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Plan for this lecture
• What is recognition? 

• a.k.a. classification, categorization

• Support vector machines
• Separable case / non-separable case
• Linear / non-linear (kernels)

• Example approach for scene classification

• The importance of generalization
• The bias-variance trade-off (applies to all classifiers)
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• Given a feature representation for images, how do we learn a 
model for distinguishing features from different classes?

Zebra

Non-zebra

Decision
boundary

Slide credit: L. Lazebnik
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Classification



• Assign input vector to one of two or more classes
• Input space divided into decision regions separated by decision 

boundaries

Slide credit: L. Lazebnik
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Classification



Examples of image classification
• Two-class (binary): Cat vs Dog

Adapted from D. Hoiem
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Examples of image classification
• Multi-class (often): Object recognition
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Examples of image classification
• Fine-grained recognition

Visipedia Project
Slide credit: D. Hoiem
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http://www.vision.caltech.edu/visipedia/


Examples of image classification
• Place recognition

Places Database [Zhou et al. NIPS 2014]
Slide credit: D. Hoiem
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http://places.csail.mit.edu/places_NIPS14.pdf


Examples of image classification
• Material recognition

[Bell et al. CVPR 2015]
Slide credit: D. Hoiem
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http://arxiv.org/pdf/1412.0623.pdf


Examples of image classification
• Dating historical photos

[Palermo et al. ECCV 2012]

1940 1953 1966 1977

Slide credit: D. Hoiem
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http://repository.cmu.edu/cgi/viewcontent.cgi?article=1776&context=robotics


Examples of image classification
• Image style recognition

[Karayev et al. BMVC 2014] Slide credit: D. Hoiem
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http://arxiv.org/pdf/1311.3715.pdf


Recognition: A machine learning approach
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The machine learning framework

• Apply a prediction function to a feature representation of the image to get 
the desired output:

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”

Slide credit: L. Lazebnik
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The machine learning framework

y* = f(x)

• Training: given a training set of labeled examples {(x1,y1), …, (xN,yN)}, 
estimate the prediction function f by minimizing the prediction error on the 
training set, e.g. |f(xi) – yi|

• Evaluate multiple hypotheses f1, f2, fH … and pick the best one as f
• Testing: apply f to a never-before-seen test example x and output the 

predicted value y* = f(x)

output (may differ from 
ground-truth label y)

prediction 
function

image / image features

Slide credit: L. Lazebnik
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Prediction

Training 
Labels

Training 
Images

TrainingTraining
Image 

Features

Image 
FeaturesTesting

Test Image

Learned 
model

Learned 
model

Slide credit: D. Hoiem and L. Lazebnik
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The old-school way



The simplest classifier

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs
• No training required!

Test exampleTraining 
examples 
from class 

1

Training 
examples 
from class 

2

Slide credit: L. Lazebnik
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k = 5

Slide credit: D. Lowe

• For a new point, find the k closest points from training data
• Labels of the k points “vote” to classify

If query lands here, the 5 
NN consist of 3 positives 
and 2 negatives, so we 
classify it as positive.

Black = positive
Red = negative

K-Nearest Neighbors classification
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Nearest Neighbors according to BOW-SIFT + color histogram + a few others
Slide credit: James Hays

Where was this image taken?
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Im2gps: Estimating  Geographic Information from a Single Image
[James Hays and Alexei Efros, CVPR 2008]



The Importance of Data

Slides: James Hays
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Linear classifier

• Find a linear function to separate the classes

f(x) = sgn(w1x1 + w2x2 + … + wDxD) = sgn(w × x)

Slide credit: L. Lazebnik
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• What should the weights be?

x1

x2

(0, 0)

• Decision = sign(wTx) = sign(w1*x1 + w2*x2)

Linear Classifier
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Lines in R2
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Lines in R2
Slope: -a/c
Y-intercept: -b/c
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Lines in R2
Slope: -a/c
Y-intercept: -b/c
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Lines in R2
Slope: -a/c
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Linear classifiers
• Find linear function to separate positive and negative examples

0:negative
0:positive

<+×
³+×
b
b

ii

ii

wxx
wxx

Which line
is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

A

B C

D
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Linear classifiers
• Find linear function to separate positive and negative examples

0:negative
0:positive

<+×
³+×
b
b

ii

ii

wxx
wxx

Which line
is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

A

B C

D

Not seen until test time, 
of class blue

28

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines 
• Discriminative 

classifier based 
on optimal 
separating line 
(for 2d case)

• Maximize the 
margin between 
the positive and 
negative training 
examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines
• Want line that maximizes the margin.

