
Lesson 4: Type Conversion, 

Mutability, Sequence Indexing 

Fundamentals of Text Processing for Linguists  

Na-Rae Han 



Objectives 

 Python data types 

 Mutable vs. immutable object types 

 How variable assignment and reference works 

 Type conversion 

 Conversion between types 

 Sequence types: string, list, tuple 

 Indexing 

 Slicing 

 in, +, * operations 

 

* Today's slides borrowed heartily from http://tdc-
www.harvard.edu/Python.pdf 

 
1/29/2014 2 

http://tdc-www.harvard.edu/Python.pdf
http://tdc-www.harvard.edu/Python.pdf
http://tdc-www.harvard.edu/Python.pdf


All about palindromes 

1/29/2014 3 

 

  "World's Longest Palindrome Sentence?" 
by Peter Norvig 

http://norvig.com/palindrome.html 

 He uses Python scripts to generate 
palindromes using word lists –  his 
record is 17,826 words! 

 Fun reads:  

 "Doubling in the Middle", Sep 2011,  The Believer 
http://www.believermag.com/issues//201109/?read=article_kornbluh 

 

http://norvig.com/palindrome.html
http://www.believermag.com/issues/201109/?read=article_kornbluh


 .reverse() 

>>> wd = 'school' 
>>> wd.upper() 
'SCHOOL'  
>>> wd 
'school'  

>>> mwords 
['Mary', 'had', 'a', 'little', 'lamb']  
>>> mwords.reverse() 
>>> mwords 
['lamb', 'little', 'a', 'had', 'Mary'] 
>>> mwords.reverse() 
>>> mwords 
['Mary', 'had', 'a', 'little', 'lamb'] 

List is MUTABLE, string is not 

1/29/2014 4 

Reverses a list 
IN PLACE:  

original list  
is changed 

cf. String operations 
do not change the 

original string!  

List is MUTABLE 
String is IMMUTABLE 



Python data types 

1/29/2014 5 

33 

5.49 

 

'Bart' 

'Hello, world!' 

 

['cat', 'dog', 'fox', 'hippo'] 

 

('Spring', 'Summer', 'Winter', 'Fall') 

 

{'Homer':36, 'Marge':36, 'Bart':10, 'Lisa':8, 'Maggie':1} 

 

 

 

int: integer 

float: floating point number 

str: string (a piece of text) 

list 

tuple 

dict: (dictionary) maps a value to an object 



Immutable data types 

1/29/2014 6 

int  33 

float  33.5 

str  'Hello, world!' 

tuple  ('Spring', 'Summer', 'Winter', 'Fall') 

 

 

 

 

 

 In Python, the data types integer, float, 
string, and tuple are immutable. 

 Python functions do NOT directly change 
these data – they are unchangeable! 

 Instead, a new object is created in 
memory and returned.  

 Value change only occurs through a new 
assignment statement. 

 

 



Mutable data types 

1/29/2014 7 

list    ['cat', 'dog', 'fox', 'hippo'] 

dict  {'Homer':36, 'Marge':36, 'Bart':10, 'Lisa':8} 
 

 

 

 List and dictionary are mutable data types. 

 When a Python method* is called on these 
data, the operation is done in place.  

 The original data in memory are 
changed!  

 They are not copied into a new memory 
address each time.  

* "Methods" are functions that are specific to 
a data type.  They are "called on" a data 
object and have object.method() syntax.  

 



Assignment: under the hood 

1/29/2014 8 

 Binding a variable in Python means setting a name to hold 
a reference to some object. 

 Assignment creates references, not copies. 

 Names in Python do not have an intrinsic type; objects do.  

 Python determines the type of the reference automatically 
based on the data object assigned to it.  

 You create a name the first time it appears on the left side 
of an assignment statement: 

 x = 3 

 A reference is deleted via garbage collection after any 
names bound to it have passed out of scope. 



Understanding reference semantics 

1/29/2014 9 

 Assignment manipulates references 

 var1 = var2 does not make a copy of the object var2 
references 

 var1 = var2 makes var1 reference the object var2 references! 

