Lecture 6: N-grams and
Conditional Probability

Ling 1330/2330 Computational Linguistics
Na-Rae Han, 9/14 /2023

Objectives

» Exercise #4 review
+ Unigram frequency
+ Bigram frequency
+ So many data objects!

» Bigrams vs. conditional probability

» NLTK
* nltk.ConditionalFregDist:
< Conditional frequency distribution

9/14/2023

Exercise #4 review

» https://sites.pitt.edu/~naraehan/ling1330/ex4.html

» Many different data object types!
€ You must keep close tabs.
raw text (str type)
word tokens (1ist type)
word types (either 1ist or set)
word frequency distribution (n1ltk.FregDist)

+ key: word, value: frequency count

> w N

5. bigrams (generator type, you can cast it intoa 1ist)

6. bigram frequency distribution (n1tk.FregDist)
+ key: (w1, w2), value: frequency count

9/14/2023

https://sites.pitt.edu/~naraehan/ling1330/ex4.html

Exercise #4
» Pickling. What is the point?

» Shell crashing! Squeezing! Best practices?

+ Edit out big flashed chunks from your shell file before submission along with
errors that aren't helpful. Your submission is also your notes for future
reference!

» This way or tokenizing is not ideal. Why?
+ etoks = nltk.word tokenize(etxt.lower())

» Working with complex data types (bigrams in particular)

» Membership test and data type:
¢+ x in list vs. X 1n set
€ One of them is much more efficient. Which?

» Surprise! Looping through (=list-comprehending) NLTK's FregDist already
follows a default order: from most frequent to least

9/14/2023

In the latest NLTK

>>> efreq['so'] version, sograms
968 is already sorted
>>> sograms = [gram for gram in e2gramfd if gram[@]=='so'] by frequency!
>>> sorted(sograms, key=e2gramfd.get, reverse=True)[:10]
[("so’, 'much®), ('so’, ‘very'), ('so’, ',"), ('so’, 'well'),
('so', 'many'), ('so', 'long'), ('so', '."), ('so', 'little'),
(‘so’, 'far’), ('so’, '1")]
>>> for gram in sograms[:10]: So, sorting is not necessary.
print(gram, e2gramfd[gram]) We can just use sograms[:10]
('so', 'much') 98
('so', 'very') 83
('so', ',') 34
('so', 'well') 31
('so', 'many') 29
('so', 'long') 27
('so', '.") 21
('so', 'little') 20
('so', 'far') 19
('so', "'"i') 18
>>> e2gramfd.freq(('so', 'well"))
0.00016164354990092815
9/14/2023 5

>>>

>>>
>>>

>>>

>>>

efreq['so']

968

sograms = [gram for gram in e2gramfd if gram[@]=='so']
sorted(sograms, key=e2gramfd.get, reverse=True)[:10]
[("so’,

('so',
('so',

for gram in sograms|[:10]:
print(gram, e2gramfd[gram])

('so',
('so',
('so’',
('so’',
('so’',
('so’',
('so’',
('so’',
('so’,
('so’,

e2gramfd.freq(('so', ‘well"))
0.00016164354990092815

'much'), ('so', 'very'), ('so', ','), ('so', 'well'),
'many'), ('so', 'long'), ('so', '."), ('so', 'little'),
“far'), ("so’, 'i")]

"much') 98

'very') 83 Jane Austen just typed in 'so’.

') 34 What is the probability of

well®) 31 'well' being her next word?

"many’) 29

:1?;32 27 This is conditional probability:
‘little') 20 Condltlon: so'
‘far') 19 Outcome: 'well

'i') 18

Nope, this is not it.
(Why?)

