
CS 1674: Grouping: edges, lines,
circles, and segments

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

mailto:nmurrugarrallerena@weber.edu

Plan for this lecture

• Edges
• Extract gradients and threshold

• Lines and circles
• Find which edge points are collinear or belong to

another shape e.g. circle
• Automatically detect and ignore outliers

• Segments
• Find which pixels form a consistent region
• Clustering (e.g. K-means)

2

• Goal: map image from 2d array of pixels to a set of curves or line
segments or contours.

• Why?

• Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

Source: K. Grauman

Edge detection

3

Designing an edge detector
• Criteria for a good edge detector

• Good categorization (edge vs not edge)
• find all real edges, ignoring noise or other artifacts

• Good localization
• detect edges as close as possible to the true edges
• return one point only for each true edge point (true edges = the edges

humans drew on an image)

• Cues of edge detection
• Bottom-up: Differences in color, intensity, or texture across the boundary
• Top-down: Continuity and closure, high-level knowledge

Adapted from L. Fei-Fei

4

Examples of edge detection results

Xie and Tu, Holistically-Nested Edge Detection, ICCV 2015

5

http://openaccess.thecvf.com/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf

Depth
discontinuity:
object boundary

Cast shadows

Reflectance change:
appearance
information, texture

Adapted from K. Grauman

What causes an edge?

6

• An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Source: L. Lazebnik

Characterizing edges

7

Intensity profile
Intensity

Gradient

Source: D. Hoiem

8

Plan for this lecture

• Edges
• Extract gradients and threshold

• Lines and circles
• Find which edge points are collinear or belong to

another shape e.g. circle
• Automatically detect and ignore outliers

• Segments
• Find which pixels form a consistent region
• Clustering (e.g. K-means)

9

• Why fit lines?
Many objects characterized by presence of straight lines

• Why aren’t we done just by running edge detection?
Kristen Grauman

Line detection (fitting)

10

• Noise in measured edge points, orientations:
– e.g. edges not collinear where they should be
– how to detect true underlying parameters?

• Extra edge points (clutter):
– which points go with which line, if any?

• Only some parts of each line detected, and
some parts are missing:

– how to find a line that bridges missing
evidence?

Adapted from Kristen Grauman

Difficulty of Line Fitting
11

•Data: (x1, y1), …, (xn, yn)
•Line equation: yi = m xi + b

•Find (m, b) to minimize

[] 2

2
11

1

2

1

1
1 yAp -=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
-ú
û

ù
ê
ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=÷÷

ø

ö
çç
è

æ
-ú
û

ù
ê
ë

é
=å =

nn

n

i ii

y

y

b
m

x

x
y

b
m

xE

å =
-+=

n

i ii ybxmE
1

2)(

(xi, yi)

y=mx+b

Matlab: p = A \ y; or p = pinv(A)*y;
Adapted from Svetlana Lazebnik

where line you found
tells you point is along y
axis

where point really
is along y axis

You want to find a single line that “explains” all of the
points in your data, but data may be noisy!

Least squares line fitting

12

Kristen Grauman

Outliers affect least squares fit
13

Kristen Grauman

14

Outliers affect least squares fit

• Voting is a general technique where we let the
features vote for all models that are compatible with it.

• Cycle through features, cast votes for model parameters.
• Look for model parameters that receive a lot of votes.

• Noise & clutter features?

• They will cast votes too, but typically their votes should be
inconsistent with the majority of “good” features.

• Common techniques
• Hough transform
• RANSAC

Adapted from Kristen Grauman

Dealing with outliers: Voting

15

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

x

y

m

b

m0

b0

image space Hough (parameter) space

Steve Seitz

16

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer: the solutions of b = -x0m + y0
– This is a line in Hough space
– Given a pair of points (x,y), find all (m,b) such that y = mx + b

x0

y0

Adapted from Steve Seitz

17

Finding lines in an image: Hough space

What are the line parameters for the line that contains both (x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space
x0

b = –x1m + y1

(x0, y0)

(x1, y1)

Steve Seitz

y0

18

How can we use this to find the most likely parameters (m,b) for the most prominent line in
the image space?

• Let each edge point in image space vote for a set of possible parameters in Hough space
• Accumulate votes in discrete set of bins; parameters with the most votes indicate line in

image space.

x

y

m

b

image space Hough (parameter) space

Steve Seitz

0 5 10 15 20

m = 17.5

Finding lines in an image: Hough space

19

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2
2 1 0 1 3 3

bAdapted from Silvio Savarese

Finding lines in an image: Hough space

20

• Problems with the (m, b) space:
• Unbounded parameter domains
• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

rqq = + sincos yx

Each point (x,y) will add a sinusoid in the (q,r) parameter space
Svetlana Lazebnik

21

• Problems with the (m,b) space:
• Unbounded parameter domains
• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

Each point (x,y) will add a sinusoid in the (q,r) parameter space
Svetlana Lazebnik

x

y

Hough space

 q
r

 q

r

22

Algorithm outline: Hough transform
• Initialize accumulator H to all zeros

• For each edge point (x,y)
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ*, ρ*) where H(θ, ρ) is a local maximum
• The detected line in the image is given by

ρ* = x cos θ* + y sin θ*

ρ

θ

Svetlana Lazebnik

23

Why only until
180 degrees?

