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Plan for this lecture

• Feature detection / keypoint extraction
• Corner detection
• Blob detection

• Feature description (of detected features)
• Matching features across images
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What we see What a computer sees
Source: S. Narasimhan

Adapted from S. Narasimhan

An image is a set of pixels
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• Not invariant to small changes
• Translation
• Illumination 
• etc.

• Some parts of an image are more important than others
• What do we want to represent? 

Problems with pixel representation
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Yarbus eye tracking

D. Hoiem

Human eye movements

5



• Local means that they only cover a small part of the image

• There will be many local features detected in an image; later we’ll use
those to compute a representation of the whole image

• Local features usually exploit image gradients, ignore color

• Feature ~= vector of gradient statistics for a window with particular location
and size

Local features
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• Locality
• A feature occupies a relatively small area of the

image; robust to clutter and occlusion
• Repeatability and flexibility

• Robustness to expected variations: the same
feature can be found in several images despite
geometric/photometric transformations

• Maximize correct matches (panda to panda)
• Distinctiveness

• Each feature has a distinctive description
• Minimize wrong matches (panda to giraffe)

• Compactness and efficiency
• Many fewer features than image pixels

Adapted from K. Grauman and D. Hoiem

Local features: desired properties
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• Note: “interest points” = “keypoints”, also sometimes called “features”

• Many applications
• Recognition: which patches are likely to tell us something about the object category?

• Image search: which points would allow us to match images between query and 
database?

• 3D reconstruction: how to find correspondences across different views?

• Tracking: which points are good to track?

Adapted from D. Hoiem

Interest(ing) points
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• Suppose you have to click on some
point, go away and come back
after I deform the image, and click
on the same points again.

• Which points would you choose?

original

deformed

D. Hoiem

Interest points
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Where would you tell 
your friend to meet you?

D. Hoiem

à Corner detection

Choosing interest points
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Where would you tell 
your friend to meet you?

D. Hoiem

à Blob detection

Choosing interest points
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1. Find a set of   
distinctive key-
points 

2. Define a region 
around each 
keypoint (window)

3. Compute a local 
descriptor from the 
region

4. Match descriptors   

Query
In database

Application 1: Keypoint matching for search
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Goal: 
We want to detect repeatable and distinctive points 

• Repeatable: so that if images are slightly different, we 
can still retrieve them

• Distinctive: so we don’t retrieve irrelevant content
Adapted from D. Hoiem

Query
In database

Application 1: Keypoint matching for search
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Application 2: Panorama stitching
• We have two images – how do we combine them?

L. Lazebnik
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Application 2: Panorama stitching
• We have two images – how do we combine them?

Step 1: extract features
Step 2: match features

L. Lazebnik
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Application 2: Panorama stitching
• We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images

L. Lazebnik
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• We should easily recognize the keypoint by looking through a 
small window

• Shifting a window in any direction should give a large change in 
intensity

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in 
all directions

Adapted from A. Efros, D. Frolova, D. Simakov

Candidate keypoint

Corners are distinctive interest points
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• We should easily recognize the keypoint by looking through a 
small window

• Shifting a window in any direction should give a large change in 
intensity

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions
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no change in 
all directions

Adapted from A. Efros, D. Frolova, D. Simakov

Corners are distinctive interest points
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What points would you choose?

K. Grauman

1

2

3

4

5
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Harris Detector: Mathematics

Window-averaged squared change of intensity induced by shifting 
the patch for a fixed candidate keypoint by [u,v]:

IntensityShifted intensity

Adapted from D. Frolova, D. Simakov
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Harris Detector: Mathematics

E(u, v)

Adapted from D. Frolova, D. Simakov

u
v

u
v

u
v

Window-averaged squared change of intensity induced by shifting 
the patch for a fixed candidate keypoint by [u,v]:

IntensityShifted intensity

0
0

0 0 0 0

large large small
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Harris Detector: Mathematics

x = r-1 : r+1

y = c-1 : c+1

I(x, y)

I(x+u, y+v)
diff

For every pixel (r, c) as candidate keypoint

For each offset (u, v)

For each neighbor (x, y) of (r, c)
Initialize sum to 0

sum = sum + [I(x, y) - I(x+u, y+v)]2

E(u, v) = sum

Initialize E = zeros(2*max_offset+1, 2*max_offset+1)

Plot E(u, v)

(r, c)

Here u = 1, v = 0

[Github repo] – Module 3
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Harris Detector: Mathematics
We can approximate the autocorrelation surface between a patch and itself, 
shifted by [u,v], as:

where M is a 2×2 matrix computed from image derivatives:

Adapted from D. Frolova, D. Simakov

h h v

h v v

(x, y)

(x, y)

(x, y)

(x, y)
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Adapted from K. Grauman

h v h v

h h v

h v v

Ih2 à Ih2(x, y)

Harris Detector: Mathematics
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Harris Detector: Mathematics

x = r-1 : r+1

y = c-1 : c+1

For every pixel (r, c) as candidate keypoint

For x = r-1 : r+1

M(0, 0) = ? 
For y = c-1 : c+1

M(0, 1) = ? 

