Lesson 4: Type Conversion,
Mutability, Sequence Indexing

Fundamentals of Text Processing for Linguists
Na-Rae Han

Objectives

» Python data types
» Mutable vs. immutable object types

+ How variable assignment and reference works
» Type conversion

+ Conversion between types
» Sequence types: string, list, tuple

+ |ndexing

+ Slicing

¢ in, +, * operations

* Today's slides borrowed heartily from http://tdc-
www.harvard.edu/Python.pdf

1/29/2014 2

http://tdc-www.harvard.edu/Python.pdf
http://tdc-www.harvard.edu/Python.pdf
http://tdc-www.harvard.edu/Python.pdf

All about palindromes

» Fun reads:

+ "Doubling in the Middle", Sep 2011, The Believer
http://www.believermag.com/issues//201109/?read=article kornbluh

+ "World's Longest Palindrome Sentence?"
by Peter Norvig
http://norvig.com/palindrome.html|

* He uses Python scripts to generate
palindromes using word lists — his
record is 17,826 words!

1/29/2014 3

http://norvig.com/palindrome.html
http://www.believermag.com/issues/201109/?read=article_kornbluh

List is MUTABLE, string is not

» .reverse()

>>> mwords
['Mary', 'had', 'a', 'little', 'lamb']

>>> mwords.reverse() Reverses a list
>>> mwords IN PLACE:
['lamb', 'little', 'a', 'had', 'Mary'] original list
>>> mwords.reverse() is changed
>>> mwords

['Mary', 'had', 'a', 'little', 'lamb']

List is MUTABLE
“ String is IMMUTABLE

>>> wd = 'school' el
>>> wd.upper() cf. String operations
'SCHOOL' do not change the
>>> wd . . .

' <chool" original string!

B —
———— il T
- ~
- ~~
- ~
- ~
- ~
- ~
- ~
P o

1/29/2014 4

)Y
\

Python data types

33 int: integer

5.49 float: floating point number
'Bart’ . _ ;
'Hello, world!" str: string (a piece of text)
['cat', 'dog', 'fox', 'hippo'] list
('Spring', 'Summer', 'Winter', 'Fall') tuple

{'Homer':36, 'Marge':36, 'Bart':10, 'Lisa':8, 'Maggie':1l}

dict: (dictionary) maps a value to an object

1/29/2014 5

Immutable data types

int 33

float 33.5

str 'Hello, world!’
tuple ('Spring', 'Summer',

» In Python, the data types integer, float,
string, and tuple are immutable.

+ Python functions do NOT directly change
these data — they are unchangeable!

+ Instead, a new object is created in
memory and returned.

+ Value change only occurs through a new
assignment statement.

1/29/2014

'"Winter', 'Fall')

>>> X = 'hello’
>>> X.upper()
"HELLO'

>>> X

"hello’

>>> X = X.upper()
>>> X

"HELLO®

Mutable data types
list ['cat', 'dog', 'fox', 'hippo']

dict {'Homer':36, 'Marge':36, 'Bart':10, 'Lisa':8}

» List and dictionary are mutable data types.

* When a Python method* is called on these

data, the operation is done in place. >>> 1i = [13,5,4,2]

o ' >>> li.sort()
< The original data in memory are s> 1i

changed! [2, 4, 5, 13]
+ They are not copied into a new memory
address each time.

* "Methods" are functions that are specific to
a data type. They are "called on" a data
object and have object.method() syntax.

1/29/2014 7

Assignment: under the hood

» Binding a variable in Python means setting a name to hold
a reference to some object.

» Assignment creates references, not copies.

» Names in Python do not have an intrinsic type; objects do.

+ Python determines the type of the reference automatically
based on the data object assigned to it.

» You create a name the first time it appears on the left side
of an assignment statement:

¢ x=3

» A reference is deleted via garbage collection after any
names bound to it have passed out of scope.

1/29/2014 8

Understanding reference semantics

» Assignment manipulates references

+ varl =var2 does not make a copy of the object var2
references

+ varl =var2 makes varl reference the object var2 references!