9/14/2023

>>>

>>>
>>>

>>>

>>>

efreq['so']
968
sograms = [gram for gram in e2gramfd if gram[@]=='so']
sorted(sograms, key=e2gramfd.get, reverse=True)[:10]
[("so’, 'much’), ('so’, ‘very'), ('so’, *,"), ('so’, 'well’),
('so', 'many'), ('so', 'long'), ('so', '."), ('so', 'little'),
(‘so’, 'far’), ('so’, 'i")]
for gram in sograms|[:10]:

print(gram, e2gramfd[gram])

('so', 'much') 98
('so', 'very') 83 Jane Austen just typed in 'so’.
(‘so', ',") 34 What is the probability of
(‘so’, ‘well®) 31 'well' being her next word?
('so', 'many') 29
('so', 'long') 27
('so', '.") 21 ey
("so', 'little') 20 Condltlon; so'
(*so', 'far') 19 Outcome: 'well
('so', "'"i') 18
e2gramfd.freq(('so', ‘well"))
0.00016164354990092815

Answer:
31 /968 =0.032

9/14/2023

This is conditional probability:

nltk.ConditionalFregDist

» Builds on FregDist as a conditional frequency distribution.

>>> e2grams[-10:]
[('fully', 'answered'), ('answered', 'in'), ('in', 'the'),
('the', 'perfect'), ('perfect', 'happiness'), ('happiness',
‘of'), ('of', 'the'), ('the', 'union'), (‘'union', '."), ('.',

"finis')]
>>> e2gramcfd = nltk.ConditionalFregDist(e2grams) Builds from bigrams
|
>>> e2gramcfd['so'] Key: wil, Value: FreqDist of w2
FregDist({'much': 98, 'very': 83, ',': 34, 'well': 31, 'many':
29, 'long': 27, '.': 21, 'little': 20, 'far': 19, 'i': 18, ...})

>>> e2gramcfd['so']['well"]
31

>>> e2gramcfd['so’'].freq('well")
0.03202479338842975

Lookup w1, then w2 on returned FregDist

Conditional probability of

'‘well' following 'so’
9/14/2023 8

Bad weather vs. Pitt

» ConditionalFreqgDist: its keys are "conditions", and values are
their respective frequency distribution FregDist.

» Built from a list of (condition, outcome) tuples.

>>>

>>>
>>>

>>>

>>>

school = [('rain', ‘'open'), ('rain’, ‘open'), ('rain', ‘'open'),
('rain', 'open'), ('rain', 'closed'), ('snow', ‘'closed'), ('snow’,
"closed'), ('snow', 'open'), ('snow', ‘'open'), ('snow', 'closed'),
('blizzard', 'closed'), ('blizzard', 'closed')]

school cfd = nltk.ConditionalFreqgDist(school)

school cfd.keys()

dict keys(['snow', 'blizzard', 'rain'])

school cfd.values()

dict values([FregDist({'closed': 3, 'open': 2}), FregDist({'closed':
2}), FregDist({'open': 4, 'closed': 1})])
school cfd.conditions()

['snow', 'blizzard', 'rain']

9/14/2023

Bad weather vs. Pitt

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

school cfd[' 'snow']
FreqDist({'closed': 3, 'open': 2})
school cfd['snow']['closed’]
3
school cfd['snow']['open']
2
school cfd['snow'].freq('open')
0.4
school cfd['blizzard']
FregDist({'closed': 2})
school cfd['blizzard']['closed’]
2
school cfd['blizzard']['open']
0
school cfd.tabulate()
closed open

blizzard 2 %)

rain 1 4

Snow 3 2

Conditional probability
of Pitt opening (outcome)
when it snows (condition)

9/14/2023

10

A bit of background

» P(A): the probability of A occurring

+ P(snow): the probability of having a snowy weather.
» P(A|B): Conditional probability
the probability of A occurring, given that B has occurred

* P(close|snow): given a snowy weather, the probability of Pitt closing.
+ P(snow]|close): given Pitt's closure, the probability of the day being snowy.

» P(A, B): Joint probability
the probability of A occurring and B occurring
+ Same as P(B, A).
+ If Aand B are independent events, same as P(A)*P(B).
If not, same as P(A|B)*P(B) and also P(B|A)*P(A).
+ P(close, snow): the probability of Pitt closing and the weather being snowy.

9/14/2023 11

bigram FD vs. CFD: very different!