Initialize M = zeros(2, 2)(r, c)

Let   Ih (of size width x height of the image) be the 
image derivative in the horizontal direction, 

Iy be derivative in the vertical direction.            
(Both require one correlation op to compute.)

M(1, 0) = ? 
M(1, 1) = ? Your homework!

M(0, 0) + Ih(x, y)2
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What does the matrix M reveal?
Since M is symmetric, we have TXXM ú

û

ù
ê
ë

é
=

2

1

0
0
l

l

iii xMx l=

The eigenvalues of M reveal the amount of intensity change in the 
two principal orthogonal gradient directions in the window.

K. Grauman
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Corner response function

“flat” region:
l1 and l2 are 
small

“edge”:
l1 >> l2

l2 >> l1

“corner”:
l1 and l2 are large,
l1 ~ l2

Adapted from A. Efros, D. Frolova, D. Simakov, K. Grauman
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Harris Detector: Mathematics

Measure of corner response:

(k – empirical constant, k = 0.04-0.06)

D. Frolova, D. Simakov

Because M is symmetric
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Harris Detector: Algorithm

• Compute image gradients Ih and Iv for all pixels
• For each pixel

• Compute 

by looping over neighbors x, y 

• Compute

• Find points with large corner response function R (R > 
threshold)

D. Frolova, D. Simakov

(k :empirical constant, k = 0.04-0.06)

h h v

h v v

(x, y)

(x, y)

(x, y)

(x, y)
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Harris Detector: Algorithm
• Finally, perform non-max suppression: Take the points of locally 

maximum R as the detected feature points (i.e. pixels where R is 
bigger than for all the 4 or 8 neighbors)

3 12 2

8 15 9

6 14 19

3 12 2

8 15 9

6 14 19

4 neighbors 8 neighbors
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K. Grauman

Example of Harris Application
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• Corner response at every pixel (red = high, blue = low)

K. Grauman

Example of Harris Application

35



Effect: A very precise 
corner detector.

D. Hoiem

More Harris Responses
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Properties: Invariance vs covariance
• “A function is invariant under a certain family of transformations if its value does not
change when a transformation from this family is applied to its argument.

• [For example] the area of a 2D surface is invariant under 2D rotations, since rotating a 2D
surface does not make it any smaller or bigger.

• A function is covariant when it commutes with the transformation, i.e., applying the
transformation to the argument of the function has the same effect as applying the
transformation to the output of the function.

• [For example] If f is invariant under linear transformations, then f(ax+b) = f(x), and if it is
covariant with respect to these transformations, then f(ax+b) = a f(x) + b

“Local Invariant Feature Detectors: A Survey” by Tinne Tuytelaars and Krystian Mikolajczyk, in Foundations and Trends in Computer Graphics and 
Vision Vol. 3, No. 3 (2007) 177–280 Chapter 1, 3.2, 7 http://homes.esat.kuleuven.be/%7Etuytelaa/FT_survey_interestpoints08.pdf
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• Only derivatives are used => invariance to intensity shift I ® I + b

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I ® a I + b

L. Lazebnik

What happens if: Affine intensity change

38
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What happens if: Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation (on image 
level), corner response is invariant (on patch level)

Adapted from L. Lazebnik
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What happens if: Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Adapted from L. Lazebnik

Corner location is covariant w.r.t. rotation (on image level), 
corner response is invariant (on patch level)
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What happens if: Scaling
• Invariant to image scale?

image zoomed image

A. Torralba
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What happens if: Scaling

All points will 
be classified 
as edges

Corner

Corner location is not covariant to scaling!

(Window size is part of algorithm)
Adapted from L. Lazebnik
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• Problem: 
• How do we choose corresponding windows independently in each image?
• Do objects have a characteristic scale that we can identify?

Adapted from D. Frolova, D. Simakov

Scale invariant detection
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Scale invariant detection
• Solution:

• Design a function on the region which has the same shape even if the 
image is resized

• Take a local maximum of this function

scale = 1/2

f

region size

Image 1 f

region size

Image 2

Adapted from A. Torralba

s1 s2
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Scale invariant detection
• A “good” function for scale detection:

has one stable sharp peak

f

region size

Bad

f

region size

Bad

f

region size

Good !

