
Lecture 4: Unicode,

spell checkers, more NLTK

Ling 1330/2330 Computational Linguistics

Na-Rae Han, 9/7/2023

Objectives

 Unicode wrap up

 L&C ch.2: Writers aids, spell checkers
 Discuss design aspects and challenges in building "writers' aids"

applications

 Types of "writers' aids" utilities

 Types of errors

 Spell checkers
 Edit distance

 More on NLTK: text processing
 NLTK functions

 List comprehension (part 1)

9/7/2023 2

A look at Unicode chart

9/7/2023 3

 How to find your Unicode character:

 https://www.unicode.org/standard/where/

 https://www.unicode.org/charts/

 Basic Latin (ASCII)

 https://www.unicode.org/charts/PDF/U0000.pdf

http://www.unicode.org/standard/where/
https://www.unicode.org/standard/where/
http://www.unicode.org/standard/where/
https://www.unicode.org/charts/
https://www.unicode.org/charts/PDF/U0000.pdf

9/7/2023 4

Code point
for M.

But "004D"?

Another representation: hexadecimal

9/7/2023 5

Hexadecimal (hex) = base-16

 Utilizes 16 characters: 0 1 2 3 4 5 6 7 8 9 A B C D E F

 Designed for human readability & easy byte conversion
 24=16: 1 hexadecimal digit is equivalent to 4 bits

 1 byte (=8 bits) is encoded with just 2 hex chars!

 Unicode characters are usually referenced by their hexadecimal code

 Lower-number characters go by their 4-char hex codes (2 bytes), e.g. U+004D
("M", U+ designates Unicode)

 Higher-number characters go by 5 or 6 hex codes, e.g. U+1D122
(https://www.unicode.org/charts/PDF/U1D100.pdf)

Letter Base-10
(decimal)

Base-2
(binary)

Base-16
(hex)

M 77 0000 0000 0100 1101 004D

https://www.unicode.org/charts/PDF/U1D100.pdf

Looking up Unicode by hex code

9/7/2023 6

Are we now living in the Unicode Utopia?

9/7/2023 7

 Not yet!

 Every OS supports Unicode, but some don't use it as its system-
default encoding system ("code page").

 Mac OS X uses UTF-8 as its default encoding
 Filename, paths are in UTF-8. Text files will be created in UTF-8 encoding

by default.

 Windows, however, uses CP-1252 (aka Windows-1252, aka ANSI)
as the OS's default encoding system.
 ANSI is similar to ISO-8859-1 (=Latin1) but differs in some characters,

symbols (such as curly "smart" quotes).

 Be careful when handling text files: you want to check the character
encoding setting, manually change to UTF-8 if needed.

 Another issue with Windows: uses "\r\n" as new line (instead of "\n")

Writers' aids in the wild

9/7/2023 8

 What types of NLP-based writing helper utilities are available?

 Spell checkers

 Grammar checkers

 Built-in dictionaries & thesauri

 Predictive text writing (“next word prediction”)

 Anything else?

 What works well and what doesn't?

How spell checkers operate 1

9/7/2023 9

 Real-time spell checkers

 Spell checker detects errors as you type.

 May make suggestions for correction

 → Writer can accept or reject them

 Some systems auto-correct without your approval

 → Predominantly on mobile platform

 Must run in background, requires a "real-time"
response – system must be light and fast

bright, birth, broth,
births, brat

How spell checkers operate 2

9/7/2023 10

 Global spell checkers

 You run a checker on the whole document or a set region

 System has access to wider context (the whole paragraph, etc.)

 It finds errors and corrects them, often automatically

 A human may or may not proofread results afterwards

 Adaptive spell checkers

 "Learns" the language of the user, adjust lexicon/rules

 Manual: User has the option to add or remove from the lexicon

 Automatic: adjust lexicon and rules in the background. Often uses
context and statistical data.

  Modus operandi of most mobile platform

Detection vs. correction

9/7/2023 11

 There are two distinct tasks:

 Error detection

  Simply find the misspelled words

 Error correction

  Correct the misspelled words (or: provide suggestions)

It is EASY to tell that briht is a misspelled word;

 But what is the CORRECT word?

 bright? birth? births? brat?

 Why not Brit or brought?

  We need a way to measure the degree of similarity between source
and target words

Measure of string similarity

9/7/2023 12

 How is a mistyped word related to the intended?

