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Plan for this lecture

What is recognition?
a.k.a. classification, categorization

Support vector machines
Separable case / non-separable case
Linear / non-linear (kernels)

Example approach for scene classification

The importance of generalization
The bias-variance trade-off (applies to all classifiers)



Classification

- Given a feature representation for images, how do we learn a
model for distinguishing features from different classes?
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Slide credit: L. Lazebnik



Classification

Assign input vector to one of two or more classes

Input space divided into decision regions separated by decision
boundaries

X4 Slide credit: L. Lazebnik



Examples of image classification

Two-class (binary): Cat vs Dog

Adapted from D. Hoiem



Examples of image classification

- Multi-class (often): Object recognition
- e, < - o

< cC @ © # www.image-net.org/search?q=car B 120% O % meos & =

Synset: racer, race car, racing_car
Definition: a fast car that competes in races.
Popularity percentile:: 85%

Depth in WordNet: 10

Synset: car mirror

Definition: a mirror that the driver of a car can use.
Popularity percentile:: 83%

Depth in WordNet: 8

Synset: passenger car, coach, carriage
Definition: a railcar where passengers ride.
Popularity percentile:: 83%

Depth in WordNet: 8

Synset: beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon
Definition: a car that has a long body and rear door with space behind rear seat.

Popularity percentile:: 74%

Depth in WordNet: 10

Synset: freight car

Definition: a railway car that carries freight.
Popularity percentile:: 64%

Depth in WordNet: 8

Synset: bumper car, Dodgem

Definition: a small low-powered electrically powered vehicle driven on a special platform where there
others to be dodged.

Popularity percentile:: 63%

Depth in WordNet: 7




Examples of image classification

Fine-grained recognition

< 9 o » @

Generalist Insect catching Grain eating  Coniferousseed eating Nectar feeding
Chiseling Dip netting Surface skimming Scything Probing

Aerial fishing Pursuit fishing Scavenging Raptonal Filter feeding

Visipedia Project

Slide credit: D. Hoiem


http://www.vision.caltech.edu/visipedia/

Examples of image classification

- Place recognition
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I'OCkV coast misty coast . sunny coast

Places Database [Zhou et al. NIPS 2014]

Slide credit: D. Hoiem


http://places.csail.mit.edu/places_NIPS14.pdf

Examples of image classification

lbrick food [ painted Pitie

. carpet glass  paper stone

ceramic | hair plastic | water

¢ M ate rl a I fabric leather [l polishedstone [l wood
foliage

metal skin

Slide credit: D. Hoiem


http://arxiv.org/pdf/1412.0623.pdf

Examples of image classification

Dating historical photos

[Palermo et al. ECCV 2012]

Slide credit: D. Hoiem


http://repository.cmu.edu/cgi/viewcontent.cgi?article=1776&context=robotics

Examples of image classification

- Image style recognition

Vintage

Post-Impressionism

Long Exposure Romantic Abs. Expressionism  Color Field Painting

Flickr Style: 80K images covering 20 styles. Wikipaintings: 85K images for 25 art genres.

[Karayev et al. BMVC 2014] slide credit: D. Hoiem



http://arxiv.org/pdf/1311.3715.pdf
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The machine learning framework

Apply a prediction function to a feature representation of the image to get
the desired output:

f(EJ) = "apple”
f(Rd) = “tomato”

f(B&) = "cow”

Slide credit: L. Lazebnik



The machine learning framework

*=f
AN

output (may differ from prediction image / image features
ground-truth label y) function

Training: given a fraining set of labeled examples {(x4,¥1), ..., (Xn,YN)}
estimate the prediction function f by minimizing the prediction error on the
training set, e.g. |f(x;) — y||

Evaluate multiple hypotheses f,, f,, f ... and pick the best one as f
Testing: apply f to a never-before-seen test example x and output the
predicted value y* = f(x)



The old-school way [ Training ]
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Slide credit: D. Hoiem and L. Lazebnik



The simplest classifier

O n ¢
N * ® ® Training
Training O Test example examples
examples @) from class
from class [] 2
1 @
[]
®
[]

f(x) = label of the training example nearest to x

* All we need is a distance function for our inputs
*  No training required!