 

 So, for immutable data types (integers, floats, strings) 
assignment behaves as you would expect: 

 

 

 

>>> x = 3        # Creates 3, name x refers to 3 

>>> y = x        # Creates name y, refers to 3 

>>> x = 4        # Creates ref for 4. Change x to point to it  

>>> print y      # No effect on y, which still points to 3 

3  



Reference vs. immutable types 

1/29/2014 10 

 So, for immutable datatypes (integers, floats, strings) 
assignment behaves as you would expect: 

 

 

 

int 3 

x 

>>> x = 3        # Creates 3, name x refers to 3 

>>> y = x        # Creates name y, refers to 3 

>>> x = 4        # Creates ref for 4. Change x to point to it  

>>> print y      # No effect on y, which still points to 3 

3  



Reference vs. immutable types 

1/29/2014 11 

 So, for immutable datatypes (integers, floats, strings) 
assignment behaves as you would expect: 

 

 

 

int 3 

x 

y 

>>> x = 3        # Creates 3, name x refers to 3 

>>> y = x        # Creates name y, refers to 3 

>>> x = 4        # Creates ref for 4. Change x to point to it  

>>> print y      # No effect on y, which still points to 3 

3  



Reference vs. immutable types 

1/29/2014 12 

 So, for immutable datatypes (integers, floats, strings) 
assignment behaves as you would expect: 

 

 

 

int 4 x 

y 

>>> x = 3        # Creates 3, name x refers to 3 

>>> y = x        # Creates name y, refers to 3 

>>> x = 4        # Creates ref for 4. Change x to point to it  

>>> print y      # No effect on y, which still points to 3 

3  

int 3 



Reference vs. mutable types 

1/29/2014 13 

 Mutable data types (list, dictionaries) behave differently! 

 Method functions change these data in place, so…  

>>> x = [1,2,3]       # x references list [1,2,3] 

>>> y = x             # y now references what x references 

>>> x.append(4)       # this changes the original list in memory 

>>> print x 

[1, 2, 3, 4] 

>>> print y 

[1, 2, 3, 4] Value of y also changed! 



Reference vs. mutable types 

1/29/2014 14 

 Mutable data types (list, dictionaries) behave differently! 

 Method functions change these data in place, so…  

int 1|2|3 

x 

>>> x = [1,2,3]       # x references list [1,2,3] 

>>> y = x             # y now references what x references 

>>> x.append(4)       # this changes the original list in memory 

>>> print x 

[1, 2, 3, 4] 

>>> print y 

[1, 2, 3, 4] 



Reference vs. mutable types 

1/29/2014 15 

 Mutable data types (list, dictionaries) behave differently! 

 Method functions change these data in place, so…  

int 1|2|3 

x 

y 

>>> x = [1,2,3]       # x references list [1,2,3] 

>>> y = x             # y now references what x references 

>>> x.append(4)       # this changes the original list in memory 

>>> print x 

[1, 2, 3, 4] 

>>> print y 

[1, 2, 3, 4] 



 Mutable data types (list, dictionaries) behave differently! 

 Method functions change these data in place, so…  

>>> x = [1,2,3]       # x references list [1,2,3] 

>>> y = x             # y now references what x references 

>>> x.append(4)       # this changes the original list in memory 

>>> print x 

[1, 2, 3, 4] 

>>> print y 

[1, 2, 3, 4] 

Reference vs. mutable types 

1/29/2014 16 

int 1|2|3|4 

x 

y 



Reference vs. mutable types 

1/29/2014 17 

 Mutable data types (list, dictionaries) behave differently! 

 Method functions change these data in place, so…  

int 1|2|3|4 

x 

y 

x and y refer to  
the same object 

in memory! 
When x is modified, 

y also changes 

>>> x = [1,2,3]       # x references list [1,2,3] 

>>> y = x             # y now references what x references 

>>> x.append(4)       # this changes the original list in memory 

>>> print x 

[1, 2, 3, 4] 

>>> print y 

[1, 2, 3, 4] 



== vs. is 

1/29/2014 18 

>>> str1 = 'cat' 

>>> str2 = 'cat' 

>>> str1 == str2 

True 

>>> str1 is str2 

True 

 

>>> list1 = ['cat', 'dog'] 

>>> list2 = ['cat', 'dog'] 

>>> list1 == list2 

True 

>>> list1 is list2 

False 

>>> list1 = list2 

>>> list1 is list2 

True 

==  
tests for 

equivalence of 
value 

is  
tests for  

equivalence of the 
object in memory 



Data types in Python 

1/29/2014 19 

type() displays the data type of the object 

 

 

 

 

 Beware of type conflicts!  