Adapted from A. Torralba
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How to find corresponding patch sizes?

Automatic Scale Selection
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• Function responses for increasing scale (scale signature) 
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Automatic Scale Selection
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• Function responses for increasing scale (scale signature) 
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Automatic Scale Selection
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• Laplacian of Gaussian = “blob” detector

What is a useful signature function?
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• Laplacian of Gaussian: Circularly symmetric operator for blob detection 
in 2D, second derivative of Gaussian

2

2

2

2
2

y
g

x
gg

¶
¶

+
¶
¶

=Ñ
Adapted from K. Grauman, L. Lazebnik Ref: https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm vs http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives

Edge response

Blob detection in 2D
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• We can approximate Laplacian with difference of Gaussians; 
more efficient to implement.

( )2 ( , , ) ( , , )xx yyL G x y G x ys s s= +

( , , ) ( , , )DoG G x y k G x ys s= -

(Laplacian)

(Difference of Gaussians)

K. Grauman

Difference of Gaussian ≈ Laplacian
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s

Original image
4
1

2=s

Sampling 
with

step s4 =2
s

s

s

Difference of Gaussian Scale Pyramid
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s

s2

s3

s4

s5

Þ List of
(x, y, s)

Position-scale space:

Find places where X 
greater than all of its 
neighbors (in green)

sc
al

e

response

At fixed (x, 
y)

Find local maxima in position-scale space of 
Difference-of-Gaussian
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• Allows detection of increasingly coarse detail

xxx
xxx

Laplacian pyramid example
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Results: Difference-of-Gaussian

59

Adriana Kovashka



Plan for this lecture

• Feature detection / keypoint extraction
• Corner detection
• Blob detection

• Feature description (of detected features)
• Matching features across images
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Geometric transformations

e.g. scale, 
translation
, rotation

K. Grauman
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[Lowe, ICCV 1999]

Histogram of oriented 
gradients
• Captures important texture 

information
• Robust to small translations /

affine deformations
K. Grauman, B. Leibe

Journal + conference versions: 87,527 citations (AlexNet paper has 93,821)

Scale-Invariant Feature Transform (SIFT) 
descriptor
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• tan(α)= !""!#$%& #$'&(')(*&+% #$'&

L = the image intensity

gradient in x direction gradient in y direction 

gradient in y direction gradient in x direction 

Computing gradients
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Gradients

m(x, y) = sqrt(1 + 0) = 1
Θ(x, y) = atan(0/-1) = 0 

(0, 0) x

y
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Gradients

m(x, y) = sqrt(0 + 1) = 1
Θ(x, y) = atan(1/0) = 90 

(0, 0) x

y
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Gradients

m(x, y) = sqrt(1 + 1) = 1.41
Θ(x, y) = atan(-1/-1) = 45 

(note length / magnitude)

(0, 0) x

y
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Basic idea:
• Take 16x16 square window around detected feature
• Compute gradient orientation for each pixel
• Create histogram over edge orientations weighted by magnitude
• That’s your feature descriptor! 

Scale Invariant Feature Transform

Adapted from L. Zitnick, D. Lowe

0 2p
angle histogram
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Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Quantize the gradient orientations i.e. snap each gradient to one of 8 angles
• Each gradient contributes not just 1, but magnitude(gradient) to the histogram, i.e. stronger gradients contribute 

more 
• 16 cells * 8 orientations = 128 dimensional descriptor for each detected feature

Scale Invariant Feature Transform

Adapted from L. Zitnick, D. Lowe
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Scale Invariant Feature Transform

Gradients Histogram of gradients

1 2 3 4

Uniform weight (ignore magnitude)

C
ou

nt

2

Type = 

1 1

2 2

2 3

3

3

24 4 2
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Scale Invariant Feature Transform

Gradients Histogram of gradients

1 2 3 4

Weight contribution by magnitude
(e.g. long = 1, short = 0.5)

C
ou

nt

2

Type = 

1 1

2 2

2 2.5

3

3

1.54 4 1
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Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Quantize the gradient orientations i.e. snap each gradient to one of 8 angles
• Each gradient contributes not just 1, but magnitude(gradient) to the histogram, i.e. stronger gradients contribute 

more 
• 16 cells * 8 orientations = 128 dimensional descriptor for each detected feature
• Normalize + clip (threshold normalize to 0.2) + normalize the descriptor
• We want:

Scale Invariant Feature Transform

0.2

Adapted from L. Zitnick, D. Lowe

such that:
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• Rotate patch according to its dominant gradient orientation
• This puts the patches into a canonical orientation

