
Lecture 21:

Advanced POS Taggers, Trees

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 11/12/2024

Overview

11/12/2024 2

 Building POS taggers:

 N-gram tagger

 Hidden Markov Model (HMM) tagger

 For discussions on HMM, see Jurafsky & Martin

 Homework 7

 Comparison with: Hidden Markov Model (HMM) tagger

 Syntactic trees

 NLTK Ch.7 & Ch.8 In lecture21.html

Homework 7

11/12/2024 3

 You built a bigram tagger

 Backs off to a unigram tagger, which backs off to a "NN" default tagger

 Trained and tested on the Brown corpus

 Trained on the first 50,000 sentences = 1,039,920 words

 Tested on the last 7340 sentences = 121,272 words

 How good is it? Can we make a better tagger?

 How well does it perform on 'cold' NN-JJ ambiguity?

 What are its strengths and limitations?

Performance

11/12/2024 4

Tagger Accuracy Improvement

t0 ('NN' default tagger) 0.10919 n/a

t1 (unigram tagger) 0.88978 + 0.78059

t2 (bigram tagger) 0.91116 + 0.02138

▪ How to make it better?
 Obvious candidate: build a trigram tagger on top.

 What do you notice about the amount of improvement?

 As the size of n in your n-gram tagger increases, you see a smaller
gain in performance improvement. Performance may even drop!
(overfitting)

Tagger Accuracy Improvement

t3 (trigram tagger) 0.91180 + 0.00063

Performance: even better?

11/12/2024 5

Tagger Accuracy Improvement

t0 ('NN' default tagger) 0.10919 n/a

t1 (unigram tagger) 0.88978 + 0.78059

t2 (bigram tagger) 0.91116 + 0.02138

t3 (trigram tagger) 0.91180 + 0.00063

▪ Anything else we can try?

 Can we do even better?

 One simple fix: replace the default tagger ('everything's NN!!') with
something more intelligent: a regular-expression tagger.

 After that, you need to rebuild your 1- 2- 3-gram taggers.

Regular expression tagger as t0

11/12/2024 6

 More sophisticated than the 'NN' default tagger!

>>> patterns = [
 (r'.*ing$', 'VBG'), # gerunds
 (r'.*ed$', 'VBD'), # simple past
 (r'.*es$', 'VBZ'), # 3rd singular present
 (r'.*\'s$', 'NN$'), # possessive nouns
 (r'^-?[0-9]+(\.[0-9]+)?$', 'CD'), # cardinal numbers
 (r'^[A-Z][a-z]*s$', 'NPS'), # plural proper nouns
 (r'^[A-Z][a-z]*[^s]$', 'NP'), # singular proper nouns
 (r'.*s$', 'NNS'), # plural nouns
 (r'.*', 'NN') # nouns (default)
]
>>> re_tagger = nltk.RegexpTagger(patterns)
>>> re_tagger.tag('Akbar and Jedis tweeted'.split())
[('Akbar', 'NP'), ('and', 'NN'), ('Jedis', 'NPS'), ('tweeted', 'VBD')]

New tagger performance

11/12/2024 7

Tagger Accuracy Improvement

re_tagger (regex tagger) 0.19243 + 0.08324 from t0

t1new (unigram tagger) 0.90395 + 0.01416 from t1

t2new (bigram tagger) 0.92563 + 0.01447 from t2

t3new (trigram tagger) 0.92634 + 0.01454 from t3

▪ 1.5% overall improved performance!

▪ Regex tagger does a better job of handling "unseen" words than the
'NN' default tagger: ‘tweeted’, ‘Akbar’

How n-gram taggers work

11/12/2024 8

 How do our n-gram taggers handle the 'cold' NN-JJ ambiguity?

 Mining the training data for instances of 'cold' as NN or JJ

 cold/JJ vs. cold/NN in the training data: 110* vs. 8

 ➔ The unigram tagger will always pick JJ for 'cold'.

 Considering POSn-1:

 AT cold/JJ (38) vs. cold/NN (4) ➔ JJ wins

 JJ cold/JJ (4) vs. cold/NN (2) ➔ JJ wins

 DT cold/JJ (3) vs. cold/NN (1) ➔ JJ wins

 , cold/JJ (3) vs. cold/NN (1) ➔ JJ wins

 Every POSn-1 in fact favors JJ for 'cold'!

 ➔ The bigram tagger too will always tag 'cold' as JJ.

* 109 sentences in cold_JJ, but there is a
sentence with two instances of cold/JJ.

'cold': adjective or noun?

