
Lecture 7:

N-gram Language Models,

Processing Web Resources

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 9/19/2023

Objectives

 Review HW#2 Bigram Speak

 Producing bigram dictionaries from large corpora

 A bigram-based statistical language generation model

 n-gram language model

 Estimating sentence probabilities

 N-gram resources

 Norvig/Google 1T data

9/19/2023 2

Check your NLTK version!

9/19/2023 3

 Version 3.8.1 is the latest.

 If you have 3.7, you will get different tokenization results.

 UPGRADE to the latest version! See me/Tianyi.

>>> import nltk
>>> nltk.__version__
 '3.8.1'
>>>

DOUBLE underscores

Homework #2: what you achieved

9/19/2023 4

 You computed basic stats (type & token counts) of:

 The Bible

 Jane Austen's 3 novels

 You produced bigram data objects of the two corpora

 You looked into frequencies of words immediately following ‘so’

 You pickled the bigram conditional frequency distributions, and
unpickled them to use in “BigramSpeak.py”

 What was the point of this homework?

Basic corpus stats

The Bible Jane Austen novels

9/19/2023 5

Word token count: 946,812

Word type count: 17,188

Word token count: 431,079

Word type count: 11,642

The Bible is
over 2x
as large.

*On NLTK 3.7, you get 431,070

tokens and 11,645 types.

Top bigram frequencies

The Bible Jane Austen novels

9/19/2023 6

, and 24944

of the 11541

the lord 7016

and the 6265

in the 5030

; and 3216

: and 3029

, that 2991

and he 2790

, the 2463

shall be 2461

to the 2152

all the 2138

and they 2086

him , 2037

unto the 2032

i will 1915

, which 1793

lord , 1709

of israel 1695

, and 4748

. '' 2259

; and 1945

'' `` 1815

to be 1419

of the 1414

, '' 1393

in the 1125

, i 1117

. i 1069

. `` 984

it was 935

. she 895

; but 886

, that 815

, as 773

, she 759

she had 743

i am 741

she was 701

What do you
notice?

Top 20 so-initial bigrams

The Bible Jane Austen novels

9/19/2023 7

so that 192

so the 136

so shall 109

so they 85

so he 73

so , 68

so is 48

so will 44

so it 39

so i 35

so much 33

so . 31

so did 29

so david 29

so be 22

so great 16

so when 15

so then 15

so with 14

so to 14

so much 206

so very 113

so , 78

so well 61

so many 56

so long 50

so far 49

so little 44

so . 37

so i 36

so soon 23

so good 20

so ; 19

so ? 17

so often 16

so it 16

so you 16

so kind 15

so great 14

so entirely 11

Predominantly
used as

conjunctive adv

Predominantly
used as

adj/adv modifier
('intensifier')

Given w1, calculating probability of w2

After so (w1), what are the probabilities of the next word (w2) being
much? How about will?

9/19/2023 8

 There are 1689 total "so ..." bigrams.

 Of them, 33 are "so much".
Therefore, much has
33/1689*100 = 1.95%
chance of being the next word.

 Of them, 44 are "so will".
Therefore, will has
44/1689*100 = 2.60%
chance of being the next word.

 There are 1969 total "so ..." bigrams.

 Of them, 206 are "so much".
Therefore, much has
206/1969 *100 = 10.46%
chance of being the next word.

 Of them, only 1 is "so will".
Therefore, will has
1/1969 *100 = 0.05%
chance of being the next word.

The Bible Jane Austen novels

Letting bigrams speak

"Bible Speak" "Jane Austen Speak"

9/19/2023 9

so i say they said jesus had not be,

but when i was there was an house

for thou hast spoken it to me; but

they said in a man, he hath said

jesus. for his when they shall i say

unto thee? saith thus unto her; the

king david. these cities. selah: it to

his father which was come upon

thy seed for his hand upon thee

with

she had seen the house was the

room for the same room - he might

be more in my dear mrs smith; she

was the world! but, i can. i am glad

to have made a woman - it was so

very happy with you may guess her

own, and her to be no one can you

are so. that you must be no longer

than a most fortunate chance

Bigram Speak as a language model

9/19/2023 10

 Is "Bible Speak" a language model?