1:1)(negative
1:1)( positive
-£+×-=

³+×=
by
by

iii

iii

wxx
wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

For support, vectors, 1±=+× bi wx

wx+b=-1
wx+b=0
wx+b=1
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines
• Want line that maximizes the margin.

1:1)(negative
1:1)( positive
-£+×-=

³+×=
by
by

iii

iii

wxx
wxx

Support vectors

For support, vectors, 1±=+× bi wx

wx+b=-1
wx+b=0
wx+b=1

Distance between point 
and line: ||||

||
w
wx bi +×

www
211

=
-

-=M

For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

Margin ww
xw 1±

=
+ bΤ
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines
• Want line that maximizes the margin.

1:1)(negative
1:1)( positive
-£+×-=

³+×=
by
by

iii

iii

wxx
wxx

MarginSupport vectors

For support, vectors, 1±=+× bi wx

wx+b=-1
wx+b=0
wx+b=1

Distance between point 
and line: ||||

||
w
wx bi +×

Therefore, the margin is  2 / ||w||

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


1. Maximize margin 2/||w||
2. Correctly classify all training data points:

• Quadratic optimization problem:
•

Minimize

Subject to  yi(w·xi+b) ≥ 1

wwT
2
1

1:1)(negative
1:1)( positive
-£+×-=

³+×=
by
by

iii

iii

wxx
wxx

One constraint per training point.

Note sign trick:
w·xi + b >= 1 (if yi = 1)

w·xi + b <= -1 (if yi = -1)
(-1) w·xi - b >= 1

Adapted from C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition
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Finding the maximum margin line

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Solution: å= i iii y xw a

Support 
vector

Learned
weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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Finding the maximum margin line

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Solution:
b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test point x and the 
support vectors xi

• (Solving the optimization problem also involves computing the inner 
products xi · xj between all pairs of training points)

å= i iii y xw a

( )by
xf

ii +×=

+×=

å xx
xw

i isign         
b)(sign   )(

a
If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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Finding the maximum margin line

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Inner product

Adapted from Milos Hauskrecht

( )by
xf

ii +×=

+×=

å xx
xw

i isign         
b)(sign   )(

a
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• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs
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Φ:  x→ φ(x)

• General idea: the original input space can always be mapped to 
some higher-dimensional feature space where the training set is 
separable:

Andrew Moore

Nonlinear SVMs
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Nonlinear kernel: Example
• Consider the mapping ),()( 2xxx =j

22

2222

),(
),(),()()(
yxxyyxK

yxxyyyxxyx
+=

+=×=×jj

x2

Svetlana Lazebnik
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• The linear classifier relies on dot product between vectors K(xi,xj) = xi · xj

• If every data point is mapped into high-dimensional space via some 
transformation Φ:  xi→ φ(xi ), the dot product becomes: K(xi,xj) = φ(xi ) · φ(xj)

• A kernel function is similarity function that corresponds to an inner product 
in some expanded feature space

• The kernel trick: instead of explicitly computing the lifting transformation 
φ(x), define a kernel function K such that: K(xi,xj) = φ(xi ) · φ(xj)

Andrew Moore

The “Kernel Trick”
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Examples of kernel functions
n Linear:

n Polynomials of degree up to d:

n Gaussian RBF:

n Histogram intersection:
)

