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Plan for this lecture

• Edges
• Extract gradients and threshold

• Lines and circles
• Find which edge points are collinear or belong to 

another shape e.g. circle
• Automatically detect and ignore outliers

• Segments
• Find which pixels form a consistent region
• Clustering (e.g. K-means)
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• Goal: map image from 2d array of pixels to a set of curves or line 
segments or contours.

• Why?

• Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

Source: K. Grauman

Edge detection
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Designing an edge detector
• Criteria for a good edge detector

• Good categorization (edge vs not edge)
• find all real edges, ignoring noise or other artifacts

• Good localization
• detect edges as close as possible to the true edges
• return one point only for each true edge point    (true edges = the edges 

humans drew on an image)

• Cues of edge detection
• Bottom-up: Differences in color, intensity, or texture across the boundary
• Top-down: Continuity and closure, high-level knowledge

Adapted from L. Fei-Fei
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Examples of edge detection results

Xie and Tu, Holistically-Nested Edge Detection, ICCV 2015
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http://openaccess.thecvf.com/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf


Depth 
discontinuity: 
object boundary

Cast shadows

Reflectance change: 
appearance 
information, texture

Adapted from K. Grauman

What causes an edge?
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• An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Source: L. Lazebnik

Characterizing edges
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Intensity profile
Intensity

Gradient

Source: D. Hoiem
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Plan for this lecture

• Edges
• Extract gradients and threshold

• Lines and circles
• Find which edge points are collinear or belong to 

another shape e.g. circle
• Automatically detect and ignore outliers

• Segments
• Find which pixels form a consistent region
• Clustering (e.g. K-means)
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• Why fit lines?  
Many objects characterized by presence of straight lines

• Why aren’t we done just by running edge detection?
Kristen Grauman

Line detection (fitting)
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• Noise in measured edge points, orientations:
– e.g. edges not collinear where they should be 
– how to detect true underlying parameters?

• Extra edge points (clutter):
– which points go with which line, if any?

• Only some parts of each line detected, and 
some parts are missing:

– how to find a line that bridges missing 
evidence?

Adapted from Kristen Grauman

Difficulty of Line Fitting
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•Data: (x1, y1), …, (xn, yn)
•Line equation: yi = m xi + b

•Find (m, b) to minimize 
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y=mx+b

Matlab: p = A \ y; or p = pinv(A)*y;
Adapted from Svetlana Lazebnik

where line you found 
tells you point is along y 
axis

where point really 
is along y axis

You want to find a single line that “explains” all of the 
points in your data, but data may be noisy!

Least squares line fitting
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Kristen Grauman

Outliers affect least squares fit
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Kristen Grauman
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Outliers affect least squares fit



• Voting is a general technique where we let the
features vote for all models that are compatible with it.

• Cycle through features, cast votes for model parameters.
• Look for model parameters that receive a lot of votes.

• Noise & clutter features?

• They will cast votes too, but typically their votes should be
inconsistent with the majority of “good” features.

• Common techniques
• Hough transform
• RANSAC

Adapted from Kristen Grauman

Dealing with outliers: Voting

15



Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

x

y

m

b

m0

b0

image space Hough (parameter) space

Steve Seitz
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Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0
– This is a line in Hough space
– Given a pair of points (x,y), find all (m,b) such that y = mx + b

x0

y0

Adapted from Steve Seitz
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Finding lines in an image: Hough space

What are the line parameters for the line that contains both (x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space
x0

b = –x1m + y1

(x0, y0)

(x1, y1)

Steve Seitz

y0
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How can we use this to find the most likely parameters (m,b) for the most prominent line in 
the image space?

• Let each edge point in image space vote for a set of possible parameters in Hough space
• Accumulate votes in discrete set of bins; parameters with the most votes indicate line in 

image space.

x

y

m

b

image space Hough (parameter) space

Steve Seitz

0     5   10    15   20

m = 17.5

Finding lines in an image: Hough space
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x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2
2 1 0 1 3 3

bAdapted from Silvio Savarese

Finding lines in an image: Hough space
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• Problems with the (m, b) space:
• Unbounded parameter domains
• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

rqq =  +  sincos yx

Each point (x,y) will add a sinusoid in the (q,r) parameter space 
Svetlana Lazebnik
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• Problems with the (m,b) space:
• Unbounded parameter domains
• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

Each point (x,y) will add a sinusoid in the (q,r) parameter space 
Svetlana Lazebnik

x

y

Hough space

 q
r

 q

r
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Algorithm outline: Hough transform
• Initialize accumulator H  to all zeros

• For each edge point (x,y) 
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ*, ρ*) where H(θ, ρ) is a local maximum
• The detected line in the image is given by 

ρ* = x cos θ* + y sin θ*

ρ

θ

Svetlana Lazebnik
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Why only until 
180 degrees?