 Yes. It is a bigram model of the English language of the bible.

 Is "Bible Speak" a good language model?

 Pretty decent, compared with:

 How to make it better?

tabernacles stare eaters eliphalet sorcery admah cherish

emptiers whoever undertake profiting canaanitess lips torches

pleiades mahanaim eshban inclineth riblah prophets attend

shelemiah treasurer plantation huntest shutting alush arisai

he jeduthun he well did before the he among, all the that the

wicked: because; day of of bring upon we was i by: feared of

and: made noise a they with had of all tiberias of: when

Randomly
picked from

Bible word list

Unigram model:
word frequencies

are reflected

Bible, bigrams vs. trigrams

Bigram model Trigram model

9/19/2023 11

so i say they said jesus had not be,

but when i was there was an house

for thou hast spoken it to me; but

they said in a man, he hath said

jesus. for his when they shall i say

unto thee? saith thus unto her; the

king david. these cities. selah: it to

his father which was come upon

thy seed for his hand upon thee

with

in the day of his own soul, and all

their soul from going down to hell

with him, and all his servants; how

shall ye not read this letter in the

house: therefore they called

rebekah, jacob and israel. now ziba

had fifteen sons and his sons, and

the people: but i would that all they

from their evil, that he may eat, and

the king's

Austen, bigrams vs. trigrams

Bigram model Trigram model

9/19/2023 12

she had seen the house was the

room for the same room - he might

be more in my dear mrs smith; she

was the world! but, i can. i am glad

to have made a woman - it was so

very happy with you may guess her

own, and her to be no one can you

are so. that you must be no longer

than a most fortunate chance

it was to take a box for tuesday. " i

do assure you. i shall never be a

better match for my part to make his

fortune, and that you will be very

glad, " he replied; " i am quite of the

two miss steeles to spend in bath;

sir walter elliot: an extraordinary

fate. the miss musgrove's, it will be

very sure you must know

Bigram Speak vs. linguistic knowledge

9/19/2023 13

 What kind of linguistic knowledge does the program have?
 Phonetics? phonology? morphology? syntax? semantics? pragmatics?

 Truth is, it does not have linguistic knowledge beyond:

 Available words in a particular sublanguage

 Positive proof of a word following another word, and its likelihood

 It showcases a purely data-driven, statistical, and knowledge-
poor approach to language modeling.

 ChatGPT is essentially an n-gram language model too at its core,
but a much more sophisticated one!

Estimating sentence probability

9/19/2023 14

She was not afraid.

 How likely is this sentence in…

 The Bible?

 Jane Austen novels?

Sentence probability: TAKE 1

9/19/2023 15

She was not afraid.

 In each corpus, find out what proportion of all sentences are
exactly "She was not afraid."

 Bible: 0/29812 → 0.00 probability

 Austen: 0/15941 → 0.00 probability

 Is this a viable approach?

 No. Natural language sentences are highly productive; the vast majority
of human sentences are not repeated verbatim.

Sentence probability: TAKE 2

9/19/2023 16

 Find the probability of each word, then multiply.

➔ NEXT SLIDE

She was not afraid.

9/19/2023 17

>>> sent = "she was not afraid .".split()
>>> sent
 ['she', 'was', 'not', 'afraid', '.']

>>> [b_tokfd.freq(x) for x in sent]
 [0.001037164716965987, 0.004776027342281256, 0.007160872485773311,
 0.00020384194539148216, 0.02767392048263013]

>>> import numpy
>>> numpy.prod([b_tokfd.freq(x) for x in sent])
 2.0009891005865551e-13

>>> [a_tokfd.freq(x) for x in sent]
 [0.011819426079291066, 0.012977010694318789, 0.010657201846567843,
 0.00023894031131834736, 0.03128958173846475]
>>> numpy.prod([a_tokfd.freq(x) for x in sent])
 1.2220906621589035e-11

The sentence has a
higher chance in Jane

Austen novels.

But is this
good enough?

Sentence probability: TAKE 2

9/19/2023 18

She was not afraid.

 Find the probability of each word, then multiply.

 P('She was not afraid.')

 = P('she') * P('was') * P('not') * P('afraid') * P('.')

 Problem?

