
Lesson 4: Type Conversion,

Mutability, Sequence Indexing

Fundamentals of Text Processing for Linguists

Na-Rae Han

Objectives

 Python data types

 Mutable vs. immutable object types

 How variable assignment and reference works

 Type conversion

 Conversion between types

 Sequence types: string, list, tuple

 Indexing

 Slicing

 in, +, * operations

* Today's slides borrowed heartily from http://tdc-
www.harvard.edu/Python.pdf

1/29/2014 2

http://tdc-www.harvard.edu/Python.pdf
http://tdc-www.harvard.edu/Python.pdf
http://tdc-www.harvard.edu/Python.pdf

All about palindromes

1/29/2014 3

 "World's Longest Palindrome Sentence?"
by Peter Norvig

http://norvig.com/palindrome.html

 He uses Python scripts to generate
palindromes using word lists – his
record is 17,826 words!

 Fun reads:

 "Doubling in the Middle", Sep 2011, The Believer
http://www.believermag.com/issues//201109/?read=article_kornbluh

http://norvig.com/palindrome.html
http://www.believermag.com/issues/201109/?read=article_kornbluh

 .reverse()

>>> wd = 'school'
>>> wd.upper()
'SCHOOL'
>>> wd
'school'

>>> mwords
['Mary', 'had', 'a', 'little', 'lamb']
>>> mwords.reverse()
>>> mwords
['lamb', 'little', 'a', 'had', 'Mary']
>>> mwords.reverse()
>>> mwords
['Mary', 'had', 'a', 'little', 'lamb']

List is MUTABLE, string is not

1/29/2014 4

Reverses a list
IN PLACE:

original list
is changed

cf. String operations
do not change the

original string!

List is MUTABLE
String is IMMUTABLE

Python data types

1/29/2014 5

33

5.49

'Bart'

'Hello, world!'

['cat', 'dog', 'fox', 'hippo']

('Spring', 'Summer', 'Winter', 'Fall')

{'Homer':36, 'Marge':36, 'Bart':10, 'Lisa':8, 'Maggie':1}

int: integer

float: floating point number

str: string (a piece of text)

list

tuple

dict: (dictionary) maps a value to an object

Immutable data types

1/29/2014 6

int 33

float 33.5

str 'Hello, world!'

tuple ('Spring', 'Summer', 'Winter', 'Fall')

 In Python, the data types integer, float,
string, and tuple are immutable.

 Python functions do NOT directly change
these data – they are unchangeable!

 Instead, a new object is created in
memory and returned.

 Value change only occurs through a new
assignment statement.

Mutable data types

1/29/2014 7

list ['cat', 'dog', 'fox', 'hippo']

dict {'Homer':36, 'Marge':36, 'Bart':10, 'Lisa':8}

 List and dictionary are mutable data types.

 When a Python method* is called on these
data, the operation is done in place.

 The original data in memory are
changed!

 They are not copied into a new memory
address each time.

* "Methods" are functions that are specific to
a data type. They are "called on" a data
object and have object.method() syntax.

Assignment: under the hood

1/29/2014 8

 Binding a variable in Python means setting a name to hold
a reference to some object.

 Assignment creates references, not copies.

 Names in Python do not have an intrinsic type; objects do.

 Python determines the type of the reference automatically
based on the data object assigned to it.

 You create a name the first time it appears on the left side
of an assignment statement:

 x = 3

 A reference is deleted via garbage collection after any
names bound to it have passed out of scope.

Understanding reference semantics

1/29/2014 9

 Assignment manipulates references

 var1 = var2 does not make a copy of the object var2
references

 var1 = var2 makes var1 reference the object var2 references!

 So, for immutable data types (integers, floats, strings)
assignment behaves as you would expect:

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3

>>> x = 4 # Creates ref for 4. Change x to point to it

>>> print y # No effect on y, which still points to 3

3

Reference vs. immutable types

1/29/2014 10

 So, for immutable datatypes (integers, floats, strings)
assignment behaves as you would expect:

int 3

x

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3

>>> x = 4 # Creates ref for 4. Change x to point to it

>>> print y # No effect on y, which still points to 3

3

Reference vs. immutable types

1/29/2014 11

 So, for immutable datatypes (integers, floats, strings)
assignment behaves as you would expect:

int 3

x

y

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3

>>> x = 4 # Creates ref for 4. Change x to point to it

>>> print y # No effect on y, which still points to 3

3

Reference vs. immutable types

1/29/2014 12

 So, for immutable datatypes (integers, floats, strings)
assignment behaves as you would expect:

int 4 x

y

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3

>>> x = 4 # Creates ref for 4. Change x to point to it

>>> print y # No effect on y, which still points to 3

3

int 3

Reference vs. mutable types

1/29/2014 13

 Mutable data types (list, dictionaries) behave differently!

 Method functions change these data in place, so…

>>> x = [1,2,3] # x references list [1,2,3]

>>> y = x # y now references what x references

>>> x.append(4) # this changes the original list in memory

>>> print x

[1, 2, 3, 4]

>>> print y

[1, 2, 3, 4] Value of y also changed!

