Lecture 13: Supercomputing,
Computational Efficiency

LING 1340/2340: Data Science for Linguists

Na-Rae Han

Objectives

» Supercomputing
» Big data considerations

» Computational efficiency

11/14/2017

The Yelp Dataset Challenge

» https://www.yelp.com/dataset/challenge

| & Secure | https://www.yelp.com/dataset/download W

m% Dataset Dataset Challenge Documentation

Download The Data

The links to download the data will be valid for 30 seconds.

JSON SQL Photos
Download JSON Download SQL Download photos
2.28 gigabytes compressed 2.41 gigabytes compressed 5.35 gigabytes compressed
5.79 gigabytes uncompressed 6.17 gigabytes uncompressed 638 gigabytes uncompressed
1 .targz file compressed 1 targz file compressed 1 targz file compressed
6 json files uncompressed 1 .sql file uncompressed 1 json file and 1 folder containing
200,000 photos uncompressed
For more information on the JSON For more information on the SQL
dataset, visit the JSON dataset, visit the SQL documentation
documentation page. page.

11/14/2017 3

https://www.yelp.com/dataset/challenge

Working with big data files

~/Documents/Data_Science/dataset

$ 1s -Tlah

total 6.2G
drwxr-xr-x
drwxr-xr-x

-rw-
-rw-
-rw-
-rw-
-rw-
-rw-
-rw-
-rw-

r--r--
r--r--
r--r--
r--r--
r--r--
r--r--
r--r--
r--r--

RFRERRRRRRERRE

197121
197121
197121
197121
197121
197121
197121

197121 3

197121
197121

Nov
Nov
Nov
Aug
Aug
Aug
Nov
Aug
Aug
Aug

13:
3 15:
14:
18:
18:
:57

17

14:
18:
18:
18:

52
57
12
00
04

12
05
06
04

/.

/
FOO. json
business. json
checkin. json
photos. json
process_reviews.py
review. json
tip.json
user.json

» Each file is in JSON format, and they are huge:

review.json is 3.6GB.
user.json is 1.5GB.
Too big to open in most text editors (Notepad++ couldn't.)

How to explore them?

In command line. head/tail, grep and regular expression-based searching.

11/14/2017

Command line exploration

MINGWE:/c/Users/narae/Documents/Data_Science/dataset

~/Documents/Data_Science/dataset
$ head -1 review. json
{"review_id":"VvfBHSwC5Vz_pbFluy0719Q", "user_id":"cjpdDjZyprfyDG3R1kvG3w", "bus
iness_id":"uYHaNptLzDLoV_JZ_MuzUA","stars":5,"date":"2016-07-12","text":"My ¢
irlfriend and I stayed here for 3 n1ghts and Toved it. The Jocation of this h
otel and very decent price makes this an amazing deal. when you walk out the
front door Scott Monument and Princes street are right in front of you, Edinb
urgh Castle and the Royal Mile is a 2 minute walk via a close right around th
e corner, and there are so many hidden gems nearby including calton Hil1l and
the newly opened Arches that made this location incredible.\n\nThe hotel itse
1f was also very nice with a reasonably priced bar, very considerate staff, a
nd small but comfortable rooms with excellent bathrooms and showers. Only two
minor complaints are no telephones in room for room service (not a huge deal
for us) and no AC in the room, but they have huge windows which can be fully
opened. The staff were incredible though, letting us borrow umbrellas for th
e rain, giving us maps and directions, and also when we had lost our only UK
adapter for charging our phones gave us a very fancy one for free.\n\nI would
highly recommend this hotel to friends, and when I return to Edinburgh (whic
h I most definitely will) I will be staying here without any hesitation.","us
eful":0,"funny":0,"cool1":0}

~/Documents/Data_Science/dataset
$ wc -1 review.json
4736897 review. Jjson
. ~/Documents/Data_ Science/dataset
$ grep 'horrible' review.json | wc -1

. ~/Doguments/Data_Sc1ence/dataset
'scrumptious’' review.json | wc -1

~/Documents/Data_Science/dataset

Opening + processing big files

» How much resource does it take to process review.json file
(3.6GB)?