11/12/2024 9

1. I was very cold.

2. January was a cold month.

3. I had a cold.

4. I had a severe cold.

▪ OK, so our bigram tagger fails to treat 'cold' as a noun, ever.

▪ Does a trigram tagger do better?

1-4 all tagged 'JJ'
by the bigram

tagger (t2). ✘
✘

'cold': adjective or noun?

11/12/2024 10

1. I was very cold.

2. January was a cold month.

3. I had a cold.

4. I had a severe cold.

▪ OK, so our bigram tagger fails to treat 'cold' as a noun, ever.

▪ Does a trigram tagger do better?

 YES! On one of them: "I had a cold".

1-4 all tagged 'JJ'
by the bigram

tagger (t2). ✘
✘

>>> t3.tag('I had a cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('cold', 'NN'), ('.', '.')]
>>> t3.tag('I had a severe cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('severe', 'JJ'), ('cold',
'JJ'), ('.', '.')]

✘

'cold': adjective or noun?

11/12/2024 11

1. I was very cold.

2. January was a cold month.

3. I had a cold.

4. I had a severe cold.

▪ OK, so our bigram tagger fails to treat 'cold' as a noun, ever.

▪ Does a trigram tagger do better?

 YES! On one of them: "I had a cold".

✘
✘

>>> t3.tag('I had a cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('cold', 'NN'), ('.', '.')]
>>> t3.tag('I had a severe cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('severe', 'JJ'), ('cold',
'JJ'), ('.', '.')]

"HVD AT cold/NN" has
a higher count than
"HVD AT cold/JJ" in

training data.

✘

So: three POS tags

11/12/2024 12

Sentence examples POS traits

I failed to do so.
It wasn't so.
I was happy, but so was my enemy.

RB
(Adverb)

Modifies a verb.

So, how was the exam?
They rushed so they can get good seats.
She failed, so she must re-take the exam.

CS
(Subordinating
conjunction)

Clausal adverb; starts
a subordinate clause.

That was so incredible.
Wow, so incredible.
The prices fell so fast.

QL
(Qualifier)

Aka 'intensifier';
modifies following

adjective or adverb.

So: three POS tags

11/12/2024 13

Sentence examples POS traits

I failed to do so.
It wasn't so.
I was happy, but so was my enemy.

RB
(Adverb)

Modifies a verb.

So, how was the exam?
They rushed so they can get good seats.
She failed, so she must re-take the exam.

CS
(Subordinating
conjunction)

Clausal adverb; starts
a subordinate clause.

That was so incredible.
Wow, so incredible.
The prices fell so fast.

QL
(Qualifier)

Aka 'intensifier';
modifies following

adjective or adverb.

Which were more frequent in Jane Austen? The Bible?

n-gram tagger: limitations?

11/12/2024 14

I was very cold .

 January was a cold month.

 I had a cold .

 I had a severe cold .

▪ Q: Does it matter at all what comes AFTER 'cold'? 'so'?

 NOT unless you make your tagger work the opposite direction.

 But then, it won't be able to use the left-hand side context!

▪ In general, an n-gram tagger makes a decision for a given word, one at
a time, in a single direction.

▪ It commits to every decision it makes as it proceeds. It cannot go back
on it after seeing more context.

▪ It does NOT optimize for global POS tag assignment.

I failed to do so .

 She failed the exam, so she …

 That was so incredible.

 Wow, so incredible.

Global optimization of tags

11/12/2024 15

 n-gram taggers do NOT optimize for global (sentence-wide) POS
tag assignment.

 More sophisticated probabilistic sequential taggers do.

 ➔ HMM taggers, CRF taggers, …

that is so cold

 DT
 BEZ
 QL
 JJ

n-gram tagger

Which is
most
likely?

that is so cold
 DT BEZ QL JJ
 DT BEZ QL NN
 DT BEZ CS JJ
 DT BEZ CS NN
 …

HMM tagger

Evaluating a tagger

11/12/2024 16

 But how good is "good"? 90%? 95%? 98%...?

 We need to establish a baseline.

 A good unigram tagger can already achieve 90-91% (!)

 Bigram/trigram … taggers should show a better performance.

 How about a ceiling?

 Agreement between human annotators are said to top out at ~97%.

 Therefore, trained taggers cannot be expected to perform better than
that.

Advanced POS taggers

11/12/2024 17

 Rule-based taggers

 Transformation-based taggers (Brill tagger)

NLTK book focuses on it; we will skip it

 Hidden-Markov Model (HMM) taggers

 These use more sophisticated probabilistic techniques.