2
exp()( 2

2

s
ji

ji

xx
,xxK

-
-=

å=
k

jiji kxkxxxK ))(),(min(),(

j
T
iji xxxxK =),(

Andrew Moore / Carlos Guestrin

𝐾(𝑥!, 𝑥") = (𝑥!#𝑥" + 1)$
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Hard-margin SVMs

Maximize margin

The w that minimizes…
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Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification 
cost

# data samples

Soft-margin SVMs

Figure from Chris Bishop
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Soft-margin SVMs

Figure from Chris Bishop
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Ideal Case

ε=0
[Easy to classify]

ε<1
[Points close to 

decision boundary]

ε>1
[Miss-classified points]



Soft-margin SVMs

Figure from Chris Bishop
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ε<1
[Points close to 

decision boundary]

ε>1
[Miss-classified points] Slack variables allow:

• Certain training points can be within the 
margin.

• We want these number of points as small as 
possible.

How do we minimize the second term in the optimization?

• A lot of examples with ε=0 (easy correctly 
classified)

• Medium quantity of examples with 0<ε<1 
(correct classified inside margin)

• Few examples with ε>1 (misclassified 
examples)



What about multi-class SVMs?
• Unfortunately, there is no “definitive” multi-class SVM formulation
• In practice, we have to obtain a multi-class SVM by combining multiple 

two-class SVMs 

• One vs. others/all
• Training: learn an SVM for each class vs. the others
• Testing: apply each SVM to the test example, and assign it to the class of the SVM 

that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes
• Testing: each learned SVM “votes” for a class to assign to the test example

Svetlana Lazebnik
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Multi-class problems
• One-vs-all (a.k.a. one-vs-others)

• Train K classifiers
• In each, pos = data from class i, neg = data from classes other than i
• The class with the most confident prediction wins
• Example: 

• You have 4 classes, train 4 classifiers
• 1 vs others: score 3.5
• 2 vs others: score 6.2
• 3 vs others: score 1.4
• 4 vs other: score 5.5

• Final prediction: class 2
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Multi-class problems
• One-vs-one (a.k.a. all-vs-all)

• Train K(K-1)/2 binary classifiers (all pairs of classes)
• They all vote for the label
• Example:

• You have 4 classes, then train 6 classifiers
• 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4
• Votes: 1, 1, 4, 2, 4, 4 

• Final prediction is class 4
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1. Select a kernel function.

2. Compute pairwise kernel values between labeled examples.

3. Use this “kernel matrix” to solve for SVM support vectors & alpha weights.

4. To classify a new example: compute kernel values between new input and 
support vectors, apply alpha weights, check sign of output.

Adapted from Kristen Grauman

Using SVMs
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Some SVM packages
• LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• LIBLINEAR https://www.csie.ntu.edu.tw/~cjlin/liblinear/

• SVM Light http://svmlight.joachims.org/

• Scikit Learn https://scikit-learn.org/stable/modules/svm.html
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/
https://scikit-learn.org/stable/modules/svm.html


• Linear pros:
+ Low-dimensional parametric representation
+ Very fast at test time

• Linear cons:
• Can be tricky to select best kernel function for a problem
• Learning can take a very long time for large-scale problem

• NN pros:
+ Works for any number of classes
+ Decision boundaries not necessarily linear
+ Nonparametric method
+ Simple to implement

• NN cons:
• Slow at test time (large search problem to find neighbors)
• Storage of data
• Especially need good distance function (but true for all classifiers)

Adapted from L. Lazebnik

Linear classifiers vs nearest neighbors
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Beyond Bags of Features: Spatial Pyramid Matching  
for Recognizing Natural Scene Categories

CVPR 2006

Svetlana Lazebnik (slazebni@uiuc.edu)
Beckman Institute, University of Illinois at Urbana-Champaign

Cordelia Schmid
(cordelia.schmid@inrialpes.fr)

INRIA Rhône-Alpes, France

Jean Ponce (ponce@di.ens.fr)
Ecole Normale Supérieure, France

Winner of 2016 Longuet-
Higgins Prize
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Fei-Fei & Perona (2005), Oliva & Torralba (2001)
http://www-cvr.ai.uiuc.edu/ponce_grp/data