• Recall: when we detect an
edge point, we also know its
gradient direction

• But this means that the line
is uniquely determined!

• Modified Hough transform:

For each edge point (x,y) in the image
θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end

Svetlana Lazebnik

Incorporating Image Gradients

24

Derek Hoiem

Hough transform example

25

Image space
edge coordinates

Votes

qx

dy

Kristen Grauman

Impact of noise on Hough

26

Image space
edge coordinates

Votes

qx

y d

What difficulty does this present for an implementation?
Kristen Grauman

Impact of noise on Hough

27

• Minimize irrelevant tokens first (reduce noise)

• Choose a good grid / discretization

• Too coarse: large votes obtained when too many different lines correspond to a single bucket
• Too fine: miss lines because points that are not exactly collinear cast votes for different buckets

• Vote for neighbors (smoothing in accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back which points voted for “winning” peaks, keep tags on the votes

Too fineToo coarse ?

Kristen Grauman

Voting: practical tips

28

Hough Transform: Example

29

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Θ(x, y) = atan(-1/-1) = 45

(0, 0) x

y

ρ = x cos(Θ) + y sin(Θ)

ρ = 11 cos(45) + 7 sin(45)

ρ = 12.73

H(θ=45, ρ=12.73) = 1

Hough Transform: Example

30

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Θ(x, y) = atan(-1/-1) = 45

(0, 0) x

y

ρ = x cos(Θ) + y sin(Θ)

ρ = 6 cos(45) + 11 sin(45)

ρ = 12.02

H(θ=45, ρ= 12.02) = 1

Hough Transform: Example

31

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Θ(x, y) = atan(-1/-1) = 45

(0, 0) x

y

ρ = x cos(Θ) + y sin(Θ)

ρ = 13 cos(45) + 4 sin(45)

ρ = 12.02

H(θ=45, ρ= 12.02) = 2

H(θ=45, ρ=12.73) = 1
H(θ=45, ρ= 12.02) = 2

• A circle with radius r and center (a, b) can be described as:

x = a + r cos(θ)
y = b + r sin(θ)

(a, b)

(x, y)

ϴ

ϴ

ϴ

Hough Transform for Circles

32

• For a fixed radius r, unknown gradient direction

222)()(rbyax ii =-+-

Image space Hough space a

b

Kristen Grauman

Hough Transform for Circles
• Circle: center (a, b) and radius r

33

• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r
222)()(rbyax ii =-+-

Image space Hough space

Intersection: most
votes for center
occur here.

Kristen Grauman

Hough Transform for Circles

34

For every edge pixel (x,y) :
For each possible radius value r:

For each possible gradient direction θ:
// or use estimated gradient at (x,y)

a = x – r cos(θ) // column
b = y – r sin(θ) // row
H[a,b,r] += 1

end
end

end

Modified from Kristen Grauman

θ

x

x = a + r cos(θ)
y = b + r sin(θ)

Your homework!

Hough Transform for Circles

35

Original Edges Votes: Penny

Note: a different Hough transform (with separate accumulators)
was used for each circle radius (quarters vs. penny).

Kristen Grauman, images from Vivek Kwatra

Example: Detecting Circles with Hough

36

Original Edges Votes: Quarter

Kristen Grauman, images from Vivek Kwatra

Note: a different Hough transform (with separate accumulators)
was used for each circle radius (quarters vs. penny).

Example: Detecting Circles with Hough

37

Pros
• All points are processed independently, so can cope with occlusion, gaps
• Some robustness to noise: noise points unlikely to contribute consistently

to any single bin
• Can detect multiple instances of a model in a single pass

Cons
• Complexity of search time for maxima increases exponentially with the

number of model parameters
• If 3 parameters and 10 choices for each, search is O(103)

• Quantization: can be tricky to pick a good grid size

Adapted from Kristen Grauman

Hough transform: pros and cons

38

Hough Transform Demo

Hough transform

39

https://www.youtube.com/watch?v=ebfi7qOFLuo

• RANdom Sample Consensus

• Approach: we want to avoid the impact of
outliers, so let’s look for “inliers”, and use those
only.

• Intuition: if an outlier is chosen to compute the
current fit, then the resulting line won’t have
much support from rest of the points.