Probabilistic sequence models

11/12/2024 18

 Generally, POS tagging can be viewed as a sequence labeling
task.

 input: Colorless green ideas sleep furiously

 labels: JJ JJ NNS VBP RB

 Probabilistic sequence models allow integrating uncertainty over
multiple, interdependent classifications and collectively
determine the most likely GLOBAL assignment.

 Well-known models:

 Hidden Markov Model (HMM)

 Conditional Random Field (CRF)

*Penn Treebank tagset.

Markov model (Markov chain)

11/12/2024 19

 A finite state machine with probabilistic state transitions.

 Makes Markov assumption that the next state only depends on the
current state and is independent of previous history.

 Hidden Markov Model (HMM): the states (POS tags) are in fact hidden
from the view; the only observable events are the sequence of emitted
symbols (words).

Simple Markov Model for POS

11/12/2024 20

 Given DT as the current POS, what's the likelihood of POSn+1:

 NN ('the question')

 JJ ('the happy girl')

 RB ('the very happy girl')
Which tag sequence is
most likely:
• DT NN JJ
• NN JJ RB
• RB JJ NN
• DT JJ NN

*Penn Treebank tagset.

*NOTE: this machine is incomplete!

0.1

0.6

0.3

0.6

DT

RB JJ

NN
START 0.4

0.05

0.95
0.2

0.6

0.25

0.15

0.05

0.45

Simple Markov Model for POS

11/12/2024 21

 Given DT as the current POS, what's the likelihood of POSn+1:

 NN ('the question')

 JJ ('the happy girl')

 RB ('the very happy girl')
DT NN JJ
 = 0.6*0.6*0.2 = 0.072
NN JJ RB
 = 0.25*0.2*0.05 = 0.0025
RB JJ NN
 = 0.15*0.6*0.95 = 0.0855
DT JJ NN
 = 0.6*0.3*0.95 = 0.171

Where can we get
transition probability?
CORPUS.

0.45

0.1

0.6

0.3

0.6

DT

RB JJ

NN
START 0.4

0.05

0.95
0.2

0.6

0.25

0.15

0.05

What about words?

11/12/2024 22

 So, DT JJ NN is a highly probable tag sequence, but ultimately the
overall probability should also be about the word sequence:

 the happy girl, the stupendous giraffe, a bright/bad cold

▪ Additionally, each state
generates tokens (words)
with certain probability.

girl

giraffe

platypus

altitude

0.02

0.001

0.00001

0.002

0.45

0.1

0.6

0.3

0.6

DT

RB JJ

NN
START 0.4

0.05

0.95
0.2

0.6

0.25

0.15

0.05

HMM: transition (POS) + generation (word)

11/12/2024 23

 So, DT JJ NN is a highly probable tag sequence, but ultimately the
overall probability should also be about the word sequence:

 the happy girl, the stupendous giraffe, a bright/bad cold

How to get
generation

probability?
Corpus.

▪ Additionally, each state
generates tokens (words)
with certain probability.

girl

giraffe

platypus

altitude

0.02

0.001

0.00001

0.002

0.45

0.1

0.6

0.3

0.6

DT

RB JJ

NN
START 0.4

0.05

0.95
0.2

0.6

0.25

0.15

0.05

HMM: in a nutshell

11/12/2024 24

 POS tagging using a HMM means:

 Given the word sequence w1 w2 w3 … wn

 Find the tag sequence T1 T2 T3 … Tn such that the probability of the
particular word sequence occurring with the tag sequence is
maximized.

 arg max
T1 T2 T3 … Tn

p(T1 T2 T3 … Tn, w1 w2 w3 … wn)

 Algorithms exist that effectively compute this. (We will not get into
them.)

HMM is built on probabilistic FSA

11/12/2024 25

 Given DT as the current tag, what's the likelihood of:

 NN ('the question')

 JJ ('the happy girl')

 RB ('the very happy girl')

0.1

0.6

0.3

0.6

DT

RB JJ

NN
START 0.4

0.05

0.95
0.2

0.45

0.6

0.25

0.15

0.05

Which tag sequence is
most likely:
• DT NN JJ
• NN JJ RB
• RB JJ NN
• DT JJ NN

HMM's POS tag
transition model is a

probabilistic FSA!
(with no arc labels)

HMM: transition (POS) + generation (word)

11/12/2024 26

 HMM combines POS tag sequence probability (DT → JJ → NN → …) and
the probability of certain words occurring with a POS (given DT tag, 'the'
is 0.7 likely, and 'a' 0.23…)

▪ Each state generates
tokens (words) with a
certain probability.

girl

giraffe

platypus

altitude

0.02

0.001

0.00001

0.002

the a an
0.7

0.23 0.04

0.1

0.6

0.3

0.6

DT

RB JJ

NN
START 0.4

0.05

0.95
0.2

0.45

0.6

0.25

0.15

0.05

Markov model (Markov chain)

11/12/2024 27

 A finite state machine with probabilistic state transitions.