» So, for immutable data types (integers, floats, strings)
assignment behaves as you would expect:

>>> X = 3 # Creates 3, name X refers to 3

>>> Yy =X # Creates name y, refers to 3

>>> X =4 # Creates ref for 4. Change x to point to it
>>> print y # No effect on y, which still points to 3

3

1/29/2014

Reference vs. immutable types

» So, for immutable datatypes (integers, floats, strings)
assignment behaves as you would expect:

>>> X = 3 # Creates 3, name x refers to 3

>>> Yy =X # Creates name y, refers to 3

>»> X = 4 # Creates ref for 4. Change x to point to it
>>> print y # No effect on y, which still points to 3

3

j =

1/29/2014 10

Reference vs. immutable types

» So, for immutable datatypes (integers, floats, strings)
assignment behaves as you would expect:

>>> X = 3 # Creates 3, name x refers to 3

>>> Yy = X # Creates name y, refers to 3

>»> X = 4 # Creates ref for 4. Change x to point to it
>>> print y # No effect on y, which still points to 3

3

=

1/29/2014 11

Reference vs. immutable types

» So, for immutable datatypes (integers, floats, strings)
assignment behaves as you would expect:

>>> X = 3 # Creates 3, name x refers to 3

>>> Yy =X # Creates name y, refers to 3

>>> X = 4 # Creates ref for 4. Change x to point to it
>>> print y # No effect on y, which still points to 3

3

=
-

1/29/2014 12

Reference vs. mutable types

» Mutable data types (list, dictionaries) behave differently!
+ Method functions change these data in place, so...

>»> x = [1,2,3] # x references list [1,2,3]

>>> Yy = X # y now references what x references

>>> X.append(4) # this changes the original list in memory
>>> print x

[1) 2) 3) 4]

>>> print y

[1, 2, 3, 4] Value of y also changed!

1/29/2014 13

Reference vs. mutable types

» Mutable data types (list, dictionaries) behave differently!
+ Method functions change these data in place, so...

>»> x = [1,2,3] # x references list [1,2,3]
>>> y = X # y now references what x references

>>> X.append(4) # this changes the original list in memory
>>> print x

[1, 2, 3, 4]
>>> print y
[1, 2, 3, 4]

=

1/29/2014 14

Reference vs. mutable types

» Mutable data types (list, dictionaries) behave differently!
+ Method functions change these data in place, so...

>>> x = [1,2,3] # x references list [1,2,3]
>>> Yy = X # y now references what x references

>>> X.append(4) # this changes the original list in memory
>>> print x

[1J 2) 3) 4]
>>> print y
[1J 2) 3) 4]

'_:

1/29/2014 15

Reference vs. mutable types

» Mutable data types (list, dictionaries) behave differently!
+ Method functions change these data in place, so...

>»> x = [1,2,3] # x references list [1,2,3]
>>> Yy = X # y now references what x references

>>> X.append(4) # this changes the original list in memory
>>> print x

[1J 2) 3) 4]
>>> print y
[1J 2) 3) 4]

'_i

1/29/2014 16

Reference vs. mutable types

» Mutable data types (list, dictionaries) behave differently!
+ Method functions change these data in place, so...

>»> x = [1,2,3] # x references list [1,2,3]
>»> Yy = X # y now references what x references

>>> X.append(4) # this changes the original list in memory
>>> print x

[1, 2, 3, 4]
>>> print y
[1, 2, 3, 4]

x and y refer to

- the same object
-7_; 1|2|3|4 in memory!

When x is modified,
y also changes

1/29/2014 17

== VS.

>>> strl
>>> str2
>>> strl
True
>>> strl
True

>>> listl
>>> list2
>>> listl
True
>>> listl
False
>>> listl
>>> listl
True

1/29/2014

= cat
= cat
== str2

1S

is str2

= ['cat’,
= ['cat’,

== list2

is list2

=]list2
is list2

ldogl]
"dog']

tests for
equivalence of
value

IS
tests for
equivalence of the
object in memory

18

Data types in Python

type() displays the data type of the object

>>> h = "hello' # h is str type
>>> h = list(h) # h now refers to a list
>>> h

[lhl, lel, lll, lll, lol]
>>> type(h)
<type 'list'>

» Beware of type conflicts!

>>> w = "Mary’
>>> wW+3
Traceback (most recent call last):
File "<pyshell#68>", line 1, in <module>
W+3
TypeError: cannot concatenate

str' and 'int' objects

1/29/2014

19

Converting between types

int() string, floating point = integer

>>> int(3.141592)
3

float() string, integer = floating point number

>>> float('256")
256.0

str() integer, float, list, tuple, dictionary = string
>>> str(3.141592)
'3,141592"
>>> str([1,2,3,4])
'‘[1, 2, 3, 4]°

list() string, tuple, dictionary = list
>>> list('Mary")
M, tat, ety

1/29/2014

20

Practice: Fix this script! Zminute?_"
\

» "Tip calculator"” script: r

b = raw input('What\'s your bill amount? ") # b is str

tip = b * 0.15
total = b * 1.15

» Open your IDLE editor, and try it out.
+ The script is broken... fix it!

