Lecture 7:
 N-gram Language Models, Processing Web Resources

Ling 1330/2330 Intro to Computational Linguistics Na-Rae Han, 9/19/2023

Objectives

- Review HW\#2 Bigram Speak
- Producing bigram dictionaries from large corpora
- A bigram-based statistical language generation model
- n-gram language model
- Estimating sentence probabilities
- N-gram resources
- Norvig/Google 1T data

Check your NLTK version!

>>> import nltk
>>> nltk.__version__ 4.............. DOUBLE underscores
'3.8.1'
>>>

- Version 3.8.1 is the latest.
- If you have 3.7, you will get different tokenization results.
\leftarrow UPGRADE to the latest version! See me/Tianyi.

Homework \#2: what you achieved

- You computed basic stats (type \& token counts) of:
- The Bible
- Jane Austen's 3 novels
- You produced bigram data objects of the two corpora
- You looked into frequencies of words immediately following 'so'
- You pickled the bigram conditional frequency distributions, and unpickled them to use in "BigramSpeak.py"
- What was the point of this homework?

Basic corpus stats

The Bible

Word token count:	946,812
Word type count:	17,188

The Bible is over $2 x$ as large.

Jane Austen novels

```
Word token count: 431,079
Word type count: 11,642
```

*On NLTK 3.7, you get 431,070 tokens and 11,645 types.

Top bigram frequencies

The Bible

, and 24944	all the 2138
of the 11541	and they 2086
the lord 7016	him , 2037
and the 6265	unto the 2032
in the 5030	i will 1915
; and 3216	, which 1793
: and 3029	lord , 1709
, that 2991	of israel 1695

and he 2790
, the 2463
shall be 2461
to the 2152

Jane Austen novels

```
, and 4748
. '' 2259 ; but }88
; and 1945 , that }81
'' `` 1815 , as 773
to be 1419 , she }75
of the 1414 she had 743
    '' 1393 i am 741
in the 1125 she was 701
, i }111
. i 1069
. `` }98
it was 935
What do you notice?
```


Top 20 so-initial bigrams

The Bible

so that 192	so did 29		
so the 136	so david 29		
so shall 109	so be 22		
so they 85	so great 16		
so he 73	so when 15		
so , 68	so then 15		
so is 48	so with 14		
so will 44			
so it 39	so to 14		
so i 35			
so much 33			
so . 31		\quad	Predominantly
:---:			
used as			
conjunctive adv			

Jane Austen novels

```
so much 206
so ; 19
so very 113
so , 78
so well 61
so many 56
so long 50
so far 49
so little 44
so . }3
so i 36
so soon 23
so good 20
```


Given $w 1$, calculating probability of $w 2$

After so (w1), what are the probabilities of the next word ($w 2$) being much? How about will?

The Bible

- There are 1689 total "so ..." bigrams.
- Of them, 33 are "so much".

Therefore, much has
33/1689*100 = 1.95\%
chance of being the next word.

- Of them, 44 are "so will".

Therefore, will has
44/1689*100 = 2.60\%
chance of being the next word.

Jane Austen novels

- There are 1969 total "so ..." bigrams.
- Of them, 206 are "so much".

Therefore, much has 206/1969 *100 = 10.46\% chance of being the next word.

- Of them, only 1 is "so will".

Therefore, will has
$1 / 1969$ *100 $=0.05 \%$ chance of being the next word.

Letting bigrams speak

"Bible Speak"

so i say they said jesus had not be, but when i was there was an house for thou hast spoken it to me; but they said in a man, he hath said jesus. for his when they shall i say unto thee? saith thus unto her; the king david. these cities. selah: it to his father which was come upon thy seed for his hand upon thee with

"Jane Austen Speak"

she had seen the house was the room for the same room - he might be more in my dear mrs smith; she was the world! but, i can. i am glad to have made a woman - it was so very happy with you may guess her own, and her to be no one can you are so. that you must be no longer than a most fortunate chance

Bigram Speak as a language model

- Is "Bible Speak" a language model?
- Yes. It is a bigram model of the English language of the bible.
- Is "Bible Speak" a good language model?
- Pretty decent, compared with:
Randomly
picked from
Bible word list

Unigram model:
word frequencies are reflected
tabernacles stare eaters eliphalet sorcery admah cherish emptiers whoever undertake profiting canaanitess lips torches pleiades mahanaim eshban inclineth riblah prophets attend shelemiah treasurer plantation huntest shutting alush arisai
he jeduthun he well did before the he among, all the that the wicked: because; day of of bring upon we was i by: feared of and: made noise a they with had of all tiberias of: when

- How to make it better?

