b|c)/

2START
b

1

a

c

Also: 'c', 'ac', 'aaac', …

a

4.14

10/24/2023 15

 Accepted by this FSA?
'' 'a' 'aa' 'aaa' 'b' 'bc' 'abc' 'ba'
'aba' 'ab' 'aac'

 Equivalent regular expression?

 /a*(a|b|c)/

2START
b

1

a

c

Also: 'c', 'ac', 'aaac', …

a

Non-deterministic:
Multiple choices on reading
a single arc label. String is

accepted if at least one
successful path exists.

A non-deterministic FSA
can be algorithmically
converted (LINK) into

an equivalent
deterministic FSA.

http://www.cs.um.edu.mt/gordon.pace/Research/Software/Relic/Transformations/FSA/to-deterministic.html

Deterministic vs. non-deterministic FSA

10/24/2023 16

3START
a

a b

1 2
b

 Which string(s) does this
FSA accept?
 Answer: ab, aab, abb, aaab,

aabbb, aaaaabbbbbb, ...

 What is its RE equivalent?
 Answer: a+b+

3START
a

a b

1 2
b

Non-deterministic.
There are two path

choices upon
reading 'a'

Equivalent FSA,
deterministic.

A non-deterministic FSA can
be algorithmically converted

(LINK) into an equivalent
deterministic FSA.

http://www.cs.um.edu.mt/gordon.pace/Research/Software/Relic/Transformations/FSA/to-deterministic.html

4.17

10/24/2023 17

 Accepted by this FSA?
'' 'a' 'aa' 'aaa' 'aaaa' 'b' 'ab' 'baaa'

 Equivalent regular expression?

 /a*/

1START

Also: 'aaaaa', 'aaaaaa', …

a

10/24/2023 18

 Accepted by this FSA?
'' 'a' 'aa' 'aaa' 'aaaa' 'b' 'ab' 'baaa'

 Equivalent regular expression?

 /(a|b)*/

1START

a

b

Basically any
string made
of a and b!

If a and b are
the only alphabet,

equivalent to

/.*/

4.18

10/24/2023 19

 Accepted by this FSA?
'' 'a' 'aa' 'aaa' 'b' 'ab' 'aabb' 'baa'
'bab'

 Equivalent regular expression?

 /a*b*/

2START
b

Also: 'bb', 'abb', 'aaabbbbb', …

a

1

b

Wrong FSA shown in the
textbook. This is the

correct FSA that matches
the regex.

Any number of a's
followed by any
number of b's

4.18 (as in the textbook p.115)

10/24/2023 20

 Accepted by this FSA?
'' 'a' 'b' 'ab' 'ba' 'aa' 'aab' 'aaabb'

'aaaaaa' 'bbbbbb' 'bbbaa' 'aaaab' 'abbbbbb'

 Equivalent regular expression?

 /a*|a+b+/ /a*(ab*)?/

3START
a b

a b

21
This part is

in fact
redundant.

If b is going to occur at all,
it must be preceded by at

least one a

English morpho-syntax as FSA

10/24/2023 21

 Arc labels (=vocabulary): English morphemes

 Set of accepted strings: legitimate English words

 Which words are in this language?

 Which are not?

 What's the corresponding regular expression?

 /(thank|joy|taste|thought)((ful|less)(ly)?)?/

21 3 4START

thank

joy

taste

thought

ful

less

ly

English morpho-syntax as FSA

10/24/2023 22

 Arc labels (=vocabulary): English morphemes

 Set of accepted strings: legitimate English words

 Which words are in this language?

 Which are not?

 What's the corresponding regular expression?

 /(thank|joy|taste|thought)((ful|less)(ly)?)?/

21 3 4START

thank

joy

taste

thought

ful

less

ly

Can we implement the
ENTIRE English

morphological grammar
this way, i.e., as a FSA?

Computational morphology

10/24/2023 23

 Morphological parsing/analysis

 Input: a word

 Output: an analysis of the structure of the
word

 Morphological generation

 Input: an analysis of the structure of the word

 Output: a word

beg+V+PresPart

begging

FST: Finite-State Transducer

10/24/2023 24

 FST transition arcs have two levels: UPPER and
LOWER.

 FSTs have two sets of finite alphabets for each level.

 Transitioning involves reading both upper and lower
labels.

 FSA consists of:
 A set of states. One state is initial; each state is either final

(=accepting) or non-final.

 A set of transition arcs between states with a label.

 The machine starts at the initial state, and then transits to a next
state through an arc, reading the label

Upper side and lower side in FST

10/24/2023 25

 Upper side (=underlying form)

 Lower side (=surface form)

beg+V+PresPart

begging

FST

Confusing? Yes, but upper/lower
comes from the dictionary lookup

analogy.
You look up "begging" to find it's a

present participle form of "beg"

Jurafsky & Martin (ed.2) Ch.3

10/24/2023 26

 Lecture continues, based on the book chapter

 Posted on Canvas. Make sure to review!