Adapted from K. Grauman, image from Matthew Brown

Making descriptor rotation invariant
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• Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night

• Fast and efficient—can run in real time

• Can be made to work without feature detection, resulting in “dense SIFT” 
(more points means robustness to occlusion)

• One commonly used implementation
• http://www.vlfeat.org/overview/sift.html

Adapted from S. Seitz

SIFT is robust
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Examples of using SIFT
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Examples of using SIFT
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Images from S. Seitz

Examples of using SIFT
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• Object recognition
• Indexing and retrieval
• Robot navigation
• 3D reconstruction 
• Motion tracking
• Image alignment
• Panoramas and mosaics
• …

Adapted from K. Grauman and L. Lazebnik

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Applications of local invariant features
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Plan for this lecture

• Feature detection / keypoint extraction
• Corner detection
• Blob detection

• Feature description (of detected features)
• Matching features across images
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?

• To generate candidate matches, find patches that have the most similar appearance 
(e.g., lowest feature Euclidean distance)

• Simplest approach: take the closest (or closest k, or within a thresholded distance) as 
matches to query

Image 1 Image 2

K. Grauman

Matching Local Features
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• At what Euclidean distance value do we have a good match?
• To add robustness to matching, can consider ratio: distance of query to best match  / 

distance to second best match
• If low, first match looks good
• If high, could be ambiguous match

Image 1 Image 2

????

K. Grauman

d(q, fv1) / d(q, fv2)

Robust Matching
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• Nearest neighbor (Euclidean distance)
• Threshold ratio of 1st nearest to 2nd nearest descriptor

Lowe IJCV 2004

Matching SIFT descriptors

81
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• So far we discussed matching features across just two images

• What if you wanted to match a query feature from one image, to 
features from all frames in a video? 

• Or an image to other images in a giant database?

• With potentially thousands of features per image, and hundreds 
to millions of images to search, how to efficiently find those that 
are relevant to a new image?

Adapted from K. Grauman

Efficient Matching

82



• Each patch / region has a descriptor, which is a point in some 
high-dimensional feature space (e.g., SIFT)

Descriptor’s 
feature space

K. Grauman

Database 
images

Matching Local Features Setup
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• When we see close points in feature space, we have similar 
descriptors, which indicates similar local content

Descriptor’s 
feature space

Database 
images

Query 
image

K. Grauman

Matching Local Features Setup
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Indexing local features

• For text documents, an efficient 
way to find all pages on which a 
word occurs is to use an index…

• We want to find all images in 
which a feature occurs.

• To use this idea, we’ll need to 
map our features to “visual 
words”.

K. Grauman
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• Extract some local features from a number of images …

e.g., SIFT descriptor space: each 
point is 128-dimensional

D. Nister, CVPR 2006

Visual Words: main idea
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D. Nister, CVPR 2006

Visual Words: main idea
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D. Nister, CVPR 2006

Visual Words: main idea
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D. Nister, CVPR 2006

Visual Words: main idea
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Each point is a local 
descriptor, e.g. SIFT 
feature vector. 

D. Nister, CVPR 2006
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D. Nister, CVPR 2006

“Quantize” the space by grouping 
(clustering) the features.
Note: For now, we’ll treat clustering
as a black box.
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• Patches on the right = 
regions used to compute 
SIFT

• Each group of patches 
belongs to the same “visual 
word”

Figure from  Sivic & Zisserman, ICCV 2003

Adapted from K. Grauman

Visual Words
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• Map high-dimensional descriptors to tokens/words by quantizing 
the feature space

Descriptor’s 
feature space

• Each cluster has a center

• To determine which word to 
assign to new image region (e.q. 
query), find closest cluster center

Word 
#3

Adapted from K. Grauman

Query

1 2

3
• To compare features: Only 

compare query to others in same 
cluster, or just compare word IDs

• To compare images: see next 
few slides

Visual Words for Indexing
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• Index database images: map each word to image IDs that contain it
K. Grauman

Inverted File Index
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• For a new query image, find which database images share a word with it, and retrieve those 
images as matches (or inspect only those further)

When will this indexing process give us a 
gain in efficiency? 