Bible, bigrams vs. trigrams

Bigram model

so i say they said jesus had not be, but when i was there was an house for thou hast spoken it to me; but they said in a man, he hath said jesus. for his when they shall i say unto thee? saith thus unto her; the king david. these cities. selah: it to his father which was come upon thy seed for his hand upon thee with

Trigram model

in the day of his own soul, and all their soul from going down to hell with him, and all his servants; how shall ye not read this letter in the house: therefore they called rebekah, jacob and israel. now ziba had fifteen sons and his sons, and the people: but i would that all they from their evil, that he may eat, and the king's

Austen, bigrams vs. trigrams

Bigram model

she had seen the house was the room for the same room - he might be more in my dear mrs smith; she was the world! but, i can. i am glad to have made a woman - it was so very happy with you may guess her own, and her to be no one can you are so. that you must be no longer than a most fortunate chance

Trigram model

it was to take a box for tuesday. " i do assure you. i shall never be a better match for my part to make his fortune, and that you will be very glad, " he replied; " i am quite of the two miss steeles to spend in bath; sir walter elliot: an extraordinary fate. the miss musgrove's, it will be very sure you must know

Bigram Speak vs. linguistic knowledge

- What kind of linguistic knowledge does the program have?
- Phonetics? phonology? morphology? syntax? semantics? pragmatics?
- Truth is, it does not have linguistic knowledge beyond:
- Available words in a particular sublanguage
- Positive proof of a word following another word, and its likelihood
\& It showcases a purely data-driven, statistical, and knowledgepoor approach to language modeling.
«ChatGPT is essentially an n-gram language model too at its core, but a much more sophisticated one!

Estimating sentence probability

She was not afraid.

- How likely is this sentence in...
- The Bible?
- Jane Austen novels?

Sentence probability: TAKE 1

She was not afraid.

- In each corpus, find out what proportion of all sentences are exactly "She was not afraid."
- Bible: 0/29812 $\rightarrow 0.00$ probability
- Austen: 0/15941 $\rightarrow 0.00$ probability
- Is this a viable approach?
- No. Natural language sentences are highly productive; the vast majority of human sentences are not repeated verbatim.

Sentence probability: TAKE 2

She was not afraid.

- Find the probability of each word, then multiply.
\rightarrow NEXT SLIDE

```
>>> sent = "she was not afraid .".split()
>>> sent
    ['she', 'was', 'not', 'afraid', '.']
>>> [b_tokfd.freq(x) for x in sent]
    [0.001037164716965987, 0.004776027342281256, 0.007160872485773311,
    0.00020384194539148216, 0.02767392048263013]
>>> import numpy
>>> numpy.prod([b_tokfd.freq(x) for x in sent])
    2.0009891005865551e-13
>>> [a_tokfd.freq(x) for x in sent]
    [0.011819426079291066, 0.012977010694318789, 0.010657201846567843,
    0.00023894031131834736, 0.03128958173846475]
>>> numpy.prod([a_tokfd.freq(x) for x in sent])
    1.2220906621589035e-11

\section*{Sentence probability: TAKE 2}

\section*{She was not afraid.}
- Find the probability of each word, then multiply.
- P('She was not afraid.')
\(=P(\) 'she') * P('was') * P('not') * P('afraid') * P('.')
- Problem?
- "Was she not afraid." and even "Not she afraid was." will end up with the exact same probabilities. Sentences are more than just word salad...
- This unigram-based probability estimation is still inadequate.

\section*{Sentence probability: TAKE 3}

\section*{She was not afraid.}
- We take conditional probability of the bigrams into consideration.
- P('was'|'she'), P('not'| 'was'), ...
\(\leftarrow\) probability of 'was' following 'she', etc.
- So, we can multiply together:
- P('was'|'she') * P('not'|'was') * P('afraid'|'not') * P('.'|'afraid')
\(\leftarrow\) Anything missing?
\(\leftarrow\) Yep: the probability of "She" being the first word, and "." being the last word of the sentence.

\section*{Sentence probability: TAKE 3}
<s>She was not afraid.</s> \(\square\)
- We take conditional probability of the bigrams into consideration.
- P('She was not afraid.') can be estimated as:
- P('she' \(\left\langle\rangle\rangle^{\boldsymbol{\rho}}\right.\) * P('was'|'she') * P('not'|'was') * P('afraid'|'not') * \(P\left(\right.\) '.'|'afraid') * P(</s>|'.') \({ }^{\text {( }}\)
\(\leftarrow\) When processing bigrams in Homework \#2, we did not take sentence boundaries into consideration.
\(\leftarrow\) We will substitute (1) with unigram probability P('she'), and just disregard (2)
```