Slide credit: L. Lazebnik
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K-Nearest Neighbors classification

For a new point, find the k closest points from training data
Labels of the k points “vote” to classify

Black = positive . o, oe If query lands here, the 5

Red = negative . e NN consist of 3 positives
1, ' * and 2 negatives, so we
T "t classify it as positive.

.'x;




Im2gps: Estimating Geographic Information from a Single Image
[James Hays and Alexei Efros, CVPR 2008]

Where was this image taken?

Nearest Neighbors according to BOW-SIFT + color histogram + a few others Side credit: James Hays




The Importance of Data

16
s First Nearest Neighbor Scene Match
147 mmm Chance- Random Scenes
12 4

—
o

09 0. 38 1 54 6. 16 24 6 98 5 394 1,576 6,304
Database size (thousands of images, log scale)

Percentage of Geolocations within 200km

Slides: James Hays
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Linear classifier
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Find a linear function to separate the classes

f(x) = sgn(w x4 + WyX, + ... + WpXp) = sgn(w - X)

Slide credit: L. Lazebnik



Linear Classifier

« Decision = sign(w™x) = sign(w1*x1 + w2*x2)
X2
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What should the weights be?



Lines in R?

ax+cy+b=0

\ Compare to:
slope*x + y-intercept =y

ax +b=-cy
(-alc) x + (-blc) =y

Slope: -alc
Y-intercept: -b/c



Slope: -alc

Ll N eS | N R2 Y-intercept: -b/c

\ Let W=
W

ax+cy+b=0

N !

w-x+b=0




Lines in R?

Slope: -alc
Y-intercept: -b/c

(xoayo)

ax+cy+b=0

\ W-x—$|—b=0

Kristen Grauman



Lines in R?

(xo » Vo )
W
B ‘axo +cy, +b‘

Ja? +¢?

Slope: -alc
Y-intercept: -b/c

ax+cy+b=0

!

w-x+b=0

| distance from

“point to line




L|neS |n R2 Slope: -alc
(xmyo)

Y-intercept: -b/c

ax+cy+b=0

\ W'X-$|—b=O

_ X+D)| 1 distance from
\/a2 g B HWH point to line




Linear classifiers

- Find linear function to separate positive and negative examples

® X, positive: X,-w+b2>0

X, negative: X,-w+b<0

Which line
is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Linear classifiers

- Find linear function to separate positive and negative examples

® X; positive: X.-w+b=>0

X, negative: X,-w+b<0

® @ Not seen until test time,
of class blue
()
Which line
is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

- Discriminative
classifier based
on optimal
separating line
(for 2d case)

- Maximize the
margin between
the positive and
negative training
examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

«  Want line that maximizes the margin.

% %,

%Lx 6\\ \\\/
S C N\ ® x, positive (y, =1):  x,-w+b>1
\ @
Ne X, negative(y, =-1): x,-w+b<-1
\ ® For support, vectors, X, -W+b=x=1
@
s °®
o
Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

Want line that maximizes the margin.

ef% R

X, N,V .

S 2 N\ ® x, positive (y, =1):  x,-w+b>1
: X, negative(y, =-1): x,-w+b<-1

PS For support, vectors, X, -W+b =121

e Distance between point | X;-W+b|
and line: | w |

For support vectors:
wix+b 1

Margin [wl ) [wl

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

1 -1

B _ 2
Wl w

Wl

M =

Support vectors



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

«  Want line that maximizes the margin.

S 2\ °® x positive (y, =1):  x,-w+b>1
X, negative(y, =—-1): X, -w+b<-1

PS For support, vectors, X, -W+b=x=1

e Distance between point | X; W +b|
and line: | W]

Therefore, the marginis 2/ ||w||
Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

T
Finding the maximum margin line

Maximize margin 2/||w||
2. Correctly classify all training data points:
X, positive (y, =1): X, W+b2>1

X, negative(y, =—1): x,-w+b<-1

- Quadratic optimization problem:

1 One constraint per training point.

C e T
Minimize —W W | Note sign trick:

2 / w-x; +b>=1 (ify; = 1)
Subjectto y(w-x+b)>1 wex; + b <= -1 (if y; = -1)
(-1)wx-b>=1

Adapted from C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

- Solution: W = Zi ;Y X,

/

Learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

Solution: W= Z,- a.yX,
b=y, —w-x; (forany supportvector)
Classification function:

f(x)=s1gn(w-x+b)

.............