 

 

 

>>> h = 'hello' # h is str type 

>>> h = list(h) # h now refers to a list 

>>> h 

['h', 'e', 'l', 'l', 'o'] 

>>> type(h) 

<type 'list'> 

>>> w = 'Mary' 

>>> w+3 

Traceback (most recent call last): 

  File "<pyshell#68>", line 1, in <module> 

    w+3 

TypeError: cannot concatenate 'str' and 'int' objects 



Converting between types 

1/29/2014 20 

int()  string, floating point   integer 

 
 

float() string, integer  floating point number 

 
 

str()  integer, float , list, tuple, dictionary  string 

 

 
 

list() string, tuple, dictionary  list 

 

>>> int(3.141592) 

3 

>>> float('256') 

256.0 

>>> str(3.141592) 

'3.141592' 

>>> str([1,2,3,4]) 

'[1, 2, 3, 4]' 

>>> list('Mary') 

['M', 'a', 'r', 'y'] 



Practice: Fix this script!  

1/29/2014 21 

 "Tip calculator" script: 

 

 

 

 

 

 

 

 Open your IDLE editor, and try it out. 

 The script is broken… fix it!  

2 minutes 



Fixed: type conversion is key 

1/29/2014 22 

Don't forget 
Space  '  ' 

at the end of  
the prompt 

string! 



Sequence types 

1/29/2014 23 

 Three Python basic data types are based on sequence: 

 Strings, lists, and tuples 

  str 'Hello, world!' 

  list ['cat', 'dog', 'fox', 'hippo'] 

  tuple ('Spring', 'Summer', 'Winter', 'Fall') 

   

 These sequence types share much of the same syntax and 
functionality. 

 The operations shown in this section can be applied to all 
sequence types 



Sequence types 

1/29/2014 24 

1. String 

 A sequence of individual characters 

 Immutable 

2. List 

 An ordered sequence of items 

 Items can be mixed types.  

 Mutable: items can be changed, added or removed 

3. Tuple 

 A fixed sequence of mixed types of items 

 Sort of like a list, but cannot be altered 

 Immutable! 

 

'hello' 

[1, 2, 'ab', 3.14] 

(1, 2,'ab', 3.14)  



Indexing  

1/29/2014 25 

 Individual items of a string, list, or tuple can be accessed 
using square bracket "array" notation: [index]  

 Index starts from 0!  

 
>>> st = 'Hello, world!' 

>>> st[1] 

'e' 

>>> li = [1, 2, 'ab', 3.14] 

>>> li[1] 

2 

>>> tu = ('Homer', 'Marge', 'Bart', 'Lisa') 

>>> tu[1] 

'Marge' 



Positive vs. negative indices 

1/29/2014 26 

 

 

 Positive index: count from the left, starting with 0 

 

 

 

 Negative index: count from right, starting with -1 

 

>>> st = 'Hello!' 

>>> li = ['Mary', 'had', 'a', 'little', 'lamb'] 

>>> st[1] 

'e' 

>>> li[1] 

'had' 

>>> st[-1] 

'!' 

>>> li[-1] 

'lamb' 

Hello! 
0 1 2 3 4 5 

-6 -5 -4 -3 -2 -1 



Slicing returns a copy of a subset 

1/29/2014 27 

 Slicing syntax:    s[start :end]  

 Returns the elements beginning at start and extending up to 
but not including end 

 Copying starts at the first index, and stops copying before the 
second index! 

 

 

 

 

 You can also use negative indices when slicing: 

 

>>> st = 'Hello!' 

>>> li = [1, 2, 'ab', 3.14, 'c'] 

>>> st[1:4] 

'ell' 

>>> li[2:4] 

['ab', 3.14] 

>>> st[1:-1] 

'ello' 

>>> li[1:-2] 

[2, 'ab'] 



Slicing  

1/29/2014 28 

 

 

 Omit the first index [:5] to make a copy starting from the 
beginning: 

 

 

 

 Omit the second index [2:] to make a copy till the end: 

>>> st = 'Hello!' 

>>> li = [1, 2, 'ab', 3.14, 'c'] 

>>> st[:4] 

'Hell' 

>>> li[:3] 

[1, 2, 'ab'] 

>>> st[1:] 

'ello!' 

>>> li[-3:] 

['ab', 3.14, 'c'] 



Copying the whole sequence 

1/29/2014 29 

 Use [:] to make a copy of an entire list 

 
 

 A copy means changes to one does not affect the other!  

