
Lecture 3: Unicode,

Text Processing with NLTK

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 9/5/2023

Objectives

 NLTK intro: text processing

 NLTK functions

 File IO: opening and processing a text file

 L&C ch.1: Understand the fundamentals of how language is
encoded on a computer

 Unicode!

9/5/2023 2

Getting started with NLTK book

9/5/2023 3

 NLTK Book, with Na-Rae's navigation panel:

 https://sites.pitt.edu/~naraehan/ling1330/nltk_book.html

 NLTK Book, without:

 https://www.nltk.org/book/

 Chapter 1. Language Processing and Python

 https://www.nltk.org/book/ch01.html

 Chapter 2. Accessing Text Corpora and Language Resources

 https://www.nltk.org/book/ch02.html

https://sites.pitt.edu/~naraehan/ling1330/nltk_book.html
https://www.nltk.org/book/
https://www.nltk.org/book/ch01.html
https://www.nltk.org/book/ch02.html

Install NLTK and NLTK data

9/5/2023 4

 NLTK (Mac): https://sites.pitt.edu/~naraehan/python3/faq.html#Q-install-nltk-mac

 NLTK (Win): https://sites.pitt.edu/~naraehan/python3/faq.html#Q-install-nltk-win

 NLTK data: https://sites.pitt.edu/~naraehan/python3/faq.html#Q-nltk-download

 Test to confirm everything works:

https://sites.pitt.edu/~naraehan/python3/faq.html#Q-install-nltk-mac
https://sites.pitt.edu/~naraehan/python3/faq.html#Q-install-nltk-win
https://sites.pitt.edu/~naraehan/python3/faq.html#Q-nltk-download

NLTK's tokenizer

9/5/2023 5

>>> import nltk
>>> nltk.word_tokenize('Hello, world!’)
 ['Hello', ',', 'world', '!']
>>> nltk.word_tokenize("I haven't seen Star Wars.")
 ['I', 'have', "n't", 'seen', 'Star', 'Wars', '.']
>>> nltk.word_tokenize("It's 5 o'clock. Call Ted...!")
 ['It', "'s", '5', "o'clock", '.', 'Call', 'Ted', '...', '!']

>>> rose = 'Rose is a rose is a rose is a rose.'
>>> nltk.word_tokenize(rose)
 ['Rose', 'is', 'a', 'rose', 'is', 'a', 'rose', 'is', 'a', 'rose', '.']
>>> rtoks = nltk.word_tokenize(rose)
>>> rtoks
 ['Rose', 'is', 'a', 'rose', 'is', 'a', 'rose', 'is', 'a', 'rose', '.']
>>> type(rtoks)
 <class 'list'>

No lowercasing,
n't, o'clock a word

Good-old list type.

nltk.word_tokenize()

NLTK and frequency counts

9/5/2023 6

>>> rfreq = nltk.FreqDist(rtoks)
>>> rfreq
 FreqDist({'rose': 3, 'a': 3, 'is': 3, 'Rose': 1, '.': 1})

>>> rfreq['is']
 3
>>> rfreq.keys()
 dict_keys(['Rose', 'is', 'a', 'rose', '.'])
>>> rfreq.values()
 dict_values([1, 3, 3, 3, 1])
>>> rfreq.items()
 dict_items([('Rose', 1), ('is', 3), ('a', 3), ('rose', 3), ('.', 1)])

>>> sorted(rfreq)
 ['.', 'Rose', 'a', 'is', 'rose']
>>> type(rfreq)
 <class 'nltk.probability.FreqDist'>

FreqDist works very much
like a dictionary…

nltk.FreqDist()

… but it's NLTK's own
custom data type!

word types

NLTK's functions, text processing pipeline

9/5/2023 7

'Rose is a rose is a rose is a rose.'

['Rose', 'is', 'a', 'rose',

'is', 'a', 'rose', 'is',

'a', 'rose', '.']

