
Lecture 13: Supercomputing,

Computational Efficiency

LING 1340/2340: Data Science for Linguists

Na-Rae Han

Objectives

 Supercomputing

 Big data considerations

 Computational efficiency

11/14/2017 2

The Yelp Dataset Challenge

11/14/2017 3

 https://www.yelp.com/dataset/challenge

https://www.yelp.com/dataset/challenge

Working with big data files

11/14/2017 4

 Each file is in JSON format, and they are huge:

 review.json is 3.6GB.

 user.json is 1.5GB.

 Too big to open in most text editors (Notepad++ couldn't.)

 How to explore them?
In command line. head/tail, grep and regular expression-based searching.

Command line exploration

11/14/2017 5

Opening + processing big files

11/14/2017 6

 How much resource does it take to process review.json file
(3.6GB)?

There's 3.6GB

Another ~3GB

Another big
object

Good news:
this process is

NOT
CPU-intensive.

Memory consideration

11/14/2017 7

 How much space needed for bigrams? Trigrams?

Good news!
These are

built as
generator
objects.

But these
frequency

counter objects
will take up a
large space.

11/14/2017 8

Generator type
objects take up
little memory

space and can be
used in a loop-like

environment.

Content has been
exhausted

File opening & closing methods

11/14/2017 9

f = open('review.json')
for l in f:

if 'horrible' in l:
print(l)

f.close()

f = open('review.json')
lines = f.readlines()
for l in lines:

if 'horrible' in l:
print(l)

f.close()

lines = open('review.json').readlines()
for l in lines :

if 'horrible' in l:
print(l)

with open('review.json') as f:
for l in f:

if 'horrible' in l:
print(l)

No need to close f.
Some folks swear by using with.

Which methods
are more memory-

efficient?

Python will
close up this
file handle.

Handling files in chunks

11/14/2017 10

dfs = pd.read_json('review.json', lines=True, chunksize=10000, encoding='utf8')

wfreq = Counter()
for df in dfs:

wtoks = ' '.join(df['text']).split()
temp = Counter(wtoks)
wfreq.update(temp)

print(wfreq.most_common(20))

f = open('review.json')
lines1 = f.readlines(1000000000)
lines2 = f.readlines(1000000000)
lines3 = f.readlines(1000000000)
lines4 = f.readlines()
f.close()

Optional # of bytes to read.
(But! Not doing it through

loop like this does not offer
memory advantage.)

chunksize optional
parameter in pandas'

read_json method reads
in 10,000 lines at a time.

Then, iterate through each
small df.

Breaking up large files

11/14/2017 11

 csplit splits up large files into smaller chunks with equal
line counts.

Split 1m lines each,
repeat up to 5 times.
(Overshooting is OK.)

Supercomputing: what did you learn?

11/14/2017 12

 All right! 45 SUs out of 10,000!

Your code examples: Andrew

11/14/2017 13

Good job using
pandas's str methods

! and ? vs.
stars. Neat

results!

Your code examples: Dan

11/14/2017 14

Using chunksize, processes
json file in small bits

for-loops through tiny df parts,
trains ML in partial bits!

Your code examples: Paige

11/14/2017 15

df.groupby()
is the way to go!!!

Positive reviews are
SHORTER!

Wrapping up

11/14/2017 16

 To-Do 12

 Visit your classmates' projects.

 Work on your term project!

 Come see me.

 Presentation schedule