 "Was she not afraid." and even "Not she afraid was." will end up with the
exact same probabilities. Sentences are more than just word salad…

 This unigram-based probability estimation is still inadequate.

Sentence probability: TAKE 3

9/19/2023 19

She was not afraid.

 We take conditional probability of the bigrams into consideration.

 P('was'|'she'), P('not'| 'was'), …

 probability of 'was' following 'she', etc.

 So, we can multiply together:

 P('was'|'she') * P('not'|'was') * P('afraid'|'not') * P('.'|'afraid')

Anything missing?

Yep: the probability of "She" being the first word, and "." being the last
word of the sentence.

Sentence probability: TAKE 3

9/19/2023 20

<s>She was not afraid.</s>

 We take conditional probability of the bigrams into consideration.

 P('She was not afraid.') can be estimated as:

 P('she'|<s>) * P('was'|'she') * P('not'|'was') * P('afraid'|'not') *
P('.'|'afraid') * P(</s>|'.')

When processing bigrams in Homework #2, we did not take sentence
boundaries into consideration.

We will substitute with unigram probability P('she'), and just disregard

Pseudo tokens
indicating beginning and

end of sentence

9/19/2023 21

>>> sent
 ['she', 'was', 'not', 'afraid', '.']

>>> b_probs = [b_tokfd.freq('she'), b_bigramcfd['she'].freq('was'),
 b_bigramcfd['was'].freq('not'), b_bigramcfd['not'].freq('afraid'),
 b_bigramcfd['afraid'].freq('.')]
>>> b_probs
 [0.001037164716965987, 0.06415478615071284, 0.033392304290137106,
 0.005162241887905605, 0.16580310880829016]
>>> numpy.prod(b_probs)
 1.901753415653736e-09

>>> a_probs = [a_tokfd.freq('she'), a_bigramcfd['she'].freq('was'),
 a_bigramcfd['was'].freq('not'), a_bigramcfd['not'].freq('afraid'),
 a_bigramcfd['afraid'].freq('.')]
>>> a_probs
 [0.011819426079291066, 0.13758586849852797, 0.0650697175545227,
 0.00108837614279495, 0.02912621359223301]
>>> numpy.prod(a_probs)
 3.3543794097952598e-09 The sentence again has a higher

chance in Jane Austen novels,
with a lower margin this time

More on sentence probability estimation

9/19/2023 22

 SLP ed.3, ch.3 N-gram Language Models

 https://web.stanford.edu/~jurafsky/slp3/3.pdf#page=6

 Bigram counts and probabilities with these words:

 I, want, to, eat, Chinese, English, food, lunch, spend, …

 How to estimate sentence probability of:

 <s> I want English food </s>

https://web.stanford.edu/~jurafsky/slp3/3.pdf#page=6

General, LARGER n-gram stats

9/19/2023 23

 The Bible and Austen bigram stats reflect their unique topical
content and linguistic traits.

 Can we find n-gram stats that are extracted from…

 more GENERAL-domain text?

 LARGER amounts of text?

n-grams and statistical NLP

9/19/2023 24

 It is possible to obtain a highly detailed & accurate set of n-gram
statistics.

 How? Through corpus data.

 Corpus-sourced, large-scale n-grams are one of the biggest
contributors to the recent advancement of statistical natural
language processing (NLP) technologies.

 Used for: spelling correction, machine translation, speech recognition,
information extraction...

 → JUST ABOUT ANY NLP APPLICATION

Norvig's data: 1- & 2-grams

9/19/2023 25

 count_1w.txt count_2w.txt

Where do they
come from?

Big data at our fingertips

9/19/2023 26

 How to process data resources, downloaded from the internet?
 From Norvig's data page https://norvig.com/ngrams/, download:
 Word 1-grams: count_1w.txt

 Data derived from the Google Web Trillion Word Corpus
 Essentially unigram frequency data

 Top 333K entries, taken from Google's original data (which is much
bigger)

 Let's process this file into a Python data object.

 How to do this?

Huge file. Wait until your browser fully
loads the page before hitting "save as"!

https://norvig.com/ngrams/
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Step 1: stare at the file.