FreqDist({'rose': 3,

'a': 3, 'is': 3,

'Rose': 1, '.': 1})

['.', 'Rose', 'a',

'is', 'rose']

nltk.word_tokenize()

nltk.FreqDist() sorted()

sorted()

set() {'is', 'rose', '.', 'a',

'Rose'}

FreqDist can do much more

9/5/2023 8

>>> dir(rfreq)
 ['B', 'N', 'Nr', '__add__', '__and__', '__class__', … 'clear', 'copy’,
 'elements', 'freq', 'fromkeys', 'get', 'hapaxes', 'items', 'keys', 'max’,
 'most_common', 'pformat', 'plot', 'pop', 'popitem', 'pprint', 'r_Nr’,
 'setdefault', 'subtract', 'tabulate', 'unicode_repr', 'update', 'values']
>>> rfreq.hapaxes()
 ['Rose', '.']
>>> rfreq.tabulate()
 rose a is Rose .
 3 3 3 1 1
>>> rfreq.most_common(2)
 [('a', 3), ('is', 3)]
>>> rfreq['platypus’]
 0
>>> rfreq.plot()

nltk.FreqDist
comes with additional

handy methods!

No "key not found" error!
Defaults to 0.

Graph window
pops up

>>> rfreq.max()
 'a'
>>> rfreq['is’]
 3
>>> rfreq.freq('is’)
 0.2727272727272727

Relative frequency
(= probability)

Practice: Gettysburg Address

9/5/2023 9

Process the famous Gettysburg Address:
https://sites.pitt.edu/~naraehan/python3/gettysburg_address.txt

 Tasks:
 Save the text file in your usual script directory

 Open the file in IDLE shell, read in the string
content, then close. Examine the raw text: how
many characters?

 Tokenize, and then examine: how many word
tokens? How many unique word types?

 Build a frequency distribution of word tokens. How
many tokens of 'people'? What are the most
common word types?

15 minutes

nltk.word_tokenize()
sorted()

nltk.FreqDist()
.most_common()
.tabulate()

https://sites.pitt.edu/~naraehan/python3/gettysburg_address.txt

9/5/2023 10

File referencing using the full
path + name (Windows)

More on File Path and CWD:
https://sites.pitt.edu/~naraehan/python3
/file_path_cwd.html

https://sites.pitt.edu/~naraehan/python3/file_path_cwd.html
https://sites.pitt.edu/~naraehan/python3/file_path_cwd.html

File IO: file path vs. CWD

9/5/2023 11

If my CWD is "Documents"
(one level up), then I have to

start the file reference from the
"ling1330" folder.

My CWD is my script folder
where the text file is.

I can reference the file with the
file name only!

Hit TAB for file
name

completion.

The ASCII chart

9/5/2023 12

 https://en.wikipedia.org/wiki/ASCII

Decimal Binary (7-bit) Character

0 000 0000 (NULL)

… … …

35 010 0011 #

36 010 0100 &

… … …

48 011 0000 0

49 011 0001 1

50 011 0010 2

… … …

Decimal Binary (7-bit) Character

65 100 0001 A

66 100 0010 B

67 100 0011 C

… … …

97 110 0001 a

98 110 0010 b

99 110 0011 c

… … …

127 111 1111 (DEL)

https://en.wikipedia.org/wiki/ASCII

ASCII (the American Standard Code for Information Interchange)

9/5/2023 13

 The ASCII encoding scheme

 First published in 1963

 Uses 7-bit code (= 128 characters) for storing English text, ranging from 0
to 127

 In an 8-bit (1 byte) representation, the highest bit is always 0

 Printable characters

 Upper and lower case roman alphabet

 Digits

 Punctuation marks, symbols, and space

 Includes 32 non-printing characters

 Control characters: BELL, ACKNWOLEDGE, BACKSPACE, DELETE, etc. → originally for
typewriters, many obsolete now

 WHITESPACE characters: TAB, LINE FEED, CARRIAGE RETURN

Practice

9/5/2023 14

 What is this English text?

 Note: byte (=8-bit) ASCII representation instead of 7-bit

 Space provided for your convenience only!

 Answer:

 Hi!

01001000 01101001 00100001

Extending ASCII: ISO-8859, etc.

9/5/2023 15

 ASCII (=7 bit, 128 characters) was sufficient for encoding English.
But what about characters used in other languages?