>>>

>>>
>>>

>>>

>>>
>>>

>>>

>>>

e2grams[-10:]

[('fully', 'answered'), ('answered', 'in'), ('in', 'the'), ('the',
'perfect'), ('perfect', 'happiness'), ('happiness', 'of'), ('of', 'the'),
('the', 'union'), ('union', '."), ('.', 'finis')]

e2gramfd = nltk.FregDist(e2grams)

eZgr\am-Fd [('so' , 'well')] Made from the same
31 bigrams as input,
e2gramfd.freq(('so’, 'well")) but returns different
0.0001616511359903218 data objects

e2gramcfd = nltk.ConditionalFregDist(e2grams)

e2gramcfd['so']

FregDist({'much': 98, ‘'very': 83, ',': 34, 'well': 31, 'many': 29, 'long':
27, '.': 21, 'little': 20, 'far': 19, 'i': 18, ...})
e2gramcfd['so"]['well']

31 It’s important you keep tabs
e2gramcfd['so'].freq('well") on many data objects and
0.03202479338842975

their meaning!

atlanal
I/ 14

N
(@)
N
(O))
=
N

bigram FD vs. CFD: Practice

10 minutes

>>> e2grams[-10:]
[('fully', 'answered'), ('answered', 'in'), ('in',
'perfect'), ('perfect', 'happiness'), ('happiness’,
('the', 'union'), ('union', '."), ('.', 'finis')]

>>> e2gramfd = nltk.FregDist(e2grams)
>>> e2gramfd[('so’, ‘well')]
31
>>> e2gramfd.freq(('so’, 'well"))
0.0001616511359903218

>>> e2gramcfd = nltk.ConditionalFregDist(e2grams)
>>> e2gramcfd['so']
FregDist({'much': 98, ‘'very': 83, ',': 34, 'well':

"the'), ('the',
‘of'), ('of', 'the'),

Poke your object in
shell to understand its
structure!

31, 'many': 29, 'long':

27, '.': 21, 'little': 20, 'far': 19, 'i': 18, ...})

>>> e2gramcfd['so']['well"]
31

>>> e2gramcfd["so"].freq('well")
0.03202479338842975

N
@]
N
(o))

atlanal
I/ 14

13

10 minutes?ss

-

» FD vs. CFD practice

» CFD with trigrams!
+ How to build?
+ What are top words following 'so well'? How about 'of the'?

» Fun with ENABLE words

+ No vowels? Palindromes? Anagrams of 'stop'?
+ How many potential answers for Wordle?

€ Saved SHELL session posted next to the lecture PDF!

9/14/2023 14

Where are we on the NLTK Book?

» Ch.1 Language Processing and Python
* https://www.nltk.org/book/ch01.html
+ NLTK built-in functions for exploring text, Python basics

» Ch.2 Accessing Corpora and Lexical Resources
* https://www.nltk.org/book/ch02.html
+ A tour of various NLTK-loaded corpora and resources

» Ch.3 Processing Raw Text
* https://www.nltk.org/book/ch03.html
+ Basic text processing pipeline — tokenization, etc.

+ Also: regular expressions

9/14/2023

15

https://www.nltk.org/book/ch01.html
https://www.nltk.org/book/ch02.html
https://www.nltk.org/book/ch03.html

Wrap-up

» Homework #2 out
+ START EARLY! Get help earlier.

» Next class (Tue):
+ N-gram language models

» Review the NLTK Book, chapters 1 through 3.

9/14/2023

16

	Slide 1: Lecture 6: N-grams and Conditional Probability
	Slide 2: Objectives
	Slide 3: Exercise #4 review
	Slide 4: Exercise #4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: nltk.ConditionalFreqDist
	Slide 9: Bad weather vs. Pitt
	Slide 10: Bad weather vs. Pitt
	Slide 11: A bit of background
	Slide 12: bigram FD vs. CFD: very different!
	Slide 13: bigram FD vs. CFD: Practice
	Slide 14
	Slide 15: Where are we on the NLTK Book?
	Slide 16: Wrap-up