9/19/2023 27

One word per line,
followed by count

Separated by white
space: most likely a TAB

Sorted by frequency

Step 2: read in as list of lines

9/19/2023 28

>>> f = open('count_1w.txt')
>>> lines = f.readlines()
>>> f.close()
>>> lines[0]
 'the\t23135851162\n'
>>> lines[1]
 'of\t13151942776\n'
>>> len(lines)
 333333
>>>

Because of the "one
entry per line" format

of the original file,
.readlines() is

better suited.

May also need:
encoding='utf-8'

Step 3: decide on data structure.

9/19/2023 29

>>> goog1w_rank[:5]
 [('the', 23135851162), ('of', 13151942776), ('and', 12997637966),
 ('to', 12136980858), ('a', 9081174698)]
>>> goog1w_rank[0]
 ('the', 23135851162)
>>> goog1w_rank[-1]
 ('golgw', 12711)

>>> goog1w_fd['platypus']
 565585
>>> goog1w_fd.most_common(5)
 [('the', 23135851162), ('of', 13151942776), ('and', 12997637966),
 ('to', 12136980858), ('a', 9081174698)]
>>> type(goog1w_fd)
 <class 'nltk.probability.FreqDist'>

(1) a list where each item is

(word, count) tuple.

We will keep the original order,
which reflects the frequency rank.

(2) a frequency
distribution

nltk.FreqDist where each
word is mapped to its count

Step 4: experiment with a small copy.

9/19/2023 30

>>> mini = lines[:5]
>>> mini
 ['the\t23135851162\n', 'of\t13151942776\n', 'and\t12997637966\n',
 'to\t12136980858\n', 'a\t9081174698\n']
>>> mini[0].split()
 ['the', '23135851162']
>>> for line in mini:
... (word, count) = line.split()
... tu = (word, int(count))
... print(tu)
...
 ('the', 23135851162)
 ('of', 13151942776)
 ('and', 12997637966)
 ('to', 12136980858)
 ('a', 9081174698)
>>>

Mini version of lines

Build
(word, count) tuple

from each line

To be continued… in shell

9/19/2023 31

 Demonstration in IDLE shell

 Make sure to check the posted shell session!

 Last step: pickle both data

>>> import pickle
>>> f = open('goog1w_rank.pkl', 'wb')
>>> pickle.dump(goog1w_rank, f, -1)
>>> f.close()
>>>
>>> f2 = open('goog1w_fd.pkl', 'wb')
>>> pickle.dump(goog1w_fd, f2, -1)
>>> f2.close()
>>>

Wrap-up

9/19/2023 32

 Exercise #5 out

 Process Norvig's bigram data

 HW #1 grades are in

 Check ANSWER KEY, feedback

 Next class (Thu):

 More on big-data n-gram stats

 Processing a corpus

 NLTK's built-in corpus methods

	Slide 1: Lecture 7: N-gram Language Models, Processing Web Resources
	Slide 2: Objectives
	Slide 3: Check your NLTK version!
	Slide 4: Homework #2: what you achieved
	Slide 5: Basic corpus stats
	Slide 6: Top bigram frequencies
	Slide 7: Top 20 so-initial bigrams
	Slide 8: Given w1, calculating probability of w2
	Slide 9: Letting bigrams speak
	Slide 10: Bigram Speak as a language model
	Slide 11: Bible, bigrams vs. trigrams
	Slide 12: Austen, bigrams vs. trigrams
	Slide 13: Bigram Speak vs. linguistic knowledge
	Slide 14: Estimating sentence probability
	Slide 15: Sentence probability: TAKE 1
	Slide 16: Sentence probability: TAKE 2
	Slide 17
	Slide 18: Sentence probability: TAKE 2
	Slide 19: Sentence probability: TAKE 3
	Slide 20: Sentence probability: TAKE 3
	Slide 21
	Slide 22: More on sentence probability estimation
	Slide 23: General, LARGER n-gram stats
	Slide 24: n-grams and statistical NLP
	Slide 25: Norvig's data: 1- & 2-grams
	Slide 26: Big data at our fingertips
	Slide 27: Step 1: stare at the file.
	Slide 28: Step 2: read in as list of lines
	Slide 29: Step 3: decide on data structure.
	Slide 30: Step 4: experiment with a small copy.
	Slide 31: To be continued… in shell
	Slide 32: Wrap-up