Reference vs. mutable types

1/29/2014 14

 Mutable data types (list, dictionaries) behave differently!

 Method functions change these data in place, so…

int 1|2|3

x

>>> x = [1,2,3] # x references list [1,2,3]

>>> y = x # y now references what x references

>>> x.append(4) # this changes the original list in memory

>>> print x

[1, 2, 3, 4]

>>> print y

[1, 2, 3, 4]

Reference vs. mutable types

1/29/2014 15

 Mutable data types (list, dictionaries) behave differently!

 Method functions change these data in place, so…

int 1|2|3

x

y

>>> x = [1,2,3] # x references list [1,2,3]

>>> y = x # y now references what x references

>>> x.append(4) # this changes the original list in memory

>>> print x

[1, 2, 3, 4]

>>> print y

[1, 2, 3, 4]

 Mutable data types (list, dictionaries) behave differently!

 Method functions change these data in place, so…

>>> x = [1,2,3] # x references list [1,2,3]

>>> y = x # y now references what x references

>>> x.append(4) # this changes the original list in memory

>>> print x

[1, 2, 3, 4]

>>> print y

[1, 2, 3, 4]

Reference vs. mutable types

1/29/2014 16

int 1|2|3|4

x

y

Reference vs. mutable types

1/29/2014 17

 Mutable data types (list, dictionaries) behave differently!

 Method functions change these data in place, so…

int 1|2|3|4

x

y

x and y refer to
the same object

in memory!
When x is modified,

y also changes

>>> x = [1,2,3] # x references list [1,2,3]

>>> y = x # y now references what x references

>>> x.append(4) # this changes the original list in memory

>>> print x

[1, 2, 3, 4]

>>> print y

[1, 2, 3, 4]

== vs. is

1/29/2014 18

>>> str1 = 'cat'

>>> str2 = 'cat'

>>> str1 == str2

True

>>> str1 is str2

True

>>> list1 = ['cat', 'dog']

>>> list2 = ['cat', 'dog']

>>> list1 == list2

True

>>> list1 is list2

False

>>> list1 = list2

>>> list1 is list2

True

==
tests for

equivalence of
value

is
tests for

equivalence of the
object in memory

Data types in Python

1/29/2014 19

type() displays the data type of the object

 Beware of type conflicts!

>>> h = 'hello' # h is str type

>>> h = list(h) # h now refers to a list

>>> h

['h', 'e', 'l', 'l', 'o']

>>> type(h)

<type 'list'>

>>> w = 'Mary'

>>> w+3

Traceback (most recent call last):

 File "<pyshell#68>", line 1, in <module>

 w+3

TypeError: cannot concatenate 'str' and 'int' objects

Converting between types

1/29/2014 20

int() string, floating point integer

float() string, integer floating point number

str() integer, float , list, tuple, dictionary string

list() string, tuple, dictionary list

>>> int(3.141592)

3

>>> float('256')

256.0

>>> str(3.141592)

'3.141592'

>>> str([1,2,3,4])

'[1, 2, 3, 4]'

>>> list('Mary')

['M', 'a', 'r', 'y']

Practice: Fix this script!

1/29/2014 21

 "Tip calculator" script:

 Open your IDLE editor, and try it out.

 The script is broken… fix it!

2 minutes

Fixed: type conversion is key

1/29/2014 22

Don't forget
Space ' '

at the end of
the prompt

string!

Sequence types

1/29/2014 23

 Three Python basic data types are based on sequence:

 Strings, lists, and tuples

 str 'Hello, world!'

 list ['cat', 'dog', 'fox', 'hippo']

 tuple ('Spring', 'Summer', 'Winter', 'Fall')

 These sequence types share much of the same syntax and
functionality.

 The operations shown in this section can be applied to all
sequence types

Sequence types

1/29/2014 24

1. String

 A sequence of individual characters

 Immutable

2. List

 An ordered sequence of items

 Items can be mixed types.

 Mutable: items can be changed, added or removed

3. Tuple

 A fixed sequence of mixed types of items

 Sort of like a list, but cannot be altered

 Immutable!

'hello'

[1, 2, 'ab', 3.14]

(1, 2,'ab', 3.14)

Indexing

1/29/2014 25

 Individual items of a string, list, or tuple can be accessed
using square bracket "array" notation: [index]

 Index starts from 0!

>>> st = 'Hello, world!'

>>> st[1]

'e'

>>> li = [1, 2, 'ab', 3.14]

>>> li[1]

2

>>> tu = ('Homer', 'Marge', 'Bart', 'Lisa')

>>> tu[1]

'Marge'

Positive vs. negative indices

1/29/2014 26

 Positive index: count from the left, starting with 0

 Negative index: count from right, starting with -1

>>> st = 'Hello!'

>>> li = ['Mary', 'had', 'a', 'little', 'lamb']

>>> st[1]

'e'

>>> li[1]

'had'

>>> st[-1]

'!'

