Lecture 2:
Encoding Language, Palindromes

Ling 1330/2330 Intro to Computational Linguistics
Na-Rae Han, 8/31/2023

Objectives

» Course organization

+ "Starting Each Class" checklist https://sites.pitt.edu/~naraehan/ling1330/checklists.html
+ Your Python setup

+ MS Teams Forum, office hours
+ Policies: https://sites.pitt.edu/~naraehan/ling1330/policies.html

» Structured programming

+ Palindrome: four scripts

» L&C ch.1: Understand the fundamentals of how language is encoded on a computer
+ Text encoding systems

8/31/2023

https://sites.pitt.edu/~naraehan/ling1330/checklists.html
https://sites.pitt.edu/~naraehan/ling1330/policies.html

for loop to build a new string

8/31/2023

>>>
>>>
>>>

>>>

wd = "penguin’
nhew = "'
for x in wd :

new = new + X + X

print(new)
(1

>>>
>>>
>>>

>>>

wd = "penguin’

new =
for x in wd :

new = (2

print(new)
niugneppenguin

2 minutes
3
)
>>> wd = "penguin’
>>> new =
>>> for x in wd :
new = (3
>>> print(new)
niugnep

for loop to build a new string 2 minutes

rh AL

>>> wd = "penguin’
>>> new = "'
>>> for x in wd :
new = new + X + X

>>> print(new) >>> wd = 'penguin’
ppeenngguuiinn >>> new =
>>> for x in wd :
>>> wd = 'penguin' « o new = X + new
>>> new = '
>>> for x in wd : 222 print(new) Works as a
new = X + new + X niugnep string-reversing

routine!
>>> print(new)
niugneppenguin

8/31/2023

Practice: palindrome 45 minutes ‘ﬁ."

Let's practice writing Python scripts. A

rAAL

You will learn:
+ How to develop a structured program, from simple to complex
+ How to clean and manipulate strings
+ How to modularize your program through the use of custom functions

» Head to:
+ https://sites.pitt.edu/~naraehan/ling1330/palindrome.html
(link on Schedule page)

8/31/2023 5

https://sites.pitt.edu/~naraehan/ling1330/palindrome.html

#1: Naive palindrome

Z-inpal_naive.py-C:/Users/narae/Documents/ling1330/pa|_naive.py (3.83) — [X
Eile Edit Format Run Options Window Help

Naive palindrome

take in user input
exp = input('Give me a palindrome: ')

string reversing routine
new = "' # new 1s initially empty
for X in exp:

new = X + new

exp_rev = new # exp_rev is reversed exp

test and print out

if len(exp) <= 2 : # case 1: input too short
print('Sorry, try something longer."')

elif exp == exp_rev : # case 2: is palindrome
print('YES, "'+exp+'" is a palindrome.’)

else : # case 3: not palindrome

print('NO, "'+exp+'" is not a palindrome.')

8/31/2023

#2: Smart palindrome

3pa|_smart.py - C:/Users/narae/Documents/ling1330/pal_smart.py (3.8.3) — ([l X
File Edit Format Run Options Window Help

Smart palindrome

take in user input
exp = input('Give me a palindrome: ')

clean up user input: lowercase, remove space and punctuation

exp_clean = exp.lower().replace(’ ", "").replace(',’', "').replace(, "").replace(':', "").replace('.’, '")

string reversing routine, using exp_clean now
new = "' # new is initially empty
for x in exp_clean :

new = X + new

exp_rev = new # exp_rev is reversed exp_clean

test and print out

if len(exp) <= 2 : # case 1: input too short
print('Sorry, try something longer.')

elif exp_clean == exp_rev : # case 2: is palindrome
print('YES, "'+exp+'" is a palindrome.')

else : # case 3: not palindrome
print('NO, "'+exp+'" is not a palindrome. ')

8/31/2023 Ln: 25 Col: 0

print("Hello! Let's start.”) # initial message, outside loop

#3: Insistent
palindrome

loop condition: initially set to false
success = False

loop back while unsuccessful
while not success :

take in user input
exp = input('Give me a palindrome: ')

clean up user input: lowercase, remove space and punctuation
line was too long: using \ to break up

exp_clean = exp.lower().replace(’” ', "').replace(’,', "') \

.replace(, ""J.replace(':", "").replace('.", ")

string reversing routine, using exp_clean now
new = "' # new 1is initially empty
for x in exp_clean :

new = X + new

exp_rev = new # exp_rev is reversed exp_clean

test and print out

it len(exp) <= 2 : # case 1: input too short
print('Sorry, try something longer.')

elif exp_clean == exp_rev : # case 2: 1s palindrome
print('YES, "'+exp+'" is a palindrome.')
success = True # loop condition changed

else : # case 3: not palindrome

print('NO, "'+exp+'" is not a palindrome. Let\'s try again.')

8/31/2023 print("Goodbye.") # last message, outside loop

def getRev(wd):
"Takes a string, returns its reverse"

rev =

® f i] d :
#4: Modular oriinud i
return rev

palindrome def cleanInput(foo):

"Lowercases input, removes space and punctuation .,"':"

return foo.lower().replace(' ', "').replace(',', "")\

.replace(, "").replace(':', "").replace('.", ")
HARHHHH AR AR R R A A R R A R A
Main routine below
print("Hello! Let's start.”) # initial message, outside loop

loop condition: initially set to false
success = False

loop back while unsuccessful
while not success :

take in user input
exp = input('Give me a palindrome: ')

exp_clean = cleanInput(exp) # clean input
exp_rev = getRev(exp_clean) # reverse cleaned input

test and print out

if len(exp) <= 2 : # case 1: input too short
print('Sorry, try something longer.')

elif exp_clean == exp_rev : # case 2: is palindrome
print('YES, "'+exp+'" is a palindrome.’)
success = True # loop condition changed

else : # case 3: not palindrome

print('NO, "'+exp+'" is not a palindrome. Let\'s try again.’)