 Types of errors

 Insertion: A letter has been added to a word

 ex. "arguement" instead of "argument"

 Deletion: A letter has been omitted from a word

 ex. "pychology" instead of "psychology"

 Substitution: One letter has been replaced by another

 ex. "miopic" instead of "myopic"

 Transposition: Two adjacent letters have been switched

 ex. "concsious" instead of "conscious"

Minimum edit distance

9/7/2023 13

 In order to rank possible spelling corrections, it is useful to calculate
the minimum edit distance (= minimum number of operations it
would take to convert word1 to word2).

 Edit distance; also known as Levenshtein distance (without Transposition)

 Example: briht

 bright? birth? births? brat? Brit? brought?

briht → bright

briht → brit

briht → birth

briht → brunt

briht → brat

briht → brought

(1 insertion)

(1 deletion)

(2 transpositions)

(2 substitutions)

(1 substitution + 1 deletion = 2)

(1 substitution + 2 insertions = 3)

NOT
2 deletions &
2 insertions!

https://en.wikipedia.org/wiki/Edit_distance

Minimum edit distance: is that enough?

9/7/2023 14

 Example: briht

bright? birth? births? brat? Brit? brought?

briht → bright

briht → brit

briht → birth

briht → brunt

briht → brat

briht → brought

(1 insertion)

(1 deletion)

(2 transpositions)

(2 substutitions)

(1 substitution + 1 deletion = 2)

(1 substitution + 2 insertions = 3)

 Any other considerations in ranking these candidates?
 word frequency
 context
 probability of error type
 keyboard layout

Increasingly important as
spell checkers grow more

intelligent

Review: Exercise 3

9/7/2023 15

Process The Gift of the Magi by O. Henry

 Tokens?

 Types?

 Frequent types?

 How to sort a frequency dictionary?

 Common pitfalls: Shell vs. Script context

 Related to: Returned value vs. printed output

5 minutes

You should REVIEW
the ANSWER KEY!

Don’t be shy!

9/7/2023 16

Shell: great for exploration. Not
much need for print() function.

Script: you need print()
for visible output.

Returned value vs. Printed output

9/7/2023 17

Returned value:
visible only in Shell

Printed output
(also: returns null value)

 Also see:
https://sites.pitt.edu/~naraehan/python3/user_defined_functions.html

https://sites.pitt.edu/~naraehan/python3/user_defined_functions.html

Back to NLTK: text processing pipeline

9/7/2023 18

'Rose is a rose is a rose is a rose.'

['Rose', 'is', 'a', 'rose',

'is', 'a', 'rose', 'is',

'a', 'rose', '.']

FreqDist({'rose': 3,

'a': 3, 'is': 3,

'Rose': 1, '.': 1})

['.', 'Rose', 'a',

'is', 'rose']

nltk.word_tokenize()

nltk.FreqDist() sorted()

sorted()

set() {'is', 'rose', '.', 'a',

'Rose'}

Sentence tokenization

9/7/2023 19

>>> foo = 'Hello, earthlings! I come in peace. Take me to your
 leader.'
>>> nltk.sent_tokenize(foo)
 ['Hello, earthlings!', 'I come in peace.', 'Take me to your
 leader.']
>>> sents = nltk.sent_tokenize(foo)
>>> sents[0]
 'Hello, earthlings!'
>>> sents[1]
 'I come in peace.'
>>> sents[-1]
 'Take me to your leader.'
>>> len(sents)
 3 Total number of

sentences

nltk.sent_tokenize()
takes a text string,

returns a list of sentences
as strings.

Practice: sentence tokenization

9/7/2023 20

>>> foo = 'Hello, earthlings! I come in peace. Take me to your
 leader.'
>>> nltk.sent_tokenize(foo)
 ['Hello, earthlings!', 'I come in peace.', 'Take me to your
 leader.']
>>> sents = nltk.sent_tokenize(foo)
>>> sents[0]
 'Hello, earthlings!'
>>> sents[1]
 'I come in peace.'
>>> sents[-1]
 'Take me to your leader.'
>>> len(sents)
 3 Total number of

sentences

nltk.sent_tokenize()
takes a text string,

returns a list of sentences
as strings.