>>> sent
['she', 'was', 'not', 'afraid', '.']
>>> b_probs = [b_tokfd.freq('she'), b_bigramcfd['she'].freq('was'),
b_bigramcfd['was'].freq('not'), b_bigramcfd['not'].freq('afraid'),
b_bigramcfd['afraid'].freq('.')]
>>> b_probs
[0.001037164716965987, 0.06415478615071284, 0.033392304290137106,
0.005162241887905605, 0.16580310880829016]
>>> numpy.prod(b_probs)
1.901753415653736e-09
>>> a_probs = [a_tokfd.freq('she'), a_bigramcfd['she'].freq('was'),
a_bigramcfd['was'].freq('not'), a_bigramcfd['not'].freq('afraid'),
a_bigramcfd['afraid'].freq('.')]
>>> a_probs
[0.011819426079291066, 0.13758586849852797, 0.0650697175545227,
0.00108837614279495, 0.02912621359223301]
>>> numpy.prod(a_probs)
3.3543794097952598e-09

The sentence again has a higher chance in Jane Austen novels, with a lower margin this time

More on sentence probability estimation

- SLP ed.3, ch. 3 N-gram Language Models
- https://web.stanford.edu/~jurafsky/slp3/3.pdf\#page=6
- Bigram counts and probabilities with these words:
- I, want, to, eat, Chinese, English, food, lunch, spend, ...
- How to estimate sentence probability of:
- <s> | want English food </s>

$$
\begin{aligned}
& P(<\mathrm{s}\rangle \mathrm{i} \text { want english food }</ \mathrm{s}\rangle) \\
& =P(\mathrm{i}|<\mathrm{s}\rangle) P(\text { want } \mid \mathrm{i}) P(\text { english } \mid \text { want }) \\
& \\
& \quad P(\text { food } \mid \text { english }) P(</ \mathrm{s}\rangle \mid \text { food }) \\
& = \\
& = \\
& =.25 \times .33 \times .0011 \times 0.5 \times 0.68
\end{aligned}
$$

General, LARGER n-gram stats

- The Bible and Austen bigram stats reflect their unique topical content and linguistic traits.
- Can we find n-gram stats that are extracted from...
- more GENERAL-domain text?
- LARGER amounts of text?

Data Resources:

- NLTK Corpora Index [page]
- Natural Language Corpus Data by Peter Norvig [link]
- Google Books Ngram Viewer Data [link] (Slow? Try FireFox.)
- COCA n-gram lists at BYU [link]

n-grams and statistical NLP

- It is possible to obtain a highly detailed \& accurate set of n-gram statistics.
- How? Through corpus data.
- Corpus-sourced, large-scale n-grams are one of the biggest contributors to the recent advancement of statistical natural language processing (NLP) technologies.
- Used for: spelling correction, machine translation, speech recognition, information extraction...
\rightarrow JUST ABOUT ANY NLP APPLICATION