8/31/2023 print(“"Goodbye.") # last message, outside loop

Solutions

» Found here:

+ https://sites.pitt.edu/~naraehan/ling1330/pal SOLUTIONS.txt
* (copy and paste each of the four scripts)

» Palindrome speed coding video:
+ https://sites.pitt.edu/~naraehan/ling1330/pal-speed-coding.mp4

» Lessons learned?

8/31/2023

10

https://sites.pitt.edu/~naraehan/ling1330/pal_SOLUTIONS.txt
https://sites.pitt.edu/~naraehan/ling1330/pal-speed-coding.mp4

How is language represented on a computer?

» Natural ("Human") languages:
» Spoken form
» Written form

*Also: sign languages

8/31/2023

» The language of computers:

100110011010100
101001101011010

1110111101010011
100010110010010¢
0010010000100011

11

The language of computers

» At the lowest level, computer language is binary:

Information on a computer is stored in bits
* A bitis either: ON (=1, =yes) or OFF (=0, =no)
+ This language essentially contains two alphabetic characters

» Next level up: byte

+ A byte is made up of a sequence of 8 bits
ex. 01001101 >
+ Historically, a byte was the number of bits used to encode a single

character of text in a computer
+ Byte is a basic addressable unit in most computer architecture

8/31/2023

1001100110101
1010011010110
1110111101010

1001100110101
1010011010110
1110111101010

12

Encoding a written language

» How to represent a text with Os and 1s?
¢+ Hello world!

. 01001000b110010]1011011000110110001101111001000000111011101101111011100
10011011000110010000100001

+ Each character is mapped to a code point (=character code), e.g., a unique integer.
* H=>72,.
ce>101,

+ Each code point is represented as a binary number, using a fixed number of bits.
+ 8 bits == 1 byte in the example above
* H>72,.~> 01001000 (26+23=64+8=72)
+ e=>101,, > 01100101 (25+2°+22+2°=64+32+4+1=101)
* One byte can represent 256 (=28) different characters
+ 00000000 > 0, 11111111 - 255,

8/31/2023 13

ASCII encoding for English

» How many bits are needed to encode English?

+ 26 lowercase letters: a, b, ¢, d, e, ...
+ 26 uppercase letters: A, B, C, D, E, ...
+ 10 Arabic digits: 0, 1, 2, 3, 4, ...
¢ Punctuation:.,:;?!1"'"
¢ Symbols: ()<>& % *S +-

€ We are already up to 80

€ 6 bits (2° = 64) is not enough; we will need at least 7 (27 = 128)

€ ASCII (the American Standard Code for Information Interchange) did just that, back in

1963

+ Uses 7-bit code (= 128 characters) for storing English text
¢+ Range Oto 127

8/31/2023

14

The ASCII chart

» https://en.wikipedia.org/wiki/ASCII

000 0000 (NULL)
100 0001
66 100 0010 B
35 #
0100011 67 100 0011 C
36 010 0100
97 110 0001 a
48 011 0000 0
98 110 0010 b
49 011 0001 1
99 110 0011 c
50 011 0010 2

127 1111111 (DEL)

8/31/2023

https://en.wikipedia.org/wiki/ASCII

Wrap-up

» Exercise #2 out
¢ Due Tuesday 10:45am, on Canvas
+ Pig Latin script

» Monday is Labor Day; no office hours
+ Need help? Utilize MS Teams

» Next class:
+ More encoding systems, Unicode
+ Text processing with NLTK

» Install NLTK!! =>» DETAILS NEXT PAGE
» Get started with the NLTK Book, chapters 1 through 3.

8/31/2023

16

NLTK installation!

» Instructions on the "Checklists" page
¢ https://sites.pitt.edu/~naraehan/ling1330/checklists.html#tsetup-nltk

» After successful install + data download, you can:

>3 nltk
>>> nltk.corpus.brown.words()
["'The', "Fulton®, 'County', 'Grand’, "Jury’, ‘'said', ...]

» Anaconda users: nltk is already installed, but you still need to download
language data packs.

» Python.org users: You need to install nltk through pip, in command line. If
you’re new to command line, chances are you will need help. (Plan ahead!!)

8/31/2023

17

https://sites.pitt.edu/~naraehan/ling1330/checklists.html#setup-nltk

	Slide 1: Lecture 2: Encoding Language, Palindromes
	Slide 2: Objectives
	Slide 3: for loop to build a new string
	Slide 4: for loop to build a new string
	Slide 5: Practice: palindrome
	Slide 6: #1: Naïve palindrome
	Slide 7: #2: Smart palindrome
	Slide 8: #3: Insistent palindrome
	Slide 9: #4: Modular palindrome
	Slide 10: Solutions
	Slide 11: How is language represented on a computer?
	Slide 12: The language of computers
	Slide 13: Encoding a written language
	Slide 14: ASCII encoding for English
	Slide 15: The ASCII chart
	Slide 16: Wrap-up
	Slide 17: NLTK installation!