Adapted from K. Grauman

w91

Inverted File Index
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Of all the sensory impressions proceeding to 
the brain, the visual experiences are the 
dominant ones. Our perception of the world 
around us is based essentially on the 
messages that reach the brain from our 
eyes. For a long time it was thought that the 
retinal image was transmitted point by point 
to visual centers in the brain; the cerebral 
cortex was a movie screen, so to speak, 
upon which the image in the eye was 
projected. Through the discoveries of Hubel 
and Wiesel we now know that behind the 
origin of the visual perception in the brain 
there is a considerably more complicated 
course of events. By following the visual 
impulses along their path to the various cell 
layers of the optical cortex, Hubel and 
Wiesel have been able to demonstrate that 
the message about the image falling on the 
retina undergoes a step-wise analysis in a 
system of nerve cells stored in columns. In 
this system each cell has its specific function 
and is responsible for a specific detail in the 
pattern of the retinal image.

sensory, brain, 
visual, perception, 

retinal, cerebral cortex,
eye, cell, optical 

nerve, image
Hubel, Wiesel

China is forecasting a trade surplus of $90bn 
(£51bn) to $100bn this year, a threefold 
increase on 2004's $32bn. The Commerce 
Ministry said the surplus would be created 
by a predicted 30% jump in exports to 
$750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to 
further annoy the US, which has long argued 
that China's exports are unfairly helped by a 
deliberately undervalued yuan.  Beijing 
agrees the surplus is too high, but says the 
yuan is only one factor. Bank of China 
governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic 
demand so more goods stayed within the 
country. China increased the value of the 
yuan against the dollar by 2.1% in July and 
permitted it to trade within a narrow band, 
but the US wants the yuan to be allowed to 
trade freely. However, Beijing has made it 
clear that it will take its time and tread 
carefully before allowing the yuan to rise 
further in value.

China, trade, 
surplus, commerce, 

exports, imports, US, 
yuan, bank, domestic, 

foreign, increase, 
trade, value

ICCV 2005 short course, L. Fei-Fei
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• Summarize entire image based on 
its distribution (histogram) of word 
occurrences

• Analogous to bag of words 
representation commonly used for 
documents

Feature patches: 

Adapted from K. Grauman

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Describing images with visual words
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• Summarize entire image based on 
its distribution (histogram) of word 
occurrences

• Analogous to bag of words 
representation commonly used for 
documents

tim
es

 a
pp

ea
rin

g 
tim

es
 a

pp
ea

rin
g 

tim
es

 a
pp

ea
rin

g 

Feature patches: 

Visual words
K. Grauman

Describing images with visual words
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• Similarity of images measured as normalized scalar product between their 
word occurrence counts

• Can be used to rank results (nearest neighbors of query)
[5  1   1    0][1  8   1    4]          

jd
 q

𝑠𝑖𝑚 𝑑! , 𝑞 =
𝑑! , 𝑞
𝑑! 𝑞

=
∑"#$% 𝑑! 𝑖 ∗ 𝑞(𝑖)

∑"#$
% 𝑑!(𝑖)& ∗ ∑"#$

% 𝑞(𝑖)&

for vocabulary of V
words

Adapted from K. 
Grauman
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+ flexible to geometry / deformations / viewpoint
+ compact summary of image content

- basic model ignores geometry – verify afterwards
- what is the optimal vocabulary size?
- background and foreground mixed when bag covers whole 

image

Adapted from K. Grauman

Bags of words: pros and cons
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Adapted from K. Grauman

Offline:
• Extract features in database images, cluster them to find words 

= cluster centers, make index

Online (during search):
1. Extract words in query (extract features and map each to closest 

cluster center)
2. Use inverted file index to find database images relevant to query
3. Rank database images by comparing word counts of query and 

database image

Summary: Inverted file index and bags of words 
similarity
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• Survey paper on local features
• “Local Invariant Feature Detectors: A Survey” by Tinne Tuytelaars and Krystian

Mikolajczyk, in Foundations and Trends in Computer Graphics and Vision Vol. 3, 
No. 3 (2007) 177–280 (mostly Chapters 1, 3.2, 7) 
http://homes.esat.kuleuven.be/%7Etuytelaa/FT_survey_interestpoints08.pdf

• Making Harris detection scale-invariant
• “Indexing based on scale invariant interest points” by Krystian Mikolajczyk and 

Cordelia Schmid, in ICCV 2001 https://hal.archives-
ouvertes.fr/file/index/docid/548276/filename/mikolajcICCV2001.pdf

• SIFT paper by David Lowe 
• “Distinctive Image Features from Scale-Invariant Keypoints” by David G. Lowe, in 

IJCV 2004 http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Additional References
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• Keypoint detection: repeatable and 
distinctive

• Corners, blobs, stable regions
• Laplacian of Gaussian, automatic scale 

selection

• Descriptors: robust and selective
• Histograms for robustness to small 

shifts and translations (SIFT descriptor)

• Matching: cluster and index
• Compare images through their feature 

distribution
Adapted from D. Hoiem, K. Grauman

Summary
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