Slide credit: L. Lazebnik

Scene category dataset
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http://www-cvr.ai.uiuc.edu/ponce_grp/data


1. Extract local features
2. Learn “visual vocabulary” using clustering
3. Quantize local features using visual vocabulary 
4. Represent images by frequencies of “visual words” 

Slide credit: L. Lazebnik

Bag-of-words representation 
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Training
1. Compute bag-of-words representation for training images
2. Train classifier on labeled examples using histogram values as features
3. Labels are the scene types (e.g. mountain vs field)

Testing
1. Extract keypoints/descriptors for test images
2. Quantize into visual words using the clusters computed at training time
3. Compute visual word histogram for test images
4. Compute labels on test images using classifier obtained at training time
5. Evaluation only, do only once: Measure accuracy of test predictions by comparing them to 

ground-truth test labels (obtained from humans)

Adapted from D. Hoiem

Image categorization with bag of words
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Weak features Strong features

Edge points at 2 scales and 8 orientations  
(vocabulary size 16)

SIFT descriptors of 16x16 patches sampled  
on a regular grid, quantized to form visual  
vocabulary (size 200, 400) Slide credit: L. Lazebnik

Feature extraction (on which BOW is based)
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What about spatial layout?

All of these images have the same color histogram
Slide credit: D. Hoiem
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Spatial pyramid

Compute histogram in each spatial bin
Slide credit: D. Hoiem
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Spatial pyramid

Lecture 14Fei-Fei Li

Pyramid�match�kernel
• Fast�approximation�of�Earth�Mover8s�Distance
• Weighted�sum�of�histogram�intersections�at�mutliple resolutions�(linear�in�

the�number�of�features�instead�of�cubic)

K. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005.

8�Nov�1188

[Lazebnik et al. CVPR 2006]
Slide credit: D. Hoiem
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http://www.di.ens.fr/sierra/pdfs/cvpr06b.pdf


Level 2

Level 1

Level 0

Feature histograms:  

Level 3

Total weight (value of pyramid match kernel):

Matching using pyramid and 
histogram intersection for some 

particular visual word:
Original images

Adapted from L. Lazebnik

xi xj

K( xi , xj )

Pyramid Matching 
[Indyk & Thaper (2003), Grauman & Darrell (2005)]
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Fei-Fei & Perona: 65.2%

Multi-class classification results (100 training images per class)

Fei-Fei & Perona (2005), Oliva & Torralba (2001)
http://www-cvr.ai.uiuc.edu/ponce_grp/data

Slide credit: L. Lazebnik

Scene category dataset
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http://www-cvr.ai.uiuc.edu/ponce_grp/data


Difficult indoor images

kitchen living room bedroom Slide credit: L. Lazebnik

Scene Category Confusions
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Ground Truth

Predicted



Multi-class classification results (30 training images per class)

Fei-Fei et al. (2004)
http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Slide credit: L. Lazebnik

Caltech101 dataset
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http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html


• What do we want? 
• High accuracy on training data? 
• No, high accuracy on unseen/new/test data!
• Why is this tricky?

• Training data
• Features (x) and labels (y) used to learn mapping f

• Test data
• Features (x) used to make a prediction
• Labels (y) only used to see how well we’ve learned f!!!

• Validation data
• Held-out set of the training data
• Can use both features (x) and labels (y) to tune parameters of the model we’re 

learning

Training vs Testing

64



• How well does a learned model generalize from the data it was trained on 
to a new test set?