• Recall: when we detect an 
edge point, we also know its 
gradient direction

• But this means that the line 
is uniquely determined!

• Modified Hough transform:

For each edge point (x,y) in the image 
θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end

Svetlana Lazebnik

Incorporating Image Gradients
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Derek Hoiem

Hough transform example
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Image space
edge coordinates

Votes

qx

dy

Kristen Grauman

Impact of noise on Hough
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Image space
edge coordinates

Votes

qx

y d

What difficulty does this present for an implementation?
Kristen Grauman

Impact of noise on Hough
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• Minimize irrelevant tokens first (reduce noise)

• Choose a good grid / discretization

• Too coarse: large votes obtained when too many different lines correspond to a single bucket
• Too fine: miss lines because points that are not exactly collinear cast votes for different buckets

• Vote for neighbors (smoothing in accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back which points voted for “winning” peaks, keep tags on the votes

Too fineToo coarse ?

Kristen Grauman

Voting: practical tips
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Hough Transform: Example
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Hough Transform: Example
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Hough Transform: Example
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• A circle with radius r and center (a, b) can be described as:

x = a + r cos(θ)
y = b + r sin(θ)

(a, b)

(x, y)

ϴ

ϴ

ϴ

Hough Transform for Circles
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• For a fixed radius r, unknown gradient direction

222 )()( rbyax ii =-+-

Image space Hough space a

b

Kristen Grauman

Hough Transform for Circles
• Circle: center (a, b) and radius r
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• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r
222 )()( rbyax ii =-+-

Image space Hough space

Intersection: most 
votes for center 
occur here.

Kristen Grauman

Hough Transform for Circles
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For every edge pixel (x,y) : 
For each possible radius value r:

For each possible gradient direction θ: 
// or use estimated gradient at (x,y)

a = x – r cos(θ) // column
b = y – r sin(θ)  // row
H[a,b,r] += 1

end
end

end

Modified from Kristen Grauman

θ

x

x = a + r cos(θ)
y = b + r sin(θ)

Your homework!

Hough Transform for Circles
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Original Edges Votes: Penny

Note: a different Hough transform (with separate accumulators) 
was used for each circle radius (quarters vs. penny).

Kristen Grauman, images from Vivek Kwatra

Example: Detecting Circles with Hough
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Original Edges Votes: Quarter

Kristen Grauman, images from Vivek Kwatra

Note: a different Hough transform (with separate accumulators) 
was used for each circle radius (quarters vs. penny).

Example: Detecting Circles with Hough
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Pros
• All points are processed independently, so can cope with occlusion, gaps
• Some robustness to noise: noise points unlikely to contribute consistently

to any single bin
• Can detect multiple instances of a model in a single pass

Cons
• Complexity of search time for maxima increases exponentially with the 

number of model parameters 
• If 3 parameters and 10 choices for each, search is O(103)

• Quantization: can be tricky to pick a good grid size

Adapted from Kristen Grauman

Hough transform: pros and cons
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Hough Transform Demo

Hough transform

39

https://www.youtube.com/watch?v=ebfi7qOFLuo


• RANdom Sample Consensus

• Approach: we want to avoid the impact of 
outliers, so let’s look for “inliers”, and use those 
only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line won’t have 
much support from rest of the points.

Kristen Grauman

40
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RANSAC loop:
1. Randomly select a seed group of s points on which to 

base model estimate (e.g. s=2 for a line)
2. Fit model to these s points
3. Find inliers to this model (i.e., points whose distance 

from the line is less than t)
4. Repeat N times

• Keep the model with the largest number of inliers

Adapted from Kristen Grauman and Svetlana Lazebnik
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RANSAC: General Form



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example
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RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example
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RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example
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d

RANSAC

6=IN

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example
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d

RANSAC

14=IN
Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Silvio Savarese

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Line fitting example

46



RANSAC pros and cons
• Pros

• Applicable to many different problems, e.g. 
image stitching, relating two views

• Often works well in practice

• Cons
• Lots of parameters to tune (see previous 

slide)
• Doesn’t work well for low inlier ratios (too 

many iterations, or can fail completely)

Adapted from Svetlana Lazebnik
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Plan for today

• Edges
• Extract gradients and threshold

• Lines and circles
• Find which edge points are collinear or belong to 

another shape e.g. circle
• Automatically detect and ignore outliers

• Segments
• Find which pixels form a consistent region
• Clustering (e.g. K-means)
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Edges vs Segments