1 minute

Sentence and word tokenization

9/7/2023 21

>>> for s in sents:
... nltk.word_tokenize(s)
...
 ['Hello', ',', 'earthlings', '!']
 ['I', 'come', 'in', 'peace', '.']
 ['Take', 'me', 'to', 'your', 'leader', '.’]

>>> toksents = []
>>> for s in sents:
... toksents.append(nltk.word_tokenize(s))
...
>>> toksents
 [['Hello', ',', 'earthlings', '!'], ['I', 'come', 'in', 'peace', '.'],
 ['Take', 'me', 'to', 'your', 'leader', '.']]

>>> foo
 'Hello, earthlings! I come in peace. Take me to your leader.'
>>> nltk.word_tokenize(foo)
 ['Hello', ',', 'earthlings', '!', 'I', 'come', 'in', 'peace', '.',
 'Take', 'me', 'to', 'your', 'leader', '.']

A list of lists!

word-tokenizing
individual sentences

cf. a FLAT list of word tokens

Using list comprehension

9/7/2023 22

>>> sents
 ['Hello, earthlings!', 'I come in peace.', 'Take me to your leader.']
>>> for s in sents:
... print(s, len(s))
...
 Hello, earthlings! 18
 I come in peace. 16
 Take me to your leader. 23

>>> [len(s) for s in sents]
 [18, 16, 23]
>>> [s.upper() for s in sents]
 ['HELLO, EARTHLINGS!', 'I COME IN PEACE.', 'TAKE ME TO YOUR LEADER.']
>>> [s.split() for s in sents]
 [['Hello,', 'earthlings!'], ['I', 'come', 'in', 'peace.'], ['Take', 'me',
 'to', 'your', 'leader.']]
>>> [nltk.word_tokenize(s) for s in sents]
 [['Hello', ',', 'earthlings', '!'], ['I', 'come', 'in', 'peace', '.'],
 ['Take', 'me', 'to', 'your', 'leader', '.']]

List comprehension!
Better than for loop

Voila!

Practice: list comprehension

9/7/2023 23

>>> sents
 ['Hello, earthlings!', 'I come in peace.', 'Take me to your leader.']
>>> for s in sents:
... print(s, len(s))
...
 Hello, earthlings! 18
 I come in peace. 16
 Take me to your leader. 23

>>> [len(s) for s in sents]
 [18, 16, 23]
>>> [s.upper() for s in sents]
 ['HELLO, EARTHLINGS!', 'I COME IN PEACE.', 'TAKE ME TO YOUR LEADER.']
>>> [s.split() for s in sents]
 [['Hello,', 'earthlings!'], ['I', 'come', 'in', 'peace.'], ['Take', 'me',
 'to', 'your', 'leader.']]
>>> [nltk.word_tokenize(s) for s in sents]
 [['Hello', ',', 'earthlings', '!'], ['I', 'come', 'in', 'peace', '.'],
 ['Take', 'me', 'to', 'your', 'leader', '.']]

3 minutes

Syntax:
 [f(x) for x in mylist]

Wrap up

9/7/2023 24

 Homework #1 out

 Spell checkers, corpus processing

 Next class (Tue):

 Spell checkers review

 n-gram context

 n-gram resource on the web

 more on list comprehension

 Review the NLTK Book, chapters 1 through 3.

	Slide 1: Lecture 4: Unicode, spell checkers, more NLTK
	Slide 2: Objectives
	Slide 3: A look at Unicode chart
	Slide 4
	Slide 5: Another representation: hexadecimal
	Slide 6: Looking up Unicode by hex code
	Slide 7: Are we now living in the Unicode Utopia?
	Slide 8: Writers' aids in the wild
	Slide 9: How spell checkers operate 1
	Slide 10: How spell checkers operate 2
	Slide 11: Detection vs. correction
	Slide 12: Measure of string similarity
	Slide 13: Minimum edit distance
	Slide 14: Minimum edit distance: is that enough?
	Slide 15: Review: Exercise 3
	Slide 16
	Slide 17: Returned value vs. Printed output
	Slide 18: Back to NLTK: text processing pipeline
	Slide 19: Sentence tokenization
	Slide 20: Practice: sentence tokenization
	Slide 21: Sentence and word tokenization
	Slide 22: Using list comprehension
	Slide 23: Practice: list comprehension
	Slide 24: Wrap up

