CS 1674/2074: Intro to Computer Vision

PhD. Nils Murrugarra-Llerena

nem177@pitt.edu

Who am I?

B.S. Computer Science at National University of Trujillo

M.S. in Computer Science at University of São Paulo in Al

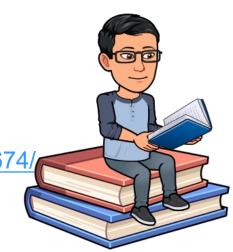
Who am I?

PhD in Computer Science at University of Pittsburgh in Computer Vision

Research scientist at Snap Inc.

Who am I?

Assistant professor at Weber State University


Teaching Assistant
Professor at University
of Pittsburgh

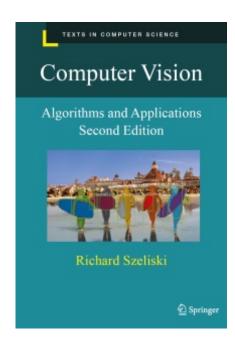
[Students' presentations]

Name, hobbies, and mention one thing that you expect to learn in this course ©

Course intro: Syllabus

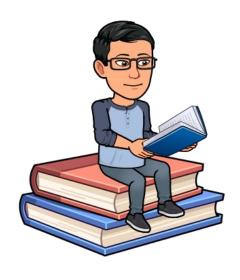
- Contact Information
 - Prof. Nils Murrugarra
 - o nem177@pitt.edu
 - Please, add prefix "[CS 1674]" in all emails.
 - Website: https://nineil.github.io/courses/fall24_cs1674/
- Lectures:
 - Tue/Thu 11:00 am 12:15 pm [SENSQ 5313]
- Office hours:
 - Tue/Wed 9:00 am 11:00 am [SENSQ 5419]

Course intro: Textbook


Computer Vision algorithms and applications

Edition: 2nd

By Richard Szeliski


ISBN: 978-3030343712

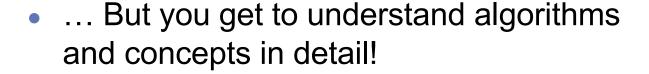
Year: 2022

Course intro: What to expect?

- Material is based on previous iterations of <u>Computer Vision</u> course from Prof. Adriana Kovashka.
- Exams mainly cover this material
- We will do around 7 to 9 programming assignments

Course intro: What to expect?

- There will be a lot of work!
- However, you will learn a lot:). Please, ask questions in class and use my office hours as needed.



• I would like to help you much as possible.

Course intro: What to expect? [Warning #1]

I've opted for shorter, more manageable
 HW assignments, but there is a lot of them

 I expect you'd be spending 4-6 hours on each assignment

Course intro: What to expect? [Warning #2]

- Some parts will be hard and require that you pay close attention!
- Use instructor's office hours

... You will learn a lot!

Course intro: What to expect?

H/T Kirk Pruhs

Course intro: programming assignments

- We will learn Python programming language
- You get 3 "free" late days counted in minutes, i.e., you can submit a total of 72 hours late. Once you've used up your free late days, you will incur a penalty of 25% from the total assignment credit possible for each late day.

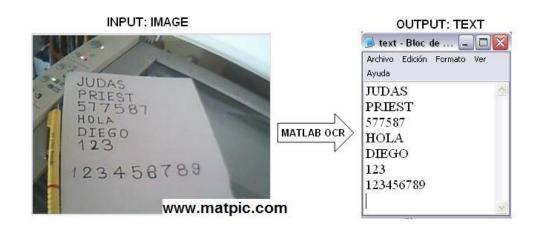
Review Syllabus

Canvas Link:

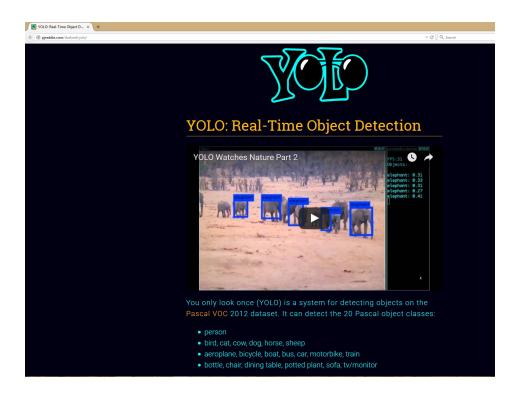
https://canvas.pitt.edu/courses/288692/files/17497249?m odule item id=5015518

Motivation: Faces and digital cameras

Camera waits for everyone to smile to take a photo [Canon]


Setting camera focus via face detection

Motivation: Face recognition



Devi Parikh

Motivation: Optical Character Recognition

Motivation: Accurate object detection

Redmon et al., "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016

Motivation: Exploring photo collections

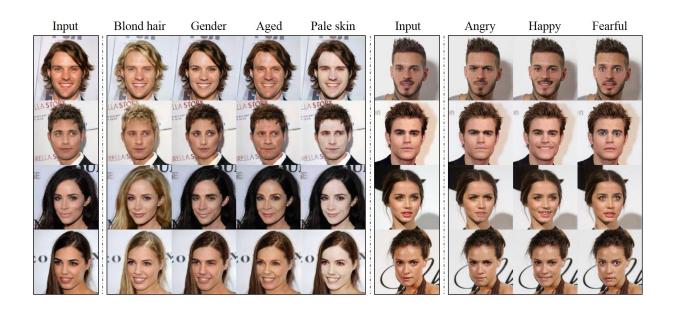
Snavely et al.

Motivation: Linking info with a mobile device

MSR Lincoln

kooaba

Motivation: Transferring art styles



DeepArt.io – try it for yourself!

Gatys et al., CVPR 2016

Motivation: Image Generation (faces)

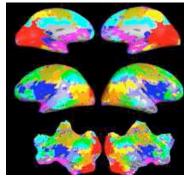
Motivation: Interactive Systems

Yong Jae Lee

Motivation: Video-based interfaces

YouTube Link

Human joystick NewsBreaker Live



Assistive technology systems
Camera Mouse
Boston College

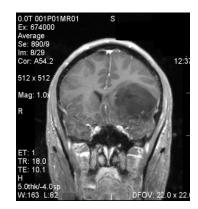
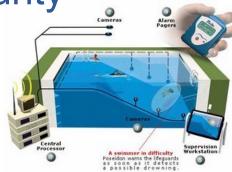
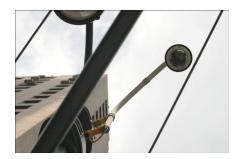

Motivation: Computer Vision for Medicine

Image guided surgery MIT AI Vision Group

fMRI data Golland et al.


Motivation: Safety and security


Navigation, driver safety

Pedestrian detection MERL, Viola et al.

Monitoring pool (Poseidon)

Surveillance

Setup Environment

- Create Github Account
- Install <u>Github Desktop</u>
- You may use any IDE for Python
 - I use Pycharm: https://www.jetbrains.com/pycharm/
 - Apply for your educational free license: <u>https://www.jetbrains.com/community/education/#students</u>

Setup Learning Environment

Installation and learning environment:

https://github.com/nineil-pitt/cs1674_2074_fall23