Norvig's data: 1-8 2-grams

count_1w.txt

the	23135851162
of	13151942776
and	12997637966
to	12136980858
a	9081174698
in	8469404971
for	5933321709
is	4705743816
on	3750423199
that	3400031103
by	3350048871
this	3228469771
with	3183110675
i	3086225277
you	2996181025
it	2813163874
not	2633487141
or	2590739907
be	2398724162
are	2393614870
from	2275595356
at	2272272772
as	2247431740
vour	2062066547

$\begin{array}{ll}9 / 19 / 202 \text { as } & 2247431740 \\ \text { vour } & 2062066547\end{array}$

- count_2w.txt

```
you graduate 117698
you grant 103633
you great 450637
you grep 120367
you grew 102321
you grow 398329
you guess 186565
you guessed 295086
you guys 5968988
you had 7305583
```

Where do they come from?
you hand 120379
you handle 336799
you hang 144949
you happen 627632
you happy 603963
you has 198447
you hate 637001
you have 135266690
you havent 134438
you having 344344
you he 199259
you head 205910
you hear 2963179
you heard 1267423

Big data at our fingertips

- How to process data resources, downloaded from the internet?
- From Norvig's data page https://norvig.com/ngrams/, download:
- Word 1-grams: count_1w.txt

> Huge file. Wait until your browser fully loads the page before hitting "save as"!

- Data derived from the Google Web Trillion Word Corpus
- Essentially unigram frequency data
- Top 333K entries, taken from Google's original data (which is much bigger)
< Let's process this file into a Python data object.
\leftarrow How to do this?

Step 1: stare at the file.

Step 2: read in as list of lines

```
>>> f = open('count_1w.txt')
>>> lines = f.readlines()
>>> f.close()
>>> lines[0]
    'the\t23135851162\n'
>>> lines[1]
    'of\t13151942776\n'
>>> len(lines)
    333333
>>>
```


May also need: encoding='utf-8'

Because of the "one entry per line" format of the original file, .readlines() is better suited.

Step 3: decide on data structure.

```
>>> goog1w_rank[:5]
    [('the', 23135851162), ('of', 13151942776), ('and', 12997637966),
    ('to', 12136980858), ('a', 9081174698)]
>>> goog1w_rank[0]
    ('the', 23135851162)
>>> goog1w_rank[-1]
    ('golgw', 12711)
    We will keep the original order,
which reflects the frequency rank.
>>> goog1w_fd['platypus']
    565585
>>> goog1w_fd.most_common(5)
    [('the', 23135851162), ('of', 13151942776), ('and', 12997637966),
    ('to', 12136980858), ('a', 9081174698)]
>>> type(goog1w_fd)
    <class 'nltk.probability.FreqDist'>
```


(2) a frequency distribution

nltk.FreqDist where each word is mapped to its count

Step 4: experiment with a small copy.

```
>>> mini = lines[:5]
    mini
    ['the\t23135851162\n', 'of\t13151942776\n', 'and\t12997637966\n',
    'to\t12136980858\n', 'a\t9081174698\n']
>>> mini[0].split()
    ['the', '23135851162']
>>> for line in mini:
        (word, count) = line.split()
        tu = (word, int(count))
        print(tu)
    ('the', 23135851162)
    ('of', 13151942776)
    ('and', 12997637966)
    ('to', 12136980858)
    ('a', 9081174698)
```

\ggg

To be continued... in shell

- Demonstration in IDLE shell
- Make sure to check the posted shell session!
- Last step: pickle both data

```
>>> import pickle
>>> f = open('goog1w_rank.pkl', 'wb')
>>> pickle.dump(goog1w_rank, f, -1)
>>> f.close()
>>>
>>> f2 = open('goog1w_fd.pkl', 'wb')
>>> pickle.dump(goog1w_fd, f2, -1)
>>> f2.close()
>>>
```


Wrap-up

- Exercise \#5 out
- Process Norvig's bigram data
- HW \#1 grades are in
- Check ANSWER KEY, feedback
- Next class (Thu):
- More on big-data n-gram stats
- Processing a corpus
- NLTK's built-in corpus methods

