
Lecture 6: N-grams and

Conditional Probability

Ling 1330/2330 Computational Linguistics

Na-Rae Han, 9/14/2023

Objectives

 Exercise #4 review

 Unigram frequency

 Bigram frequency

 So many data objects!

 Bigrams vs. conditional probability

 NLTK

 nltk.ConditionalFreqDist:

 Conditional frequency distribution

9/14/2023 2

Exercise #4 review

9/14/2023 3

 https://sites.pitt.edu/~naraehan/ling1330/ex4.html

 Many different data object types!

 You must keep close tabs.

1. raw text (str type)

2. word tokens (list type)

3. word types (either list or set)

4. word frequency distribution (nltk.FreqDist)

 key: word, value: frequency count

5. bigrams (generator type, you can cast it into a list)

6. bigram frequency distribution (nltk.FreqDist)

 key: (w1, w2), value: frequency count

https://sites.pitt.edu/~naraehan/ling1330/ex4.html

Exercise #4

9/14/2023 4

 Pickling. What is the point?

 Shell crashing! Squeezing! Best practices?
 Edit out big flashed chunks from your shell file before submission along with

errors that aren't helpful. Your submission is also your notes for future
reference!

 This way or tokenizing is not ideal. Why?
 etoks = nltk.word_tokenize(etxt.lower())

 Working with complex data types (bigrams in particular)

 Membership test and data type:
 x in list vs. x in set
 One of them is much more efficient. Which?

 Surprise! Looping through (=list-comprehending) NLTK's FreqDist already
follows a default order: from most frequent to least

9/14/2023 5

>>> efreq['so']
 968
>>> sograms = [gram for gram in e2gramfd if gram[0]=='so']
>>> sorted(sograms, key=e2gramfd.get, reverse=True)[:10]
 [('so', 'much'), ('so', 'very'), ('so', ','), ('so', 'well'),
 ('so', 'many'), ('so', 'long'), ('so', '.'), ('so', 'little'),
 ('so', 'far'), ('so', 'i')]
>>> for gram in sograms[:10]:
... print(gram, e2gramfd[gram])
...
 ('so', 'much') 98
 ('so', 'very') 83
 ('so', ',') 34
 ('so', 'well') 31
 ('so', 'many') 29
 ('so', 'long') 27
 ('so', '.') 21
 ('so', 'little') 20
 ('so', 'far') 19
 ('so', 'i') 18
>>> e2gramfd.freq(('so', 'well'))
 0.00016164354990092815

In the latest NLTK
version, sograms
is already sorted

by frequency!

So, sorting is not necessary.
We can just use sograms[:10]

9/14/2023 6

>>> efreq['so']
 968
>>> sograms = [gram for gram in e2gramfd if gram[0]=='so']
>>> sorted(sograms, key=e2gramfd.get, reverse=True)[:10]
 [('so', 'much'), ('so', 'very'), ('so', ','), ('so', 'well'),
 ('so', 'many'), ('so', 'long'), ('so', '.'), ('so', 'little'),
 ('so', 'far'), ('so', 'i')]
>>> for gram in sograms[:10]:
... print(gram, e2gramfd[gram])
...
 ('so', 'much') 98
 ('so', 'very') 83
 ('so', ',') 34
 ('so', 'well') 31
 ('so', 'many') 29
 ('so', 'long') 27
 ('so', '.') 21
 ('so', 'little') 20
 ('so', 'far') 19
 ('so', 'i') 18
>>> e2gramfd.freq(('so', 'well'))
 0.00016164354990092815

This is conditional probability:
Condition: 'so'

Outcome: 'well'

Nope, this is not it.
(Why?)

Jane Austen just typed in 'so'.
What is the probability of

'well' being her next word?