File Edit Format Run Options Window Help

import pandas as pd
import sys
from collections import Counter

filename = sys.argv[1]

There's 3.6GB df

= pd.read_json(filename, lines=True, encoding='utf-8")

print(df.head(5))

Another ~3GB :
wtoks = ' ".join(df['text']).split() G-OOd news:
wfreq = Counter(wtoks) this process is

Another big print(wfreq.most_common(28)) NOT

object | CPU-intensive.

Lm: 15 Col: [
11/14/2017 6

Memory consideration

» How much space needed for bigrams? Trigrams?

File Edit Format Run Optiens Window Help
import pandas as pd

import sys

from collections import Counter
import nltk

filename = sys.argv[1]

df = pd.read_json(filename, lines=True, encoding='utf-8")

Good news!
These are print(df.head(5))
liEEE wtoks = ' '.join(df['text']).split() _EUtthese
generator bigrams = nltk.bigrams(wtoks) requenFy
objects. trigrams = nltk.trigrams(wtoks) counter objects
will take up a
bifreq = Counter(bigrams) large space.

print(bifreqg.most_common(28))

trifreq = Counter(trigrams)
11/14/2017 print(trifreq.most_common(20))
I

>>> import nltk

>>> sent = 'Colorless green ideas sleep oh so very furiously'

>>> toks sent.split()

>>> toks

['Colorless', 'green', 'ideas', 'sleep', 'oh', 'so', 'very', 'furiously']
>»> bigrams = nltk.bigrams(toks)

>>> bigrams

<generator object bigrams at ©x0e0©0236371E2BF8>

>>> for b in bigrams: Generator type

print(b) objects take up

('Colorless’, 'green’) little memory

('green’, 'ideas') space and can be

E:i::; ’ .z;?ﬁp) used in a loop-like
J .

(‘oh', 'so') environment.

('so', 'very')

('very', 'furiously')

>>> bigrams

<generator object bigrams at ©x0©000236371E2BF8>
>>> list(bigrams) Content has been

(1 : exhausted
>»> bigrams = nltk.bigrams(toks)

>»> list(bigrams)

[('Colorless', 'green'), ('green', 'ideas'), ('ideas', 'sleep'), ('sleep', 'oh')
, (‘oh', 'so'), ('so', 'very'), ('very', 'furiously"')]

>35>

11/14/2017

File opening & closing methods

f = open('review.json")
lines = f.readlines()
for 1 in lines:
if "horrible' in 1:
print(1)
f.close()

lines = open('review.json').readlines()
for 1 in lines :

Which methods
are more memory-
efficient?

11/14/2017

if "horrible' in 1: Python will
print(1) close up this
file handle.
f = open('review.json")
for 1 in f:
if 'horrible' in 1:
print(1l)
f.close()

with open('review.json') as f:

for 1 in f:
if 'horrible' in 1:
print(1)

No need to close f.
Some folks swear by using with. 9

Handling files in chunks

f = open('review.json") -

linesl = f.readlines(1000000000) Optional # of bytes to read.
lines2 = f.readlines(1000000000) (But! Not doing it through
lines3 = f.readlines(1000000000) loop like this does not offer
lines4 = f.readlines() memory advantage.)
f.close()

dfs = pd.read_json('review.json', lines=True, chunksize=10000, encoding='utf8"')

wfreq = Counter()

for df in dfs:
wtoks = ' '".join(df['text']).split()
temp = Counter(wtoks)
wfreq.update(temp)

chunksize optional
parameter in pandas'
read_json method reads

print(wfreq.most_common(20)) in 10,000 lines at a time.
Then, iterate through each |

small df.

11/14/2017 10

Breaking up large files

» csplit splits up large files into smaller chunks with equal
line counts.

MINGWES:/c/Users/narae/Documents/Data_Science/dataset = O *

. . ~/Documents/Data_Science/dataset A
$ we -1 review.Json
4736897 review.]son

~/Documents/Data_science/dataset Split 1m lines each,
$ csplit -k -f review-mini review.json 1000000 {5} repeat up to 5 times.

(Overshooting is OK.)

Tine number out of range on repetition 4

~/Documents/Data_Science/dataset
$ we -1 review*
999999 review-mini00
1000000 review-miniOl
1000000 review-mini02
1000000 review-mini03
736898 review-mini04
4736897 review. json
9473794 total

~/Documents/Data_Science/dataset

11/14/2017 11

Supercomputing: what did you learn?