 Makes Markov assumption that the next state only depends on the
current state and is independent of previous history.

 Hidden Markov Model (HMM): the states (POS tags) are in fact hidden
from the view; the only observable events are the sequence of
emitted symbols (words).

NLTK's HMM package is
nltk.tag.hmm

The NLTK book does not cover HMM.
For details, see J&M.

Verb or noun?

11/12/2024 28

Secretariat is expected to race tomorrow

NNP VBZ VBN TO
VB
NN

NR

*Penn Treebank tagset.

Resolving tag ambiguities in HMM

11/12/2024 29

0.0006

0.0006

0.2

0.2

0.83

0.0047

0.0027

0.0012

0.00012

0.00057

Resolving tag ambiguities in HMM

11/12/2024 30

0.0006

0.0006

0.2

0.2

0.83

0.0047

0.0027

0.0012

0.00012

0.00057

All arcs have same
probabilities except
for the RED ones!

Therefore, only the red arcs
matter when comparing the

global probabilities of the two
word/tag sequences.

HMM optimizes for global likelihood

11/12/2024 31

0.0006

0.0006

0.2

0.2

0.83

0.0047

0.0027

0.0012

0.00012

0.00057

0.0047*0.00057*0.0012 = 0.00000000032

0.83*0.00012*0.0027 = 0.00000027

POS taggers: state-of-the-art

11/12/2024 32

Below are some well-known POS taggers from various research
groups:

 The Stanford POS Tagger

 CLAWS POS Tagger (uses the CLAWS tagset)

 Brill Tagger

 A list of state-of-the-art taggers on ACL web; they commonly use the
Penn Treebank Wall Street Journal corpus

https://nlp.stanford.edu/software/tagger.shtml
http://ucrel.lancs.ac.uk/claws/
https://cst.dk/online/pos_tagger/uk/index.html
https://aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)
https://catalog.ldc.upenn.edu/LDC2015T13

Syntactic trees

11/12/2024 33

 Demo + lecture, in HTML document

 https://sites.pitt.edu/~naraehan/ling1330/lecture21.html

https://sites.pitt.edu/~naraehan/ling1330/lecture21.html

Wrapping up

11/12/2024 34

 Next class:
 Continue with syntactic trees and parsing

 NLTK book: 7.4.2 Trees, Ch.8 Analyzing Sentence Structure

 Exercise 10 out
 Getting started with trees

 Tomorrow: PyLing
 6pm, 2818 CL

 About "prompt engineering", by Maya Asher

 Final exam schedule!
 12/12 (Thu) 4-5:50pm

 At LMC's PC lab (G17 CL)

http://www.nltk.org/book/ch07.html#trees
http://www.nltk.org/book/ch08.html

	Slide 1: Lecture 21: Advanced POS Taggers, Trees
	Slide 2: Overview
	Slide 3: Homework 7
	Slide 4: Performance
	Slide 5: Performance: even better?
	Slide 6: Regular expression tagger as t0
	Slide 7: New tagger performance
	Slide 8: How n-gram taggers work
	Slide 9: 'cold': adjective or noun?
	Slide 10: 'cold': adjective or noun?
	Slide 11: 'cold': adjective or noun?
	Slide 12: So: three POS tags
	Slide 13: So: three POS tags
	Slide 14: n-gram tagger: limitations?
	Slide 15: Global optimization of tags
	Slide 16: Evaluating a tagger
	Slide 17: Advanced POS taggers
	Slide 18: Probabilistic sequence models
	Slide 19: Markov model (Markov chain)
	Slide 20: Simple Markov Model for POS
	Slide 21: Simple Markov Model for POS
	Slide 22: What about words?
	Slide 23: HMM: transition (POS) + generation (word)
	Slide 24: HMM: in a nutshell
	Slide 25: HMM is built on probabilistic FSA
	Slide 26: HMM: transition (POS) + generation (word)
	Slide 27: Markov model (Markov chain)
	Slide 28: Verb or noun?
	Slide 29: Resolving tag ambiguities in HMM
	Slide 30: Resolving tag ambiguities in HMM
	Slide 31: HMM optimizes for global likelihood
	Slide 32: POS taggers: state-of-the-art
	Slide 33: Syntactic trees
	Slide 34: Wrapping up