Introducing: foma

10/24/2023 27

 https://fomafst.github.io/

 A compiler of finite-state machines (FSA and FST)

 FSA: you already know

 FST: Finite-State Transducer

 A modern incarnation of Xerox's classic FST suite: XFST and LEXC.

https://fomafst.github.io/

regex in foma: pitfalls

10/24/2023 28

 Foma takes regular expression syntax from Xerox's FST tools,
which incorporate many linguistic rule conventions

 Foma's regex syntax differ from the standard (Perl, Python) syntax
in some key aspects, most notably:

 ? → () in foma

 () → [] in foma

 Additionally, foma adopts multi-character symbols; SPACE is
meaningful.

 "abc" is a single symbol, "a b c" is three symbols concatenated

 Refer to:

 https://github.com/mhulden/foma/blob/master/foma/docs/simpleintr
o.md#regex-basics

https://github.com/mhulden/foma/blob/master/foma/docs/simpleintro.md#regex-basics
https://github.com/mhulden/foma/blob/master/foma/docs/simpleintro.md#regex-basics

Foma can compile FSA from regex

10/24/2023 29

Regular expression is
compiled into a

deterministic FSA

English morpho-syntax as FSA

10/24/2023 30

 Here, "thank", "ful", etc. are construed as multi-character symbols.

 When building a morphological parsers, we don't normally treat
morphemes are such. (WHY?)

geese and mice

10/24/2023 31

"view" won't work on
Win and OS X.

Workaround details
in Exercise 8. See

Windows workflow,
Mac OS workflow.

https://sites.pitt.edu/~naraehan/ling1330/ex8.html
https://sites.pitt.edu/~naraehan/ling1330/img/foma-win-workflow.png
https://sites.pitt.edu/~naraehan/ling1330/img/foma-mac-workflow.png

Wrapping up

10/24/2023 32

 Exercise 8 out

 Install foma and try it out

 Tomorrow (Wed) 6pm: PyLing! In 2818 CL.

 Thursday: more on Morphology and FST

 What class to take in Spring? → Next slide

Coming soon (hopefully):

 Computational Linguistics Certificate

10/24/2023 33

 Pre-reqs (LING & CS shared):
 LING 1578 (phonetics), LING 1777 (syntax), LING 1682 (semantics) or LING 1267

(sociolinguistics)

 COMPINF 401 (intermediate Java), CS 445 (algorithms and data structures 1)

 STAT 1000 (applied statistics) or equivalent (such as LING 1810)

 Required content courses:

LING & CS shared:

LING 1330 Intro to Computational Linguistics
CS 1684 Bias and Ethical Implications in AI (or CS 590 for LING majors)

LING majors/minors:* CS majors/minors:

LING 1340 Data Science for Linguists
LING 1810 Stats or LING 1269 Variation & Change
1 elective
1 capstone (2-3 credits)

CS 1671 Human Language Technologies
CS 1571 Intro to AI or CS 1675 Intro to ML
1 elective
1 capstone

* Maximum of 8 credit overlap allowed with LING major/minor

	Slide 1: Lecture 16: Regex, FSA, Morphology, FST
	Slide 2: Outline
	Slide 3: Tokenization through re.split(), re.findall()
	Slide 4: Regular-expression based tokenization
	Slide 5: Regex IRL
	Slide 6: 99 vs. 100 problems
	Slide 7: Regular expression pitfalls
	Slide 8: Homework 5: Regex in Python
	Slide 9: Regular expressions vs. automata
	Slide 10: Regular expressions vs. FSA
	Slide 11: Finite-State Automata
	Slide 12: 4.12 (Language and Computers)
	Slide 13: 4.13
	Slide 14: 4.14
	Slide 15: 4.14
	Slide 16: Deterministic vs. non-deterministic FSA
	Slide 17: 4.17
	Slide 18
	Slide 19: 4.18
	Slide 20: 4.18 (as in the textbook p.115)
	Slide 21: English morpho-syntax as FSA
	Slide 22: English morpho-syntax as FSA
	Slide 23: Computational morphology
	Slide 24: FST: Finite-State Transducer
	Slide 25: Upper side and lower side in FST
	Slide 26: Jurafsky & Martin (ed.2) Ch.3
	Slide 27: Introducing: foma
	Slide 28: regex in foma: pitfalls
	Slide 29: Foma can compile FSA from regex
	Slide 30: English morpho-syntax as FSA
	Slide 31: geese and mice
	Slide 32: Wrapping up
	Slide 33: Coming soon (hopefully): Computational Linguistics Certificate