 

 

 
 Remember how reference works with mutable objects: 

 list2 = list1   # 2 names refer to 1 memory object 

                                                    # --> changing one affects both 

 list2 = list1[:]         # Two independent objects, two refs 

>>> li = [1, 2, 'ab', 3.14, 'c'] 

>>> li2 = li[:]  

>>> li.reverse() 

>>> li 

['c', 3.14, 'ab', 2, 1] 

>>> li2 

[1, 2, 'ab', 3.14, 'c'] 



The versatile in operator 

1/29/2014 30 

 For strings, in tests for substrings 

 

 

 

 For lists and tuples, in tests for membership 

>>> 'bat' in 'combative' 

True 

>>> 'cat' in 'combative' 

False 

>>> medals = ('gold', 'silver', 'bronze') 

>>> 'zinc' in medals 

False 

>>> 'zinc' not in medals 

True 

 

>>> li 

['c', 3.14, 'ab', 2, 1] 

>>> 3.141592 in li 

False 

in is also used as a 
keyword in the 

syntax of for loops 
and others  



The + operator 

1/29/2014 31 

 + produces a new tuple, list, or string whose value is the 
concatenation of its arguments. 

 
>>> ('Homer', 'Marge') + ('Bart', 'Lisa', 'Maggie') 

('Homer', 'Marge', 'Bart', 'Lisa', 'Maggie') 

 

 

>>> [1, 2, 3] + [4, 5] 

[1, 2, 3, 4, 5] 

 

 

>>> 'cat' + 'dog' + 'fox' 

'catdogfox' 



The * operator 

1/29/2014 32 

 * produces a new tuple, list, or string that "repeats" the 
original content. 

>>> (1, 2, 3) * 3 

(1, 2, 3, 1, 2, 3, 1, 2, 3) 

 

 

>>> ['a', 'b', 'c'] *3 

['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c'] 

 

 

>>> 'Hello' * 3 

'HelloHelloHello' 



>>> w = 'python' 

>>> w[2] 

't' 

>>> w[5] 

'n' 

>>> w[9] 
Traceback (most recent call last): 

  File "<pyshell#8>", line 1, in <module> 

    w[9] 

IndexError: string index out of range 

>>> w[-3] 

'h' 

>>> w[2:4] 

'th' 

>>> w[0:3] 

'pyt' 

>>> w[2:] 

'thon' 

>>> w[-5:] 

'ython' 

String indexing examples 

33 

python 
0 1 2 3 4 5 

-6 -5 -4 -3 -2 -1 

>>> w[:4] 

'pyth' 

>>> w[:-1] 

'pytho' 

>>> w[2:100] 

'thon' 

>>> w[:2] + w[2:] 

'python' 

>>> w[:3] + w[3:] 

'python' 

>>> w[:] 

'python' 

>>> w[4:4] 

'' 



Practice: a vs. an 

1/29/2014 34 

Indefinite NP Generator 

 Write a Python script that: 

 prompts for a noun  

 prints out the indefinite article (a/an), and the noun 

         It must pick the correct indefinite article!  

   "a cat" vs. "an owl" 
 

3 minutes 

 Describe the algorithm, 
step-by-step. Specify 
which Python function 
you will use with each 
step.  

 



1/29/2014 35 

Attempt 1. 
Works, but crude 



1/29/2014 36 

Attempt 2. 
Elegant!  

Uses string 
indexing & list 

membership test 



Practice: Gerund Generator 

1/29/2014 37 

 Write a Python script that: 

 prompts for a verb (base form) 

 and then prints out its gerund form, i.e., suffixed with '-ing' 

 

 

 

 

 

 

3 minutes 

 CAVEAT: Account for verbal 
stems that end with 'ςe' 

 
 

 

 

 

 KEY: How to derive 'mak' 
from 'make'?  

 walk  walking 

 sleep  sleeping 

 make  making 

 live  living 

 

 



1/29/2014 38 



 for x in LIST :  

 iterates through a list for doing something to each element 

 

 

 

 

 

 

 

 Iterates through every element s of the simpsons list and 
prints the value of s followed by  'is a Simpson.' .  

 

Looking ahead 

1/29/2014 39 

Press   ENTER 
at the end  

of each line  



Wrap-up 

1/29/2014 40 

 Next class 

 Loops! for loop, while loop 

 

 Exercise #4 

 Due Tuesday midnight 

 Practice Python for 1 hour: review what we learned in class, 
and explore on your own.  

 