9/14/2023 7

>>> efreq['so']
 968
>>> sograms = [gram for gram in e2gramfd if gram[0]=='so']
>>> sorted(sograms, key=e2gramfd.get, reverse=True)[:10]
 [('so', 'much'), ('so', 'very'), ('so', ','), ('so', 'well'),
 ('so', 'many'), ('so', 'long'), ('so', '.'), ('so', 'little'),
 ('so', 'far'), ('so', 'i')]
>>> for gram in sograms[:10]:
... print(gram, e2gramfd[gram])
...
 ('so', 'much') 98
 ('so', 'very') 83
 ('so', ',') 34
 ('so', 'well') 31
 ('so', 'many') 29
 ('so', 'long') 27
 ('so', '.') 21
 ('so', 'little') 20
 ('so', 'far') 19
 ('so', 'i') 18
>>> e2gramfd.freq(('so', 'well'))
 0.00016164354990092815

This is conditional probability:
Condition: 'so'

Outcome: 'well'

Jane Austen just typed in 'so'.
What is the probability of

'well' being her next word?

Answer:
31 / 968 = 0.032

nltk.ConditionalFreqDist

9/14/2023 8

 Builds on FreqDist as a conditional frequency distribution.

>>> e2grams[-10:]
 [('fully', 'answered'), ('answered', 'in'), ('in', 'the'),
 ('the', 'perfect'), ('perfect', 'happiness'), ('happiness',
 'of'), ('of', 'the'), ('the', 'union'), ('union', '.'), ('.',
 'finis')]

>>> e2gramcfd = nltk.ConditionalFreqDist(e2grams)

>>> e2gramcfd['so']
 FreqDist({'much': 98, 'very': 83, ',': 34, 'well': 31, 'many':
 29, 'long': 27, '.': 21, 'little': 20, 'far': 19, 'i': 18, ...})

>>> e2gramcfd['so']['well']
 31
>>> e2gramcfd['so'].freq('well')
 0.03202479338842975

Builds from bigrams

Key: w1, Value: FreqDist of w2

Lookup w1, then w2 on returned FreqDist

Conditional probability of
'well' following 'so'

Bad weather vs. Pitt

9/14/2023 9

 ConditionalFreqDist: its keys are "conditions", and values are
their respective frequency distribution FreqDist.

 Built from a list of (condition, outcome) tuples.

>>> school = [('rain', 'open'), ('rain', 'open'), ('rain', 'open'),
 ('rain', 'open'), ('rain', 'closed'), ('snow', 'closed'), ('snow',
 'closed'), ('snow', 'open'), ('snow', 'open'), ('snow', 'closed'),
 ('blizzard', 'closed'), ('blizzard', 'closed')]
>>> school_cfd = nltk.ConditionalFreqDist(school)
>>> school_cfd.keys()
 dict_keys(['snow', 'blizzard', 'rain'])
>>> school_cfd.values()
 dict_values([FreqDist({'closed': 3, 'open': 2}), FreqDist({'closed':
 2}), FreqDist({'open': 4, 'closed': 1})])
>>> school_cfd.conditions()
 ['snow', 'blizzard', 'rain']

Bad weather vs. Pitt

9/14/2023 10

>>> school_cfd['snow']
 FreqDist({'closed': 3, 'open': 2})
>>> school_cfd['snow']['closed']
 3
>>> school_cfd['snow']['open']
 2
>>> school_cfd['snow'].freq('open')
 0.4
>>> school_cfd['blizzard']
 FreqDist({'closed': 2})
>>> school_cfd['blizzard']['closed']
 2
>>> school_cfd['blizzard']['open']
 0
>>> school_cfd.tabulate()
 closed open
 blizzard 2 0
 rain 1 4
 snow 3 2
>>>

Conditional probability
of Pitt opening (outcome)
when it snows (condition)

A bit of background

9/14/2023 11

 P(A): the probability of A occurring

 P(snow): the probability of having a snowy weather.

 P(A|B): Conditional probability

 the probability of A occurring, given that B has occurred
 P(close|snow): given a snowy weather, the probability of Pitt closing.

 P(snow|close): given Pitt's closure, the probability of the day being snowy.

 P(A, B): Joint probability

 the probability of A occurring and B occurring

 Same as P(B, A).

 If A and B are independent events, same as P(A)*P(B).

 If not, same as P(A|B)*P(B) and also P(B|A)*P(A).