 Solution: Extend ASCII into 8-bit (=256 characters) and use the
additional 128 slots for non-English characters

 ISO-8859: has 16 different implementations!

 ISO-8859-1 aka Latin-1: French, German, Spanish, etc.

 ISO-8859-7 Greek alphabet

 ISO-8859-8 Hebrew alphabet

 JIS X 0208: Japanese characters

 Problem: overlapping character code space.

 224dec means à in Latin-1 but א in ISO-8859-8!

https://en.wikipedia.org/wiki/ISO/IEC_8859-1
https://en.wikipedia.org/wiki/ISO/IEC_8859-7
https://en.wikipedia.org/wiki/ISO/IEC_8859-8

Unicode

9/5/2023 16

 A character encoding standard developed by the Unicode
Consortium

 Provides a single representation for all world's writing systems

 "Unicode provides a unique number for every character, no matter
what the platform, no matter what the program, no matter what the
language.”

 (https://www.unicode.org)

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/

How big is Unicode?

9/5/2023 17

 Version 15.0.0 (2022) has codes for 149,186 characters

 Full Unicode standard uses 32 bits (4 bytes) : it can represent 232 =
4,294,967,296 characters!

 In reality, only 21 bits are needed

 Unicode has three encoding versions

 UTF-32 (32 bits/4 bytes): direct representation

 UTF-16 (16 bits/2 bytes)

 UTF-8 (8 bits/1 byte)

https://www.unicode.org/versions/Unicode15.0.0/

8-bit, 16-bit, 32-bit

9/5/2023 18

 UTF-32 (32 bits/4 bytes): direct representation

 UTF-16 (16 bits/2 bytes): 216=65,536 possibilities

 UTF-8 (8 bits/1 byte): 28=256 possibilities

 Wait! But how do you represent all of 232 (=4 billion) code points
with only one byte (UTF-8: 28 =256 slots)?

 You don't.

 In reality, only 221 bits are ever utilized for 144K characters.

 UTF-8 and UTF-16 use a variable-width encoding.

 Why UTF-16 and UTF-8?

 They are more compact (more so for certain languages, i.e., English)

Variable-width encoding

9/5/2023 19

 UTF-8 as a variable-width encoding

 ASCII characters get encoded with just 1 byte

 ASCII is originally 7-bits, so the highest bit is always 0 in an 8-bit encoding

 All other characters are encoded with multiple (2-4) bytes

 How to tell? The highest bit is used as a flag.

 Highest bit 0: single character

 Highest bit 1: part of a multi-byte character

 Advantage for English: 8-bit ASCII is already a valid UTF-8!

01001000 11001001 10001000 01101001 01101001

 'H' as 1 byte (8 bits):
 cf. 'H' as 2 bytes (16 bits):
 as 4 bytes (32 bits):

01001000

0000000001001000

É

0000000000000000000000000000000001001000

9/5/2023 20

 https://www.twilio.com/docs/glossary/what-utf-8

If lead unit starts with
1110, means two following
bytes belong to multi unit

https://www.twilio.com/docs/glossary/what-utf-8

Wrap-up

9/5/2023 21

 Exercise #3 out

 Due Thursday morning, on Canvas

 Next class (Thu):
 Spell checking

 More on NLTK

 Review the NLTK Book, chapters 1 through 3.

	Slide 1: Lecture 3: Unicode, Text Processing with NLTK
	Slide 2: Objectives
	Slide 3: Getting started with NLTK book
	Slide 4: Install NLTK and NLTK data
	Slide 5: NLTK's tokenizer
	Slide 6: NLTK and frequency counts
	Slide 7: NLTK's functions, text processing pipeline
	Slide 8: FreqDist can do much more
	Slide 9: Practice: Gettysburg Address
	Slide 10
	Slide 11: File IO: file path vs. CWD
	Slide 12: The ASCII chart
	Slide 13: ASCII (the American Standard Code for Information Interchange)
	Slide 14: Practice
	Slide 15: Extending ASCII: ISO-8859, etc.
	Slide 16: Unicode
	Slide 17: How big is Unicode?
	Slide 18: 8-bit, 16-bit, 32-bit
	Slide 19: Variable-width encoding
	Slide 20
	Slide 21: Wrap-up