If f(x) < 0, classify as negative, otherwise classify as positive.
Notice that it relies on an inner product between the test point x and the
support vectors x;

(Solving the optimization problem also involves computing the inner
products x; - x; between all pairs of training points)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Inner product

* The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

f(x)=sign(w-x+b)

X, X, A
y =sign iaiygx.-x',+b)

[ A—

* The inner product is equal
(5730 =[x, e cos 6
If the angle in between them 1s 0 then: (XiTX) = ||Xi|| * ”Xi”

If the angle between them 1s 90 then: (xirx) =0

The inner product measures how similar the two vectors are

Adapted from Milos Hauskrecht



Nonlinear SVMs

« Datasets that are linearly separable work out great:
e o o0 . o N
« But what if the dataset is just too hard?

e O ® e o0 o ® o ®
0 X

 We can map it to a higher-dimensional space:

Andrew Moore



e
Nonlinear SVMs

General idea: the original input space can always be mapped to
some higher-dimensional feature space where the training set is

separable:
c ® _ o .... . °

Andrew Moore



Nonlinear kernel: Example

Consider the mapping P(x) = (x,x7)

P(x)-0(») = (x,x*)-(y,y*) =xp+x7y’
K(x,y)=xy+x’y’



T
The “Kernel Trick”

« The linear classifier relies on dot product between vectors K(x;, xj) = X; - X;

« If every data point is mapped into high-dimensional space via some
transformation ®: x; — ¢(x;), the dot product becomes: K(x;,x;) = o(x;) - 9(X))

* A kernel function is similarity function that corresponds to an inner product
in some expanded feature space

« The kernel trick: instead of explicitly computing the lifting transformation
¢(x), define a kernel function K such that: K(x;,x;) = o(x;) - 9(x))

Andrew Moore



Examples of kernel functions

- : T
= Linear: K(xl.,xj) =X; X,
= Polynomials of degree up to d-
— T d
K(Xi, X]) — (Xi Xj + 1)

2
%, - )|

2 )

= Gaussian RBF:

K(xi’xj) = exp(—

= Histogram intersection:

K(x,.x;) = > min(x, (k).x, (k)

20

Andrew Moore / Carlos Guestrin



Hard-margin SVMs

]

The w that minimizes... \ f
Y

Maximize margin

subject to yz-'wTa:i > 1 :



Soft-margin SVMs

# data samples
Misclassification

l ||w H2 c(is|i Slack variable
.@ 2

The w that minimizes... L ) L ?’:1
Y Y

Maximize margin Minimize misclassification

subjectto  y;w’ x;, >1— &,
52207 \v/i:]_,...,N

Figure from Chris Bishop
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Soft-margin SVMs

e>1
[Miss-classified points]

€=0
N .--" [Easy to classify]

————

Ideal Case

Figure from Chris Bishop



Soft-margin SVMs

e>1
[Miss-classified points]

Slack variables allow:

« Certain training points can be within the
margin.

» We want these number of points as small as
possible.

How do we minimize the second term in the optimization?

» Alot of examples with €¢=0 (easy correctly
classified)

* Medium quantity of examples with

 Few examples with €>1 (misclassified
examples)

Figure from Chris Bishop



T
What about multi-class SVMs?

- Unfortunately, there is no “definitive” multi-class SVM formulation

- In practice, we have to obtain a multi-class SVM by combining multiple
two-class SVMs

- One vs. others/all
Training: learn an SVM for each class vs. the others

Testing: apply each SVM to the test example, and assign it to the class of the SVM
that returns the highest decision value

- Onevs. one
Training: learn an SVM for each pair of classes
Testing: each learned SVM “votes” for a class to assign to the test example

Svetlana Lazebnik



Multi-class problems

- One-vs-all (a.k.a. one-vs-others)
- Train K classifiers
- In each, pos = data from class /, neg = data from classes other than i
- The class with the most confident prediction wins
- Example:
You have 4 classes, train 4 classifiers
1 vs others: score 3.5
2 vs others: score 6.2