 P(close, snow): the probability of Pitt closing and the weather being snowy.

bigram FD vs. CFD: very different!

9/14/2023 12

>>> e2grams[-10:]
 [('fully', 'answered'), ('answered', 'in'), ('in', 'the'), ('the',
 'perfect'), ('perfect', 'happiness'), ('happiness', 'of'), ('of', 'the'),
 ('the', 'union'), ('union', '.'), ('.', 'finis')]

>>> e2gramfd = nltk.FreqDist(e2grams)
>>> e2gramfd[('so', 'well')]
 31
>>> e2gramfd.freq(('so', 'well'))
 0.0001616511359903218

>>> e2gramcfd = nltk.ConditionalFreqDist(e2grams)
>>> e2gramcfd['so']
 FreqDist({'much': 98, 'very': 83, ',': 34, 'well': 31, 'many': 29, 'long':
 27, '.': 21, 'little': 20, 'far': 19, 'i': 18, ...})
>>> e2gramcfd['so']['well']
 31
>>> e2gramcfd['so'].freq('well')
 0.03202479338842975

Made from the same
bigrams as input,

but returns different
data objects

It’s important you keep tabs
on many data objects and

their meaning!

bigram FD vs. CFD: Practice

9/14/2023 13

>>> e2grams[-10:]
 [('fully', 'answered'), ('answered', 'in'), ('in', 'the'), ('the',
 'perfect'), ('perfect', 'happiness'), ('happiness', 'of'), ('of', 'the'),
 ('the', 'union'), ('union', '.'), ('.', 'finis')]

>>> e2gramfd = nltk.FreqDist(e2grams)
>>> e2gramfd[('so', 'well')]
 31
>>> e2gramfd.freq(('so', 'well'))
 0.0001616511359903218

>>> e2gramcfd = nltk.ConditionalFreqDist(e2grams)
>>> e2gramcfd['so']
 FreqDist({'much': 98, 'very': 83, ',': 34, 'well': 31, 'many': 29, 'long':
 27, '.': 21, 'little': 20, 'far': 19, 'i': 18, ...})
>>> e2gramcfd['so']['well']
 31
>>> e2gramcfd['so'].freq('well')
 0.03202479338842975

Poke your object in
shell to understand its

structure!

10 minutes

9/14/2023 14

 FD vs. CFD practice

 CFD with trigrams!

 How to build?

 What are top words following 'so well'? How about 'of the'?

 Fun with ENABLE words

 No vowels? Palindromes? Anagrams of 'stop'?

 How many potential answers for Wordle?

 Saved SHELL session posted next to the lecture PDF!

10 minutes

Where are we on the NLTK Book?

9/14/2023 15

 Ch.1 Language Processing and Python

 https://www.nltk.org/book/ch01.html

 NLTK built-in functions for exploring text, Python basics

 Ch.2 Accessing Corpora and Lexical Resources

 https://www.nltk.org/book/ch02.html

 A tour of various NLTK-loaded corpora and resources

 Ch.3 Processing Raw Text

 https://www.nltk.org/book/ch03.html

 Basic text processing pipeline – tokenization, etc.

 Also: regular expressions

https://www.nltk.org/book/ch01.html
https://www.nltk.org/book/ch02.html
https://www.nltk.org/book/ch03.html

Wrap-up

9/14/2023 16

 Homework #2 out

 START EARLY! Get help earlier.

 Next class (Tue):

 N-gram language models

 Review the NLTK Book, chapters 1 through 3.

	Slide 1: Lecture 6: N-grams and Conditional Probability
	Slide 2: Objectives
	Slide 3: Exercise #4 review
	Slide 4: Exercise #4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: nltk.ConditionalFreqDist
	Slide 9: Bad weather vs. Pitt
	Slide 10: Bad weather vs. Pitt
	Slide 11: A bit of background
	Slide 12: bigram FD vs. CFD: very different!
	Slide 13: bigram FD vs. CFD: Practice
	Slide 14
	Slide 15: Where are we on the NLTK Book?
	Slide 16: Wrap-up