>>> li[-1]

'lamb'

Hello!
0 1 2 3 4 5

-6 -5 -4 -3 -2 -1

Slicing returns a copy of a subset

1/29/2014 27

 Slicing syntax: s[start :end]

 Returns the elements beginning at start and extending up to
but not including end

 Copying starts at the first index, and stops copying before the
second index!

 You can also use negative indices when slicing:

>>> st = 'Hello!'

>>> li = [1, 2, 'ab', 3.14, 'c']

>>> st[1:4]

'ell'

>>> li[2:4]

['ab', 3.14]

>>> st[1:-1]

'ello'

>>> li[1:-2]

[2, 'ab']

Slicing

1/29/2014 28

 Omit the first index [:5] to make a copy starting from the
beginning:

 Omit the second index [2:] to make a copy till the end:

>>> st = 'Hello!'

>>> li = [1, 2, 'ab', 3.14, 'c']

>>> st[:4]

'Hell'

>>> li[:3]

[1, 2, 'ab']

>>> st[1:]

'ello!'

>>> li[-3:]

['ab', 3.14, 'c']

Copying the whole sequence

1/29/2014 29

 Use [:] to make a copy of an entire list

 A copy means changes to one does not affect the other!

 Remember how reference works with mutable objects:

 list2 = list1 # 2 names refer to 1 memory object

 # --> changing one affects both

 list2 = list1[:] # Two independent objects, two refs

>>> li = [1, 2, 'ab', 3.14, 'c']

>>> li2 = li[:]

>>> li.reverse()

>>> li

['c', 3.14, 'ab', 2, 1]

>>> li2

[1, 2, 'ab', 3.14, 'c']

The versatile in operator

1/29/2014 30

 For strings, in tests for substrings

 For lists and tuples, in tests for membership

>>> 'bat' in 'combative'

True

>>> 'cat' in 'combative'

False

>>> medals = ('gold', 'silver', 'bronze')

>>> 'zinc' in medals

False

>>> 'zinc' not in medals

True

>>> li

['c', 3.14, 'ab', 2, 1]

>>> 3.141592 in li

False

in is also used as a
keyword in the

syntax of for loops
and others

The + operator

1/29/2014 31

 + produces a new tuple, list, or string whose value is the
concatenation of its arguments.

>>> ('Homer', 'Marge') + ('Bart', 'Lisa', 'Maggie')

('Homer', 'Marge', 'Bart', 'Lisa', 'Maggie')

>>> [1, 2, 3] + [4, 5]

[1, 2, 3, 4, 5]

>>> 'cat' + 'dog' + 'fox'

'catdogfox'

The * operator

1/29/2014 32

 * produces a new tuple, list, or string that "repeats" the
original content.

>>> (1, 2, 3) * 3

(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> ['a', 'b', 'c'] *3

['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']

>>> 'Hello' * 3

'HelloHelloHello'

>>> w = 'python'

>>> w[2]

't'

>>> w[5]

'n'

>>> w[9]
Traceback (most recent call last):

 File "<pyshell#8>", line 1, in <module>

 w[9]

IndexError: string index out of range

>>> w[-3]

'h'

>>> w[2:4]

'th'

>>> w[0:3]

'pyt'

>>> w[2:]

'thon'

>>> w[-5:]

'ython'

String indexing examples

33

python
0 1 2 3 4 5

-6 -5 -4 -3 -2 -1

>>> w[:4]

'pyth'

>>> w[:-1]

'pytho'

>>> w[2:100]

'thon'

>>> w[:2] + w[2:]

'python'

>>> w[:3] + w[3:]

'python'

>>> w[:]

'python'

>>> w[4:4]

''

Practice: a vs. an

1/29/2014 34

Indefinite NP Generator

 Write a Python script that:

 prompts for a noun

 prints out the indefinite article (a/an), and the noun

 It must pick the correct indefinite article!

 "a cat" vs. "an owl"

3 minutes

 Describe the algorithm,
step-by-step. Specify
which Python function
you will use with each
step.

1/29/2014 35

Attempt 1.
Works, but crude

1/29/2014 36

Attempt 2.
Elegant!

Uses string
indexing & list

membership test

Practice: Gerund Generator

1/29/2014 37

 Write a Python script that:

 prompts for a verb (base form)

 and then prints out its gerund form, i.e., suffixed with '-ing'

3 minutes

 CAVEAT: Account for verbal
stems that end with 'ςe'

 KEY: How to derive 'mak'
from 'make'?

 walk walking

 sleep sleeping

 make making

 live living

1/29/2014 38

 for x in LIST :

 iterates through a list for doing something to each element

 Iterates through every element s of the simpsons list and
prints the value of s followed by 'is a Simpson.' .

Looking ahead

1/29/2014 39

Press ENTER
at the end

of each line

Wrap-up

1/29/2014 40

 Next class

 Loops! for loop, while loop

 Exercise #4

 Due Tuesday midnight

 Practice Python for 1 hour: review what we learned in class,
and explore on your own.