3 vs others: score 1.4
4 vs other: score 5.5

Final prediction: class 2



Multi-class problems

- One-vs-one (a.k.a. all-vs-all)

- Train K(K-1)/2 binary classifiers (all pairs of classes)
- They all vote for the label
- Example:

You have 4 classes, then train 6 classifiers

1Tvs2,1vs3,1vs4,2vs3,2vs4,3vs4
Votes: 1,1, 4,2, 4,4

Final prediction is class 4



T
Using SVMs

1. Select a kernel function.
2. Compute pairwise kernel values between labeled examples.
3. Use this “kernel matrix” to solve for SVM support vectors & alpha weights.

4. To classify a new example: compute kernel values between new input and
support vectors, apply alpha weights, check sign of output.

Adapted from Kristen Grauman



e
Some SVM packages

LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

LIBLINEAR https://www.csie.ntu.edu.tw/~cjlin/liblinear/

SVM Light hitp://svmlight.joachims.org/

Scikit Learn https://scikit-learn.org/stable/modules/svm.html



http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/
https://scikit-learn.org/stable/modules/svm.html

Linear classifiers vs nearest neighbors

Linear pros:
+ Low-dimensional parametric representation
+ Very fast at test time
Linear cons:
« Can be tricky to select best kernel function for a problem
* Learning can take a very long time for large-scale problem
NN pros:
+ Works for any number of classes
+ Decision boundaries not necessarily linear
+ Nonparametric method
+ Simple to implement
NN cons:
«  Slow at test time (large search problem to find neighbors)
« Storage of data
«  Especially need good distance function (but true for all classifiers)

Adapted from L. Lazebnik



Beyond Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories

CVPR 2006 Winner of 2016 Longuet-

Higgins Prize

Svetlana Lazebnik (slazebni@uiuc.edu)
Beckman Institute, University of lllinois at Urbana-Champaign

Cordelia Schmid

(cordelia.schmid@inrialpes.fr)
INRIA Rhéne-Alpes, France

Jean Ponce (ponce@di.ens.fr)
Ecole Normale Supérieure, France



Scene category dataset

Fei-Fei & Perona (2005), Oliva & Torralba (2001)
http://www-cvr.ai.uiuc.edu/ponce_grp/data

i L o [T/ e

office kitchen living room bedroom
i - illg »’ . % | A -;:
industrial tall building inside city street

coast open country mountain

Slide credit: L. Lazebnik


http://www-cvr.ai.uiuc.edu/ponce_grp/data

Bag-of-words representation

1. Extract local features

2. Learn “visual vocabulary” using clustering

3. Quantize local features using visual vocabulary

4. Represent images by frequencies of “visual words”
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Tes TLe s JLwew

Slide credit: L. Lazebnik



Image categorization with bag of words

Training

1. Compute bag-of-words representation for training images

2. Train classifier on labeled examples using histogram values as features
3. Labels are the scene types (e.g. mountain vs field)

Testing

1. Extract keypoints/descriptors for test images

2. Quantize into visual words using the clusters computed at training time

3. Compute visual word histogram for test images

4. Compute labels on test images using classifier obtained at training time

5. Evaluation only, do only once: Measure accuracy of test predictions by comparing them to

ground-truth test labels (obtained from humans)

Adapted from D. Hoiem



Feature extraction (on which BOW is based)

Strong features
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Edge points at 2 scales and 8 orientations SIFT descriptors of 16x16 patches sampled
(vocabulary size 16) on a regular grid, quantized to form visual
vocabulary (size 200, 400) Slide credit: L. Lazebnik



What about spatial layout?