1/29/2014 21

Fixed: type conversion is key

tip_calc2.py - F: /tip_calc2.py - 10] x|
File Edit Format Run Options Windows Help

B .
tip_calc2.py —1
Demonstrates type conversion, successfully this time Don't forget

T Space ' '
= raw_input('What\'s your bill amount? ') # b is str at the end of

float(b) ## b is now a float the prompt
string!

o o
| .

tip = b * 0.15
total = b * 1.15

summary = ‘Your tip amount is $' + str(tip) + "\n' \
+ "Your total payment is $' + str(total)
amounts are now in str type

print summary

Lr: 19|Col: 0

1/29/2014 22

Sequence types

» Three Python basic data types are based on sequence:
+ Strings, lists, and tuples
str 'Hello, world!'
list ['cat’', 'dog', 'fox', 'hippo']
tuple ('Spring', 'Summer', 'Winter', 'Fall')

+ These sequence types share much of the same syntax and
functionality.

+ The operations shown in this section can be applied to all
seguence types

1/29/2014 23

Sequence types

1. String 'hello’
+ A sequence of individual characters
¢+ Immutable
2. List [1, 2, 'ab', 3.14]
+ An ordered sequence of items
+ |tems can be mixed types.
¢ Mutable: items can be changed, added or removed
3. Tuple (1, 2,'ab', 3.14)
+ A fixed sequence of mixed types of items
+ Sort of like a list, but cannot be altered
¢+ Immutable!

1/29/2014 24

Indexing

» Individual items of a string, list, or tuple can be accessed
using square bracket "array" notation: [index]

» Index starts from 0!

>>> st = 'Hello, world!’

>>> st[1]

o

>>> 11 = [1, 2, "ab', 3.14]

>>> 1i[1]

2

>>> tu = ('Homer', 'Marge', 'Bart', 'Lisa')
>>> tu[l]

‘Marge’

1/29/2014

25

Positive vs. negative indices

'Hello!'’
['Mary', 'had', 'a', 'little', 'lamb']

>>> st
>>> 1i

» Positive index: count from the left, starting with O

>>> st[1]
lel

>>> 1i[1]
"had’

» Negative index: count from right, starting with -1
>>> st[-1]
"
>>> 1i[-1] H e l 1 O
'lamb’ 0 1 2 3 4
6 -5 -4 -3 -2

1/29/2014

5
1

26

Slicing returns a copy of a subset

» Slicing syntax: s[start :end]

+ Returns the elements beginning at start and extending up to
but not including end

< Copying starts at the first index, and stops copying before the

second index!
>>> st = "Hello!'’

>>> 1i = [1, 2, 'ab', 3.14, 'c']
>>> st[1:4]
‘ell’
>>> 1i[2:4]
['ab', 3.14]
+ You can also use negative indices when slicing:
>>> st[1:-1]
'ello’
>>> 1i[1:-2]
[2, "ab’]

1/29/2014 27

Slicing

'Hello!'
[1, 2, 'ab', 3.14, 'c']

>>> st
>>> 1i

» Omit the first index [: 5] to make a copy starting from the
beginning:

>>> st[:4]
'Hell"

>>> 1i[:3]
[1, 2, 'ab']

» Omit the second index [2: | to make a copy till the end:

>>> st[1l:]
‘ello!"’

>>> 1i[-3:]
['ab', 3.14, 'c']

1/29/2014

28

Copying the whole sequence

» Use [:] to make a copy of an entire list
>>> 1i = [1, 2, "ab', 3.14, 'c']
>>»> 112 = 1i[:]

» A copy means changes to one does not affect the other!

>>> li.reverse()

>>> 11

['c', 3.14, 'ab', 2, 1]
>>> 1i2

[1, 2, 'ab', 3.14, 'c']

» Remember how reference works with mutable objects:
list2 = listl # 2 names refer to 1 memory object

--> changing one affects both
list2 = listlf[:] # Two independent objects, two refs

1/29/2014 29

The versatile in operator

» For strings, in tests for substrings
>>> 'bat' in 'combative'
True
>>> 'cat' in 'combative'
False

» For lists and tuples, 1n tests for membership

>>> medals = ('gold', 'silver', 'bronze')
>>> 'zinc' in medals

False

>>> 'zinc' not in medals inis al d

True 1n s also u§e as a
keyword in the

>>> 1i syntax of for loops

['c', 3.14, 'ab', 2, 1] and others

>>> 3.141592 in 1li

False

1/29/2u14 30

The + operator

» + produces a new tuple, list, or string whose value is the
concatenation of its arguments.

>>> ('Homer', 'Marge') + ('Bart', 'Lisa', 'Maggie')
('Homer', 'Marge', 'Bart', 'Lisa', 'Maggie')

>>> [1, 2, 3] + [4, 5]
[1, 2, 3, 4, 5]

>>> 'cat' + 'dog' + 'fox'
"catdogfox'

1/29/2014

31

The * operator

» * produces a new tuple, list, or string that "repeats" the
original content.