» All right! 45 SUs out of 10,000!

naraehan@loginOb:~

[naraehan@loginOb ~]$ crc-usage.pl 1i1ngl340-2017f | head -30

Service Unit Usage

11ngl340-2017F
10000
11/02/18

Cluster Total
als333
awrl4
ben25
b1h82
cjl171
daz53
juffs
kak275
kt114
mmj 32
naraehan
nh13

11/14/2017 [haraehan@loginOb ~1%

Your code examples: Andrew

#what 1is the rating distribution of reviews that contain the words 'horrible’
or "scrumptious'?
print('Distribution of Horrible and Scrumptious')
#Isolate the reviews with specific words
= df[df['text"'].str.contains("scrumptious", case=False)]
df [df["text'].str.contains("horrible", case = False)]

print("SCRUMPTIOUS")
print('star Count')
print(scrump['stars'].value_counts())

print('\n")

print("HORRIBLE")
print('star Count')
printChorr['stars'].value_counts())

Good job using
pandas's str methods

print('\n") Distribution of ! and ?
1
#which star rating has reviews with the most exclamation marks? fstar Count
stion marks?) 1229329
exclam = df[df['text'].str.contains("!")] 4 551421
quest = df[df['text'].str.contains("/?")] 1 259444
3 179917
print('Distribution of ! and ?') 2 117516
Name: stars, dtype: inté4
print("!")
print('star Count') Il and ? vs.
print(exclam['stars'].value_counts())

print("\n")

print("?")

print('star Count')
print(quest['stars'].value_counts())
[naraehan@loginOb awr14]$% |

tar Count
1988003
1135830
639849
570819
402396
ame: stars, dtype: int64

wn~J

stars. Neat
results!

2 MNWE Ao

11/14/2017

Your code examples: Dan

narachan@loginlb: ~/ling1340-2017f/daz33/hwd_yelp/scripts

[naraehan@loginOb scripts]$ more review_classifier.py

import sys

from collections import Counter

from sklearn.naive_bayes import MultinomialNB

import pandas as pd

import numpy as np

from sklearn.feature_extraction.text import Hashingvectorizer
import warnings

warnings.filterwarnings("ignore", category=Deprecationwarning)

filename = sys.argv[1] _ _
Using chunksize, processes
LENGTH = 4736896

CHUNK_SIZE = 100000 json file in small bits
CHUNKS = LENGTH/CHUNK_SIZE

parts = pd.read_json(filename, lines=True, chunksize=CHUNK_SIZE, encoding="utf-
8")

c1f = Multinomialne () for-loops through tiny df parts,

vectorizer = Hashingvectorizer(non_negative=True))))]
trains ML in partial bits!
for i, df in enumerate(parts):
1f 1 < 0.8*CHUNKS:
clf.partial_fit(vectorizer.transform(df['text']), df['stars'], classes
= [1,2,3,4,5])
else:
pred = clf.predict(vectorizer.transform(df['text']))
print("batch {}, {} accuracy'.format(i, np.mean(pred == df['stars'])))

[naraehan@loginOb scripts]$
11/14/2017

Your code examples: Paige

naraehan@loginlb: ~/ling1340-2017f/pehdd/hwd_yelp

[naraehan@loginOb hw4_yelp]$ more review_length.py
import pandas as pd

import sys

import nltk

filename = sys.argv[1]
df = pd.read_json(filename, 1lines=True, encoding="utf-8')
#Return the Tlength of the review in words
def length(txt):
toks = nltk.word_tokenize(txt)
return len(toks)

#Map the text column to the length column
df['length'] = df.text.map(length)

#group by number of stars and get the average length for each group
df=df.groupby('stars')["length'].mean()

- o= word length for each star category Positive reviews are
print(df.head()) SHORTER!

[naraehan@loginOb

164.594429
165.536732

df.groupby() 153.763293

, o 134.969032
is the way to go!!! 105.520975

Tength, dtype: float64

11/14/2017 ame:

Wrapping up

» To-Do 12

+ Visit your classmates' projects.

» Work on your term project!

* Come see me.

» Presentation schedule

11/14/2017

16