1400

All of these images have the same color histogram

Slide credit: D. Hoiem
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Spatial pyramid

Compute histogram in each spatial bin

Slide credit: D. Hoiem



Spatial pyramid

level 0 level 1 level 2
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[Lazebnik et al. CVPR 2006]

Slide credit: D. Hoiem


http://www.di.ens.fr/sierra/pdfs/cvpr06b.pdf

T
Pyramid Matching

[Indyk & Thaper (2003), Grauman & Darrell (2005)]

Matching using pyramid and
histogram intersection for some

Original images . .
particular visual word:

Feature histograms:

Level 3 N R =7 3
. . R =

Level 2 ] N -7,

Level 1 n =7,

Level 0 n=1,

K(x,%)  (value of pyramid match kernel): 1, +%(I2 —I3)+i(f1 —Iz)+%(fo =1)

Adgpted from L. Lazebnik



Scene category dataset

Fei-Fei & Perona (2005), Oliva & Torralba (2001)
http://www-cvr.ai.uiuc.edu/ponce_grp/data

vourt 1AV I 1 SN, <l @ —_
2 ERIE e e
e ' | RS

office kitchen living room

stole

S | TRE N Sl ]
— o
industrial tall bulldmg inside 1ty street highway
,L
open country mountain forest suburb

Multi-class classification results (100 training images per class)

Weak features Strong features
(vocabulary size: 16) (vocabulary size: 200)
Level Single-level =~ Pyramid | Single-level = Pyramid
0(1x1) 45.3 £0.5 72.2 +0.6

1(2x2) 53.6 £0.3  56.2 0.6 | 779+0.6  79.0 £0.5
24 x4) 61.7+0.6 64.7£0.7 | 794 +£0.3 81.1+0.3
3(8%8) 633 +0.8 66.8+0.6 | 77.2+04  80.7 £0.3

Fei-Fei & Perona: 65.2% Slide credit: L. Lazebnik



http://www-cvr.ai.uiuc.edu/ponce_grp/data
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kitchen living room bedroom
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Caltech101 dataset

Fei-Fei et al. (2004)

http://www.vision.caltech.edu/Image Datasets/Caltechl0l/Caltechl01.html

Multi-class classification results (30 training images per class)

Weak features (16) Strong features (200)

Level || Single-level = Pyramid | Single-level = Pyramid
0 15.5 +£0.9 41.2 1.2

314 £1.2 328 £1.3 | 559+0.9 57.0=£0.8

472 +£1.1 493 +1.4 | 63.6 0.9 64.6+0.8

522 4+0.8 54.0=+1.1 | 60.3 +0.9 64.6+0.7 e credt L Laebri

W N =



http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Training vs Testing

- What do we want?

High accuracy on training data?

No, high accuracy on unseen/new/test data!

Why is this tricky?
- Training data

Features (x) and labels (y) used to learn mapping f
- Test data

Features (x) used to make a prediction
Labels (y) only used to see how well we've learned f!!!

- Validation data

Held-out set of the training data

Can use both features (x) and labels (y) to tune parameters of the model we're
learning



Generalization

Training set (labels known) Test set (labels
unknown)

- How well does a learned model generalize from the data it was trained on
to a new test set?

Slide credit: L. Lazebnik



Generalization

- Example: Line fitting (regression)

- Error N
- Q'ZE: :E”’ n}' X

Price

Predlcted T e
Ground
- Train Error: Ei, Truth
A
Error
Underfitting Overfitting

X
X

Price
Price

Size 1 2 ... Degree of polynomial d .... N » Size Adapted from Andrew Ng - Coursera



Generalization: Bias/Variance

Price

Size

W0+W1X

High bias
(underfit)
3!

Adapted from Andrew Ng - Coursera



Generalization: Bias/Variance

A

Error \\ / EfMOriest

/ Bias (underfit)
- Errory,, is high
- Error,.s; is similar Error.;,

Variance (overfit)
| - Error;, is low

. —>Errortrain - Errortest >> Errortrain
1 2 ... Degree of polynomial d .... N

High Bias High Variance

Adapted from Andrew Ng - Coursera



Generalization: Bias/Variance

Components of generalization error
Noise in our observations: unavoidable

Underfitting (High Bias): model is too “simple” to represent all the
relevant class characteristics
High training error and high test error

Overfitting (High Variance): model is too “complex” and fits irrelevant
characteristics (noise) in the data
Low training error and high test error

Slide credit: L. Lazebnik



Generalization

ACCESS

- Models with too few parameters
are inaccurate because of a
large bias [Underfit] (not enough
flexibility).

Sample 2

Model oo °

- Models with too many
parameters are inaccurate
because of a large variance
[Overfit] (too much sensitivity to
the sample).