>>> (1, 2, 3) * 3
(1J 2) 3) 1) 2) 3.’ 1) 2) 3)

>>> ['a', 'b', 'c'] *3
[lal, lbl, IC', lal, lbl, ICI-’ lal, Ibl, ICI]

>>> 'Hello" * 3
'"HelloHelloHello'

1/29/2014

32

String indexing examples

>>> w = 'python’

>>> w[2]

e

>>> W[5]

n'

>>> w[9]

Traceback (most recent call last):

File "<pyshell#8>", line 1, in <module>

w[9]

IndexError: string index out of range

>>> w[-3]

‘h

>>> w[2:4]

“th'

>>> W[0:3]

pyt’

>>> w[2:]

"thon’

>>> w[-5:]

"ython'

python

6 -5 -4 -3 -2 -1

>>> W[:4]
"‘pyth’

>>> w[:-1]
'pytho’

>>> w[2:100]
"thon'

>»> w[:2] + w[2:]
"python’

>>> w[:3] + w[3:]
"python’

>>> W[:]

"python’

>>> W[4:4]

Practice: a vs. an 3 minutd
Indefinite NP Generator \ J

.
» Write a Python script that:
¢ prompts for a noun
+ prints out the indefinite article (a/an), and the noun

< It must pick the correct indefinite article!
€ "a cat" vs. "an ow!"

3% EE=S=E===S=S=S=============:
>>? » Describe the algorithm
What is your noun? cat . ’
2 cat step-by-step. Specify
5% EZ=E======o—==============: Wh|Ch Python funct|on
> you will use with each
What 1s your noun? owl

step.
an owl
>>>

1/29/2014 34

a_an.py - F:/Portable Python 2.7.3.1/a_an.py - 0| x|
File Edit Format Run Options Windows Help

a_anl.py
Prompts for a noun, and then prints out a/an and then the noun
Demonstrates string indexing

noun = raw_input('What is your noun?)
it noun.startswith('a’') or noun.startswith('e') \

or noun.startswith('i") or noun.startswith('o") \
or noun.startswith('u’) :

art = "an’
else
art = 'a’
print art, noun Attempt 1.

Works, but crude

Lr: 18|Col; 0

a_an.py - F:/Portable Python 2.7.3.1/a_an.py - 0| x|
File Edit Format Run Options Windows Help

a_an2.py

Prompts for a noun, and then prints out a/an and then the noun
Demonstrates string indexing

noun = raw_input('What is your noun?)

vowels = ['a’, 'e', "1', 'o', 'u'] # list of "vowel"s
it noun[@] in vowels : # first char is a vowel
art = "an’
else
art = 'a’
Attempt 2.
npiz art+' "+noun Elegant!
print np ,
Uses string
indexing & list

membership test

Lr: 1/Col: O

Practice: Gerund Generator 3 minut

es
» Write a Python script that: i \ N

* prompts for a verb (base form)
+ and then prints out its gerund form, i.e., suffixed with '-ing'

;:}*t _ s o1 ¢+ CAVEAT: Account for verbal
at 1S your verbr sleep stems that end with 'ce'

sleeping

3% EZ==Z=D==—================ * Walk 9 Wa|k|ng

55>

What is your verb? make + sleep = sleeping

making * make =2 making

>>2

+ live = living

+ KEY: How to derive 'mak’
from 'make'?

1/29/2014 37

verb_ing.py - F:/Portable Python 2.7.3.1 /verb_ing.py =10 x|

File Edit Format Run Opfions Windows Help

verb_ing.py
Prompts for a verb, and then prints out the gerund form

f ‘-e' will be dropped from the end of verbal stem

NOTE: Script will produce be -> *bing, see -> *seing

Demonstrates string indexing

__

verb = raw_input('What is your verb? ")

it verb[-1] == 'e' : # make, live, argue
stem = verb[:-1] # mak, liv, argu
else
stem = verb

ger = stem+'ing’
print ger

Ln: 17 [Cal; 9

1/29/2014 38

Looking ahead

» for x in LIST

+ jterates through a list for doing something to each element

>>> simpsons = ['Homer', 'Marge', 'Bart’, 'lLisa', 'Maggie']
>>> for s in simpsons :
print s, '1s a Simpson.’

Press <1 ENTER
at the end

Homer 1s a Simpson. of each line

Marge is a Simpson.
Bart is a Simpson.
Lisa is a Simpson.
Maggie is a Simpson.
>>>

< lterates through every element s of the simpsons list and
prints the value of s followed by 'is a Simpson.'.

1/29/2014 39

Wrap-up

» Next class
+ Loops! for loop, while loop

» Exercise #4
¢ Due Tuesday midnight

* Practice Python for 1 hour: review what we learned in class,
and explore on your own.

1/29/2014

40