Figure adapted from J. Hays

• Edges: More low-level; don’t need to be closed
• Segments: Ideally one segment for each semantic group/object; 

should include closed contours

49



The goals of segmentation
• Separate image into coherent “objects”

image human segmentation

Source: L. Lazebnik
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The goals of segmentation
• Separate image into coherent “objects”
• Group together similar-looking pixels for efficiency of further processing

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

“superpixels”

Source: L. Lazebnik
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http://ttic.uchicago.edu/~xren/research/iccv2003/


Slide: K. Grauman

Similarity
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intensity

pi
xe

l c
ou

nt

input image

black pixels
gray 
pixels

white 
pixels

• These intensities define the three groups.
• We could label every pixel in the image according to which of these primary 

intensities it is.
• i.e., segment the image based on the intensity feature.

• What if the image isn’t quite so simple?

1 2
3

Source: K. Grauman

Image Segmentation: Toy Example
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input image
intensity

pi
xe

l c
ou

nt
• Now how to determine the three main intensities that 

define our groups?

• We need to cluster.
Source: K. Grauman

Image Segmentation: Toy Example
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0 190 255

• Goal: choose three “centers” as the representative intensities, and label 
every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize sum of squared differences 
(SSD) between all points and their nearest cluster center ci:

1 2
3

intensity

Source: K. Grauman

Image Segmentation: Toy Example
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• With this objective, it is a “chicken and egg” problem:
• If we knew the cluster centers, we could allocate points to groups by 

assigning each to its closest center.

• If we knew the group memberships, we could get the centers by 
computing the mean per group.

Source: K. Grauman

Clustering
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• Basic idea: randomly initialize the k cluster centers, and iterate between 
the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK
2. Given cluster centers, determine points in each cluster

• For each point p, find the closest ci.  Put p into cluster i
3. Given points in each cluster, solve for ci

• Set ci to be the mean of points in cluster i
4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution
• Can be a “local minimum” of objective:

Slide: Steve Seitz, image: Wikipedia

K-means clustering
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Source: A. Moore
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Source: A. Moore
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Source: A. Moore
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Source: A. Moore
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Source: A. Moore
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K-means converges to a local minimum

Adapted from James Hays

How can I try to fix this problem?

63



Pros
• Simple, fast to compute
• Converges to local minimum of 

within-cluster squared error

Cons/issues
• Setting k?

• One way: silhouette coefficient
• Sensitive to initial centers

• Use heuristics or output of another 
method

• Sensitive to outliers
• Detects spherical clusters

Adapted from K. Grauman

K-means: pros and cons
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Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on intensity similarity 

Feature space: intensity value (1-d) 

Source: K. Grauman

Segmentation as Clustering
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K=2

K=3

Adapted from K. Grauman
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Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on intensity similarity 

Clusters based on intensity 
similarity don’t have to be 
spatially coherent.

Source: K. Grauman

Segmentation as Clustering
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X

Y

Intensity

Both regions are black, but if we also 
include position (x,y), then we could group 
the two into distinct segments; way to 
encode both similarity & proximity.

Source: K. Grauman

Grouping pixels based 
on intensity+position similarity 

Depending on what we choose as the feature space, we 
can group pixels in different ways.

Segmentation as Clustering
68



R=255
G=200
B=250

R=245
G=220
B=248

R=15
G=189
B=2

R=3
G=12
B=2R

G

B

Feature space: color value (3-d) 
Adapted from K. Grauman

Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on color similarity 

Segmentation as Clustering
69



• Color, brightness, position alone are not enough 
to distinguish all regions…

Source: L. Lazebnik

Segmentation as Clustering
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Depending on what we choose as the feature space, we 
can group pixels in different ways.

F24

Grouping pixels based 
on texture similarity 

F2

Feature space: filter bank responses (e.g., 24-d) 

F1

…

Filter bank 
of 24 filters

Source: K. Grauman

Segmentation as Clustering
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RoI Align Conv

Classification Scores: C
Box coordinates (per class): 4 * C

CNN Conv

May 10, 2017

Predict a mask for  
each of C classes

He et al, “Mask R-CNN”, ICCV 2017; slide adapted from Justin Johnson

State-of-the-art (instance) segmentation: Mask R-
CNN
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http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf


Summary: classic approaches

• Edges: threshold gradient magnitude

• Lines: edge points vote for parameters of line, circle, etc. 
(works for general objects)

• Segments: use clustering (e.g. K-means) to group pixels by 
intensity, texture, etc.
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