Purple dots = possible test points

Model

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model Blue curve = our predicted model/fit Adapted from D. Hoiem



Polynomial Curve Fitting

0 1

M
y(z, W) = wo + wix + wex® + ... + wyzM = ijxj
§=0

Slide credit: Chris Bishop



Sum-of-Squares Error Function

A
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Slide credit: Chris Bishop TrUth
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Oth Order Polynomial

Slide credit: Chris Bishop
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15t Order Polynomial

Slide credit: Chris Bishop



39 Order Polynomial

1t M=3
t
O
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0 - i

Slide credit: Chris Bishop



oth Order Polynomial
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Slide credit: Chris Bishop



Over-fitting

Polynomial degree

— s
—©— Training i |

—©— Test : !

; .
205 o
= .
0 :

Root-Mean-Square (RMS) Error: Erms = /2E(w*)/N

Slide credit: Chris Bishop



Data Set Size: N =15

9th Order Polynomial

Slide credit: Chris Bishop



Data Set Size: N =100

9th Order Polynomial

Slide credit: Chris Bishop



Regularization

Penalize large coefficient values - Make function
simpler

N
2
xna

[\Dll—\

(Remember: We want to minimize this expression.)

Regularization weight: A

Adapted from Chris Bishop



Regularization
= 5 2 {vlenw) i 5 G

[\Dll—\

Size

Small A

High variance
(overfit)

A =1000 A=0

w,=0,w;=0,w,=0,..,w,=0
Adapted from Andrew Ng - Coursera



Regularization:

(medium regularization)

Slide credit: Chris Bishop



Regularization:

(huge regularization)

1-
(o)

t

(o]

o\, O o
0 ~ P
(o]

1t

0 1

What's happening from medium to huge regularization?

Slide credit: Chris Bishop



%
Polynomial Coefficients

M=0 M=1 M=3': M=9
wy | 019 082 031 0.35 !
w} 1.27 799 0 232.37:
w} -25.43 | -5321.83 !
wh 17.37 |  48568.31
W ' -231639.30 |
w | 640042.26 |
w -1061800.52 !
wk ' 1042400.18 !
wh | -557682.99 !
w ' 125201.43 |

Slide credit: Chris Bishop



s
Polynomial Coefficients

No regularization Huge regularization

we 0.35 0.35 0.13
wk 232.37 474  -0.05
w -5321.83 0.77  -0.06
wk 48568.31 -31.97  -0.05
wi | -231639.30 -3.89  -0.03
wi | 640042.26 55.28  -0.02
wy | -1061800.52 4132 -0.01
w® | 1042400.18 -45.95  -0.00
wi | -557682.99 -91.53 0.00
wi | 125201.43 72.68 0.01

\4

Increase A
Adapted from Chris Bishop



Regularization: Erms vS. InA

Training

Test

NP

=35 -30
Overfitting

Inx ~2°

Increase A

Slide credit: Chris Bishop

-20

y=In(x)

- N W s

-1”/23453'

\ 4
Google Search

£ b N A




Training vs test error

Underfitting Overfitting
—
(]
=
L
High Bias : Low Bias
Low Variance Model Com pleXIty High Variance

Slide credit: D. Hoiem



The effect of training set size

Test Error

High Bias
Low Variance

Low Bias
High Variance

Model Complexity

Slide credit: D. Hoiem



Choosing the trade-off between bias and variance

Need validation set (separate from the test set)

Apply this model to test set

Error

High Bias
Low Variance

Low Bias
High Variance

Complexity

Slide credit: D. Hoiem



Generalization tips

Try simple classifiers first

Better to have smart features and simple classifiers than simple features
and smart classifiers

Use increasingly powerful classifiers with more training data

As an additional technique for reducing variance, try reqularizing the
parameters (penalize high magnitude weights)

Slide credit: D. Hoiem



Generalization tips: Bias/Variance

Error

Lv

/ Errorie

—  Erroryain

Polynomial features 2.
- Add

Features HL'JQZ B:.‘ts
- Try additional (Underfit)

Regularizer

- Decrease A

Degree of polynomial d

Model Complexity

. n

High Variance
(Overfit)

Training Examples
- Get more

Features
- Try smaller set

Regularizer
- Increase A

Adapted from Andrew Ng - Coursera