Kristen Grauman

40

RANSAC

RANSAC loop:
1. Randomly select a seed group of s points on which to

base model estimate (e.g. s=2 for a line)
2. Fit model to these s points
3. Find inliers to this model (i.e., points whose distance

from the line is less than t)
4. Repeat N times

• Keep the model with the largest number of inliers

Adapted from Kristen Grauman and Svetlana Lazebnik

41

RANSAC: General Form

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example

42

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example

43

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example

44

d

RANSAC

6=IN

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example

45

d

RANSAC

14=IN
Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example

46

RANSAC pros and cons
• Pros

• Applicable to many different problems, e.g.
image stitching, relating two views

• Often works well in practice

• Cons
• Lots of parameters to tune (see previous

slide)
• Doesn’t work well for low inlier ratios (too

many iterations, or can fail completely)

Adapted from Svetlana Lazebnik

47

Plan for today

• Edges
• Extract gradients and threshold

• Lines and circles
• Find which edge points are collinear or belong to

another shape e.g. circle
• Automatically detect and ignore outliers

• Segments
• Find which pixels form a consistent region
• Clustering (e.g. K-means)

48

Edges vs Segments

Figure adapted from J. Hays

• Edges: More low-level; don’t need to be closed
• Segments: Ideally one segment for each semantic group/object;

should include closed contours

49

The goals of segmentation
• Separate image into coherent “objects”

image human segmentation

Source: L. Lazebnik

50

The goals of segmentation
• Separate image into coherent “objects”
• Group together similar-looking pixels for efficiency of further processing

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

“superpixels”

Source: L. Lazebnik

51

http://ttic.uchicago.edu/~xren/research/iccv2003/

Slide: K. Grauman

Similarity

52

intensity

pi
xe

l c
ou

nt

input image

black pixels
gray
pixels

white
pixels

• These intensities define the three groups.
• We could label every pixel in the image according to which of these primary

intensities it is.
• i.e., segment the image based on the intensity feature.

• What if the image isn’t quite so simple?

1 2
3

Source: K. Grauman

Image Segmentation: Toy Example
53

input image
intensity

pi
xe

l c
ou

nt
• Now how to determine the three main intensities that

define our groups?

• We need to cluster.
Source: K. Grauman

Image Segmentation: Toy Example
54

0 190 255

• Goal: choose three “centers” as the representative intensities, and label
every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize sum of squared differences
(SSD) between all points and their nearest cluster center ci:

1 2
3

intensity

Source: K. Grauman

Image Segmentation: Toy Example
55

• With this objective, it is a “chicken and egg” problem:
• If we knew the cluster centers, we could allocate points to groups by

assigning each to its closest center.

• If we knew the group memberships, we could get the centers by
computing the mean per group.

Source: K. Grauman

Clustering

56

• Basic idea: randomly initialize the k cluster centers, and iterate between
the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK
2. Given cluster centers, determine points in each cluster

• For each point p, find the closest ci. Put p into cluster i
3. Given points in each cluster, solve for ci

• Set ci to be the mean of points in cluster i
4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution
• Can be a “local minimum” of objective:

Slide: Steve Seitz, image: Wikipedia

K-means clustering

57

Source: A. Moore

58

Source: A. Moore

59

Source: A. Moore

60

Source: A. Moore

61

Source: A. Moore

62

K-means converges to a local minimum

Adapted from James Hays

How can I try to fix this problem?

63

Pros
• Simple, fast to compute
• Converges to local minimum of

within-cluster squared error

Cons/issues
• Setting k?

• One way: silhouette coefficient
• Sensitive to initial centers

• Use heuristics or output of another
method

• Sensitive to outliers
• Detects spherical clusters

Adapted from K. Grauman

K-means: pros and cons
64

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on intensity similarity

Feature space: intensity value (1-d)

Source: K. Grauman

Segmentation as Clustering
65

K=2

K=3

Adapted from K. Grauman

66

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on intensity similarity

Clusters based on intensity
similarity don’t have to be
spatially coherent.

Source: K. Grauman

Segmentation as Clustering
67

X

Y

Intensity

Both regions are black, but if we also
include position (x,y), then we could group
the two into distinct segments; way to
encode both similarity & proximity.

Source: K. Grauman

Grouping pixels based
on intensity+position similarity

Depending on what we choose as the feature space, we
can group pixels in different ways.

Segmentation as Clustering
68

R=255
G=200
B=250

R=245
G=220
B=248

R=15
G=189
B=2

R=3
G=12
B=2R

G

B

Feature space: color value (3-d)
Adapted from K. Grauman

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on color similarity

Segmentation as Clustering
69

• Color, brightness, position alone are not enough
to distinguish all regions…

Source: L. Lazebnik

Segmentation as Clustering
70

Depending on what we choose as the feature space, we
can group pixels in different ways.

F24

Grouping pixels based
on texture similarity

F2

Feature space: filter bank responses (e.g., 24-d)

F1

…

Filter bank
of 24 filters

Source: K. Grauman

Segmentation as Clustering
71

72

RoI Align Conv

Classification Scores: C
Box coordinates (per class): 4 * C

CNN Conv

May 10, 2017

Predict a mask for
each of C classes

He et al, “Mask R-CNN”, ICCV 2017; slide adapted from Justin Johnson

State-of-the-art (instance) segmentation: Mask R-
CNN

72

http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

Summary: classic approaches

• Edges: threshold gradient magnitude

• Lines: edge points vote for parameters of line, circle, etc.
(works for general objects)

• Segments: use clustering (e.g. K-means) to group pixels by
intensity, texture, etc.

73