Training set (labels known) Test set (labels 
unknown)

Slide credit: L. Lazebnik
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Generalization



• Example: Line fitting (regression)
• Error

• Train Error: Etrain

66

Generalization

Predicted
Ground 
Truth

Degree of polynomial d

Error

1 2 … ….  n

OverfittingUnderfitting

Adapted from  Andrew Ng - Coursera
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Generalization: Bias/Variance

w0+w1x w0+w1x+w2x2 w0+w1x+w2x2+w3x3+w4x4

Adapted from  Andrew Ng - Coursera
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Generalization: Bias/Variance

Degree of polynomial d

Error

1 2 … ….  n
Errortrain

Errortest

High Bias High Variance

Bias (underfit)
- Errortrain is high
- Errortest is similar Errortrain

Variance (overfit)
- Errortrain is low
- Errortest >> Errortrain

Adapted from  Andrew Ng - Coursera



• Components of generalization error 
• Noise in our observations: unavoidable

• Underfitting (High Bias): model is too “simple” to represent all the 
relevant class characteristics

• High training error and high test error

• Overfitting (High Variance): model is too “complex” and fits irrelevant 
characteristics (noise) in the data

• Low training error and high test error

Slide credit: L. Lazebnik
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Generalization: Bias/Variance



• Models with too few parameters 
are inaccurate because of a 
large bias [Underfit] (not enough 
flexibility).

• Models with too many 
parameters are inaccurate
because of a large variance 
[Overfit] (too much sensitivity to 
the sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)
Green curve = true underlying model Blue curve = our predicted model/fit

Purple dots = possible test points
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Generalization

Model

Model



Polynomial Curve Fitting

Slide credit: Chris Bishop
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Sum-of-Squares Error Function

Slide credit: Chris Bishop
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Predicted
Ground 
Truth



0th Order Polynomial

Slide credit: Chris Bishop
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1st Order Polynomial

Slide credit: Chris Bishop
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3rd Order Polynomial

Slide credit: Chris Bishop
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9th Order Polynomial

Slide credit: Chris Bishop

76



Over-fitting

Root-Mean-Square (RMS) Error:

Slide credit: Chris Bishop
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Polynomial degree



Data Set Size: 
9th Order Polynomial

Slide credit: Chris Bishop
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Data Set Size: 
9th Order Polynomial

Slide credit: Chris Bishop
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Regularization

• Penalize large coefficient values à Make function 
simpler.

• (Remember: We want to minimize this expression.)

• Regularization weight: λ

Adapted from Chris Bishop

80



Regularization

81

Adapted from  Andrew Ng - Coursera

w0+w1x Intermediate λLarge λ Small λ

λ = 0λ = 1000
w0 ≈ 0, w1 ≈ 0 , w2 ≈ 0, …, wn ≈ 0



Regularization: 

Slide credit: Chris Bishop
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(medium regularization)



Regularization: 

Slide credit: Chris Bishop
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(huge regularization)

What's happening from medium to huge regularization?



Polynomial Coefficients   

Slide credit: Chris Bishop
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Polynomial Coefficients   

Adapted from Chris Bishop

No regularization Huge regularization
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Increase λ



Regularization:           vs. 

Slide credit: Chris Bishop
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Overfitting

Increase λ

Google Search



Training vs test error

Training error

Test error

Underfitting Overfitting

Model Complexity Low Bias
High Variance

High Bias
Low Variance

E
rr

or

Slide credit: D. Hoiem
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The effect of training set size

Many training examples

Few training examples

Model Complexity Low Bias
High Variance

High Bias
Low Variance

Te
st

 E
rr

or

Slide credit: D. Hoiem
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Choosing the trade-off between bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias
High Variance

High Bias
Low Variance

E
rr

or

Slide credit: D. Hoiem

Apply this model to test set
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Generalization tips

• Try simple classifiers first

• Better to have smart features and simple classifiers than simple features 
and smart classifiers

• Use increasingly powerful classifiers with more training data

• As an additional technique for reducing variance, try regularizing the 
parameters (penalize high magnitude weights)

Slide credit: D. Hoiem
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Generalization tips: Bias/Variance

Adapted from Andrew Ng - Coursera
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Degree of polynomial d

Error

1 2 … ….  n
Errortrain

Errortest

High Bias
(Underfit)

High Variance
(Overfit)

Training Examples 
- Get more

Features
- Try smaller set

Regularizer
- Increase λ

Polynomial features 
- Add

Features
- Try additional

Regularizer
- Decrease λ

Model Complexity


